Rotational motion

Instructor: Dr. Hoi Lam TAM (&5 /4

<

Physics Enhancement Programme for Gifted Students

The Hong Kong Academy for Gifted Education
and
Department of Physics, HKBU

& O '’ B A F B A @-DepartmentofPhysics

The Hong Kong Academy for Gifted Education Hong Kong Baptist University 1



Contents

e Operation of vectors

e Angular displacement, velocity and acceleration
e Torque

e Rolling

e Circular motion

H O ' OB A F OB @-DepartmentofPhysics

The Hong Kong Academy for Gifted Education Hong Kong Baptist University 2



Vectors
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FIGURE 2-2. (a) The vector @ has component a, in the x direc-
tion and component a, in the y direction. (b) The vector b hasa
negative x component

= a cos ¢ and a, = asin ¢.

a = a; + a3 and tan ¢ = a,/a
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Three-dimensional Cartesian:

—

a=al+aj+tak

Two-dimensional polar:

E w= arll, e a(bll(f,

Bl

Department of Physics
Hong Kong Baptist University

y



Adding vectors

We can add the vectors
e ‘e graphically

0y

0 0
(a) (D)

FIGURE 2-4. (a) Vectors a and b. (b) To find the sum § of
vectors @ and b, we slide b without changing its magnitude or
direction until its tail is on the head of @. Then the vector § =

@ + b is drawn from the tail of @ to the head of b.

Another way to add vectors is to add their components.
Thatis, s = @ + b means

(a_ﬁ + a'\.j) o (bxi + b'\.j)

ho)
I

1+ s

-‘ :

= (a, + b_\.)i + (a,+ b_\.)j.
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SAMPLE PROBLEM 2-3. Three vectors in the xy plane are
expressed with respect to the coordinate system as

ol »l

and

¢ = —3.6,

= 431 — 1.7j,
= —2.9i + 2.2,

in which the components are given in arbitrary units. Find the vec-

tor s, which is the sum of these vectors.

FIGURE 2-10. Sample Problem 2-3.
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Solution Generalizing Eqs. 2-4 to the case of three vectors, we
have
S =@t b tig, =43 =29+ 0 =14,

and
S =y ok B0, = =10+ 22—~ 36 = —3d.

Thus
s =s5d+ 5, = 141 —3.1j.

Figure 2-10 shows the four vectors. From Eqs. 2-2 we can calcu-
late that the magnitude of S is 3.4 and that the angle ¢ that s
makes with the positive x axis, measured counterclockwise from
that axis, is

¢ = tan"'(—3.1/1.4) = 294°,
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H-4 MULTIPLICATION OF VECTORS

Multiplication of a vector by a scalar:

—_—

b=ca
b, = ca, by, = ca,
b=|c|a

Dot product (or scalar product) of two vectors:
a-b = abcos ¢ = a(b cos ) = b(a cos &)

F=%3

)|
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Cross product (or vector product) of two vectors:
T=axh
|€|=|3 X Db|=absin ¢

Direction of € is perpendicular to the plane of @ and b,
determined by the right-hand rule.

bxXxa=-axbh
ixi= iXj=kEXk=0
iXj=k Jjxk=1 kxi=j

oW " O A F OB
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Angular Displacement and angular velocity

Angular Displacement Angular Velocity

AO=06,-06,

Average angular velocity |

\ ¢ IJ\
D = 92 o 91 _ AG ) M s
t2 _tl At . .

Instantaneous angular velocity

Pati,

A 6’ do - < a0
I s \ P at 14
At—>0 At dt 5 "

A |

x

FIGURE 8-4. The reference line AP of Fig. 8-3b is at the angu-
lar coordinate ¢, at time ¢, and at the angular coordinate ¢, at
H O T OB OB BT OB time t,. In the time interval At = #, — ¢, the net angular displace-
The Hong Kong Academy for Gifted Education ment is A¢ = ¢, — ;.



The direction of the angular velocity vector

—

co)ﬁ ﬁl_»
()]
| w A
= = A
.—-’-‘"’ L

(c) K—L)

FiIcURE 8-6. The angular velocity vector of (a) a rotating rigid
body and (b) a rotating particle, both taken about a fixed axis. (c)
The right-hand rule determines the direction of the angular veloc-
ity vector.

