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Vectors
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Adding vectors

We can add the vectors 
graphically
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Angular Displacement and angular velocity
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The direction of the angular velocity vector




The direction of the vector       points along the axis of rotation, 
according to the right-hand rule.
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Angular Acceleration
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If the rotation with Constant Acceleration, then we have
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Relationship between the linear and angular variables

rs


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r
dt

d
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The arc length

The velocity

Angular velocityLinear velocity What is the direction of the 
vector for the angular velocity in 
this case?
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We can separate the acceleration into two components:

Radial component:

Relationship between the linear and angular variables

Tangential component:
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Kinetic Energy of Rotation
Consider the kinetic energy of a rotating rigid body:

Since v = r, and  is the same for all particles, we have

is called the rotational inertia. It tells us how the mass of the 
rotating body is distributed about its axis of rotation. In summary,

and 
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Rotational inertia
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Rotational inertia
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Parallel Axis Theorem

The rotational inertia of a body about any axis is equal to the 
rotational inertia (= Mh2) it would have about that axis if all its 
mass were concentrated at its centre of mass, plus its rotational 
inertia (= Icm) about a parallel axis through its centre of mass.
Proof

which can be written as
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In the first term, x2 + y2 = R2. Hence the first term becomes

In the second and third terms, the position of the centre of mass gives

and 

Hence these terms vanish.

In the last term, a2 + b2 = h2. Hence the last term becomes
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Perpendicular Axis Theorem

The sum of the rotational inertia of a plane lamina about any two 
perpendicular axes in the plane of the lamina is equal to the 
rotational inertia about an axis that passes through the point of 
intersection and perpendicular to the plane of the lamina.
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Examples

2

2

1
MaI x 

Given that the rotational inertia of a hoop about its 
central axis is Ma2, what is the rotational inertia of a 
hoop about a diameter?

By symmetry, Ix = Iy

Using the perpendicular axis theorem, Ix + Iy = Iz.

Since Iz = Ma2, 
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A rigid body consists of two particles of mass m connected by a rod of length L and 
negligible mass.
(a) What is the rotational inertia Icm about an axis through the center of mass 
perpendicular to the rod?
(b) What is the rotational inertia I of the body about an axis through the left end of 
the rod and parallel to the first axis?

(a) 

(b)

Method 2: Parallel axis theorem:

= mL2

Examples

Method 1: Direct calculation:
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Consider a thin, uniform rod of mass M and length L.
(a) What is the rotational inertia about an axis perpendicular to the rod, through its 
center of mass?
(b) What is the rotational inertia of the rod about an axis perpendicular to the rod 
through one end?

(a) 

(b) Using the parallel axis theorem,

Examples
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Radius of Gyration
The radius of gyration is that distance from the axis of rotation where we assume all 
the mass of the body to be concentrated. It is given by

For example, for a thin rod rotating about its center,


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The ability of force     to rotate the body 
depends on:

(1)the magnitude of the tangential component Ft = Fsin,

(2)the distance between the point of application and the axis of rotation.

Define the torque as


F

  rFsin .

Torque
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It can be considered as either rF or rF. 

Terms:
line of action
moment arm

 is positive if it tends to rotate the body counterclockwise.

It is negative if it tends to rotate the body clockwise.
Considering the vector direction,   

  r F.
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Newton’s Second Law for Rotation

Newton’s second law:

Torque:

Since at = r, we obtain

Conclusion:

If there are more than one forces,
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Examples

A uniform disk of mass M = 2.5 kg and radius 
R = 20 cm is mounted on a fixed horizontal 
axle. A block whose mass m is 1.2 kg hangs 
from a massless cord that is wrapped around 
the rim of the disk. Find the acceleration of 
the falling block, the angular acceleration of 
the disk, and the tension in the cord. The 
cord does not slip, and there is no friction at 
the axle.
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Newton’s law for the hanging block

(We define downward is positive):

Newton’s law for the rotating disk

(We define clockwise is positive):

Since a = R,

From (1): 

(1)

(2)

From (2): 
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(Physics of judo) To throw an 80 kg opponent with a basic judo hip throw, you 
intend to pull his uniform with a force      and a moment arm d1 = 0.30 m from a 
pivot point (rotation axis) on your right hip, about which you wish to rotate him 
with an angular acceleration of 6.0 rad s2, that is, with a clockwise acceleration. 
Assume that his rotational inertia I is 15 kg m2.


F

(a) What must the magnitude 
of       be if you initially bend 
your opponent forward to 
bring his centre of mass to 
your hip?


F

(b) What must the magnitude 
of      be if he remains upright 
and his weight          has a 
moment arm d2 = 0.12 m from 
the pivot point?


F

mg


Examples
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(a) Newton’s law for the rotating opponent

(we define anticlockwise is positive):

= 300 N 

Remark: In the correct execution of the hip throw, you should bend your opponent to 

bring his center of mass to your hip.

(b)
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Work and Rotational Kinetic Energy

Total work done:

Work-kinetic energy theorem:

Integrating over the angular displacement,

Work done by the force:
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Example

A uniform disk of mass M = 2.5 kg 
and radius R = 20 cm is mounted on a 
fixed horizontal axle. A block whose 
mass m is 1.2 kg hangs from a 
massless cord that is wrapped around 
the rim of the disk. What is the 
rotational kinetic energy K at t = 2.5 s?
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Method 1: Use Newton’s law directly.
Using Newton’s law, we have found  = 24 rad s2.

Rotational inertia: 

Kinetic energy:
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Method 2: Use work-kinetic energy theorem.
Word done by the torque:

Since 

Using the work-kinetic energy theorem,



40

Department of Physics
Hong Kong Baptist University

A tall, cylindrical chimney will fall over when its base is ruptured. 
Treat the chimney as a thin rod of length L = 55 m. At the instant it 
makes an angle of  = 35o with the vertical, what is its angular 
speed f?

Example
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Using the conservation of energy,

Rotational inertia about the base:

Therefore, 

= 0.311 rad s1
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2 points of view:
(1) Combined rotation and translation

Rolling

(a) Translation: the center of mass moves with velocity vcm.
(b) Rotation: the wheel rotates about the center of mass.

If the wheel rolls without slipping, s = R, then .cm Rv 
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(2) Pure Rotation

Rolling can also be considered as a pure rotation, with 
angular speed , about an axis through the contact point. 
e.g. velocity at the top: vtop = ()(2R) = 2(R) = 2vcm.
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Relationship between the angular velocity/acceleration and linear 
velocity/acceleration
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Kinetic Energy of Rolling
If we consider the motion as a pure rotation about the contact point,

Using the parallel axis theorem,

Hence 

, and

The kinetic energy consists of:
(a) the kinetic energy of the translational motion of the center of mass
(b) the kinetic energy of the rotation about the center of mass.
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Friction and Rolling

(a) When the cyclist applies a torque on the wheel intending to make it 
rotate faster, the bottom of the wheel tends to slide to the left at point 
P. A frictional force at P, directed to the right, opposes the tendency to 
slide.
(b) The frictional force acts on the wheel and produces the acceleration 
of the bicycle.
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Rolling Down a Ramp

The gravitational force tends to make the wheel slide down the ramp. There 
is a frictional force opposing this sliding, and is thus directed up the ramp.
Using Newton’s second law for translational motion,

Using Newton’s second law for rotational motion,

Since a = R, we obtain from (2): 

Substituting into (1),

(1)

(2)
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Example

A uniform ball, of mass M = 6.00 kg and radius R, rolls smoothly from 
rest down a ramp at angle  = 30.0o.
(a) The ball descends a vertical height h = 1.20 m to reach the bottom 
of the ramp. What is its final speed?
(b) What are the magnitude and direction of the frictional force on 
the ball as it rolls down the ramp?
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(a) Method 1: Conservation of energy

Other terms: Uf = Ki = 0, Ui = Mgh. Hence
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Method 2: Newton’s law
Translational motion: 

Rotational motion: 

where 

Since a = R, (2): 

(1): 

(b) = 8.4 N 

(2)

(1)
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The Yo-Yo

Using Newton’s second law for translational 
motion,

Using Newton’s second law for rotational motion,

Since a = R0, we obtain from (2): 

Substituting into (1),

(1)

(2)



53

Department of Physics
Hong Kong Baptist University

Uniform circular motion
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