(a) x

The direction of the vector @ points along the axis of rotation,
according to the right-hand rule.
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Angular Acceleration

Average angular acceleration

W, — @, :Aa)

a =
t, -t At
Instantaneous angular acceleration
. Ao do
a = lim = .
At—0 At dt
If the rotation with Constant Acceleration, then we have
W=, +,
1
0 = ot + 5 t?,

w° = +2a0.
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Relationship between the linear and angular variables

The arc length
S=rd

The velocity

v=r9%_r0

fodt N

Linear velocity Angular velocity

O " B OB/ B W
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Circle
traveled by P

(a)

What is the direction of the
vector for the angular velocity in
this case?
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Relationship between the linear and angular variables

We can separate the acceleration into two components:

y
Tangential component:

a,[ =qal

Radial component:

Ve
a =-=wr.
r
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Kinetic Energy of Rotation
Consider the kinetic energy of a rotating rigid body:

1 1 1
K :Emlvlz +§m2V22 +"':Zi:§mivi2.
Since v = ar, and w is the same for all particles, we have

K = Zi:%mi (o ) = ;(Zminzja)z.

is called the rotational inertia. It tells us how the mass of the
rotating body is distributed about its axis of rotation. In summary,

| :Zmir‘i2 and K:%M)Z_
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SAMPLE PROBLEM 9-4. The object shown in Fig. 9-11
consists of two particles, of masses m, and my, connected by a
light rigid rod of length L. (@) Neglecting the mass of the rod, find
the rotational inertia I of this system for rotations of this object
about an axis perpendicular to the rod and a distance x from m;.
(b) Show that [ is a minimum when x = X¢p-

Solution (a) From Eq. 0-9, we obtain
[ = mx>+ my(L — %),
(b) We find the minimum value of / by setting dl/dx equal to O:

dl
— = 2mx + 2my(L — x)(—1)=0.
dx

Solving, we find the value of x at which this minimum OCCurs:

m,L
m, + m,

X =

This is identical to the expression for the center of mass of the ob-
ject, and thus the rotational inertia does reach its minimum value
at X = Xoy. This is consistent with the parallel-axis theorem,
which requires that Iep be the smallest rotational inertia among
parallel axes.

FIGURE 92-11.
about an axis pe

ow B oW W om W

from m, .

>

Axis of

N rotation

QI"z

e25]

Sample Problem 9-4. The object is to be rotated
rpendicular to the connecting rod and a distance X



RS REL T
SAMPLE PROBLEM 9-3. For the three-particle system of

Fig. 9-9, find the rotational inertia about an axis perpendicular to
the xy plane and passing through the center of mass of the system.

Solution First we must locate the center of mass:

s E mnxn

(2.3kg)(0m) + (3.2 kg)(O m) + (1.5 kg)(4.0 m)
23kg + 3.2ke + 1.5kg

= 0.86 m,
)} o E m".),ll
cm
z mll

(2.3 kg)(0m) + (3.2kg)(3.0 m) + (1.5 kg)(0 m)
2.3kg + 3.2kg + 1.5kg

= 1.37 m.
J x(m)
00"11 1 2 3 4 m3
o ® w OB N T OB 5 FIGURE 9-9. Sample Problem 9-2. Point C marks the center of
5.1 'liﬁlile Hong Kong Academy for Gifted Education mass of the system COI‘lSiS[il’lg of the three panicles.



The squared distances from the center of mass to each of the parti-
cles are

—

ri = x2, + yi, = (0.86 m)*> + (1.37 m)> = 2.62 m?

r3=x2 4 (y3 — you)? = (0.86 m)? + (3.0 m — 1.37 m)>
= 3.40 m?,

ri=(x; — xR + yi, = (4.0m — 0.86 m)? + (1.37 m)>
= 11.74 m>.

The rotational inertia then follows directly from Eq. 9-10:

Ly = 2 mr? = (2.3 kg)(2.62 m2) + (3.2 kg)(3.40 m?)
+ (1.5 kg)(11.74 m?)
= 35 kg -m?.

Note that the rotational inertia about the center of mass is the Y (M) F
smallest of those we have calculated for this system (compare the
values in Sample Problem 9-2). This is a general result, which we
shall prove next. It is easier to rotate a body about an axis through 3
the center of mass than about any other parallel axis. oI

Q J/ x (m)

om 1 2 3 4'mg

o ) FIGURE 9-9. Sample Problem 9-2. Point C marks the center of
LOF O W OB OB OF OB G 3 ] .
The Hong Kong Academy for Gifted Education mass of the system consisting of the three particles.



Rotational inertia

. . 2
For continuous bodies, | = | redm.
*IU 1 0|4 Qi ﬁ;:ngfn
N I= lim X r2ém,,

L >| om,—0

(a)
and in the usual way the sum becomes an integral in the limit:

1= ferm. (9-15)

(b)

FIGURE 9-12. (a) The rotational inertia of a solid rod of
length L, rotated about an axis through its center and perpendicu-
lar to its length, can be approximately computed by dividing the
rod into 10 equal pieces, each of length L/10. Each piece is treated
4 a point mass a distance r, from the axis. (b) A more accurate
4Pproximation to the rotational inertia of the rod is obtained by di-
Viding it into 20 pieces.

- O " OB A F OB lﬂ Department of Physics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University

17



Rotational inertia

For continuous bodies, | = J redm.

Ring
| = MR? (axis)

Cylinder

I =EI\/IR2
2

Rod

| = i ML® (centre)
12

Sphere

I :EI\/IRZ
5

O " B OB/ B W
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1

| = 5MR2 (diameter)

|=1Mﬁ(mm
3

@
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Rotational inertia

(a) Hoop about (b) Annular cylinder

cylinder axis (or ring) about
cylinder axis
el o D =2
I=MR = 2M(R1+R2)
Axis

(f) Thin rod about (g) Solid sphere

(c) Solid cylinder

i 4 L
R \)I/
(d) Solid cylinder

(or disk) about
central diameter

(or disk) about
cylinder axis

_ 1ap2 B e s
I'= 2MR Ii= 4MR +12ML

(h) Thin spherical (i) Hoop about any

*

AXis

(e) Thin rod about
axis through center
1 to length

= Lopr2
I=ZML

(/) Rectangular plate

- My

axis through one about any shell about diameter about L axis
end L to length diameter any diameter through center
— 172 _ 2402 — 232 — 1yp2 Vg0 50
I=zML I= MR I=ZMR I'= MR I'= 5M(a® + b%)
HFOW ' B A F OB A E Department of Physics
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Parallel Axis Theorem

| =1_ +Mh?

The rotational inertia of a body about any axis is equal to the
rotational inertia (= Mh?) it would have about that axis if all its
mass were concentrated at its centre of mass, plus its rotational

inertia (= /) about a parallel axis through its centre of mass.
Proof

| = Jrzdm = J[(x —a)’ +(y —b)z]dm,

which can be written as

| = J(x2 +y?)dm — ZaJ xdm — ZbJ ydm + J(a2 +b?)dm.

& O '’ B A F B A u Department of Physics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University 20



I :J(x2 + y?)dm —Zadem —ZbJ ydm +J(a2 +b?)dm.

In the first term, x2 + y2 = R2, Hence the first term becomes

J(x2 +y9)dm = J Rdm =1_.

In the second and third terms, the position of the centre of mass gives

1 1
X =— | xdm =0 =— | ydm =0.
o MJ and Yom M Jy "

Hence these terms vanish.

In the last term, a2 + b2 = h2, Hence the last term becomes

J(a2 +b*)dm :thdm = Mh®.

O " B OB/ B W
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y
dm
Rotation axis T b

through P ¥

P

xX—a
h
b
com a

Rotation axis
through
center of mass

FIG. 10-12 A rigid body in cross
section, with its center of mass at O.
The parallel-axis theorem (Eq. 10-
36) relates the rotational inertia of
the body about an axis through O to
that about a parallel axis through a
point such as P, a distance 4 from
the body’s center of mass. Both axes
are perpendicular to the plane of the
figure.

U Department of Physics
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Perpendicular Axis Theorem

The sum of the rotational inertia of a plane lamina about any two
perpendicular axes in the plane of the lamina is equal to the
rotational inertia about an axis that passes through the point of
intersection and perpendicular to the plane of the lamina.

(* z 4
| = | (X*+y*)dm

. )

(‘ X r / y
= [ x*dm + | y*dm
o/

v

=1,+1,

& O '’ B A F B A @-DepartmentofPhysics
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Examples

Given that the rotational inertia of a hoop about its
central axis is Ma?, what is the rotational inertia of a
hoop about a diameter?

AXis

By symmetry, I, =/,

Using the perpendicular axis theorem, /, + /= 1,.

Since I, = Ma?,

(a) Hoop about
1 cylinder axis

I = MR?

H O ' OB A F OB @DepartmentofPhysics
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Examples

A rigid body consists of two particles of mass m connected by a rod of length L and

negligible mass.
(a) What is the rotational inertia /__ about an axis through the center of mass

perpendicular to the rod?
(b) What is the rotational inertia / of the body about an axis through the left end of

the rod and parallel to the first axis?

(a) 2 2 ﬂRotati()n axis
1 1 1 2 through
|l =m| =L +m| =L = _mL”. center of mass
2 2 2 n com m
e 2 —
(b) SR [ — 1 A{
Method 1: Direct calculation: (a)
| = m(O)2 + m|_2 = ml_z_ #R()Ilati;)n gxis through
Method 2: Parallel axis theorem: ¢ . °|
L -
|
2
1 L
| =1_ +Mh?> ==-mL? +(2m)(—j (8)
2 2
= mL?

H O ' OB A F OB U Department of Physics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University
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Examples
Consider a thin, uniform rod of mass M and length L.
(a) What is the rotational inertia about an axis perpendicular to the rod, through its
center of mass?
(b) What is the rotational inertia of the rod about an axis perpendicular to the rod
through one end?

Rotation

axis
(a) com _" | dx M
— r 2 d m — X g\ —x
I X i dm
. L L N
m ! 2 2 !
dm — — dX 1G. 10-14 A uniform rod of length L. and mass M. An
L flement of mass dm and length dx is represented.

oo L

(b) Using the parallel axis theorem,
2
| =1_ +Mh? =1ML2+M(EJ EIVIE:
12 2 3

H O ' OB A F OB @-DepartmentofPhysics
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Radius of Gyration

The radius of gyration is that distance from the axis of rotation where we assume all

the mass of the body to be concentrated. It is given by

)

For example, for a thin rod rotating about its center,

| = M2
= |-
M
VI
12

—

L
V12

O " B OB/ B W
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(a) x

—

(0]

(b) x

Q
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Torque

The ability of force F to rotate the body
depends on:

(1)the magnitude of the tangential component F, = Fsing,

(2)the distance between the point of application and the axis of rotation.

Define the torque as T = rFSi N ¢

) — ) )
F E F
N
6 , 4 2 0 FR o 0
/ T 7 3
/ .
s P Y P . Line of
r r r action
of F
10) X o) X 0 Y f X
mMoment
/" arm

(a) (b) (c) /

FIGURE 9-3. (a) A cross-sectional slice in the xy plane of the body shown in Fig. 9-2. The force

F is in the xy plane. (b) The force F is resolved into its radial (Fr) and tangential (F) components.

(¢) The component of F perpendicular to T is F, (also identified as the tangential component F), ysics

and the component of T perpendicular to F (or to its line of action ) is 7, . i

27



(a)

FIGURE 9-3. (a) A cross-sectional slice in the xy plane of the body shown in Fig. 9-2. The force

It can be considered as either rf orr F

Terms:
line of action
moment arm

Tis positive if it tends to rotate the body counterclockwise.

It is negative if it tends to rotate the body clockwise.

Considering the vector direction,

(b)

(c)

/

F
0 Fg
FT F.L
— P . Line of
r r action
of F
X 0O o f X
mMoment
I arm

F is in the xy plane. (b) The force F is resolved into its radial (Fr) and tangential (F) components.
(¢) The component of F perpendicular to T is F, (also identified as the tangential component F),
and the component of ¥ perpendicular to F (or to its line of action ) is r s

arsity

28
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- My

[a ]

S

X

FIGURE 9-4. A force F acts at point P in a rigid body (not
shown). This force exerts a torque 7 = ¥ X F on the body with
respect to the origin O. The torque vector points in the direction of
increasing z; it could be drawn anywhere we choose, as long as it
is parallel to the z axis. The inset shows how the right-hand rule is
used to find the direction of the torque. For convenience we can
slide the force vector laterally, without changing its direction, until
the tail of F joins the tail of ¥.

HFOW ' B A F OB A E Department of Physics
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Newton’s Second Law for Rotation

Newton’s second law:
F =ma,.

Torque:

r=Fkr=mar.

Since a, = ar, we obtain
r=m(ar)r = (mr)e.
Conclusion:

7= le.

If there are more than one forces,

dYr=la.

O " B OB/ B W
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0

Rotation axis

FIG. 10-17 A simple rigid body,
free to rotate about an axis through
O, consists of a particle of mass m
fastened to the end of a rod of
length r and negligible mass. An
applied force F causes the body to

rotate.

@
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Examples

A uniform disk of mass M = 2.5 kg and radius
R =20 cm is mounted on a fixed horizontal

1=
axle. A block whose mass mis 1.2 kg hangs T
from a massless cord that is wrapped around W
the rim of the disk. Find the acceleration of {g
the falling block, the angular acceleration of 1
the disk, and the tension in the cord. The -
cord does not slip, and there is no friction at | )
the axle. ‘@ 5

H O ' OB A F OB U Department of Physics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University

31



Newton’s law for the hanging block
(We define downward is positive):

mg-T =ma (D) 1=
i
Newton'’s law for the rotating disk
(We define clockwise is positive): (¢) |
|
_1yr? 2
TR = 5 MR« (2) %
me
Since a = Rg,
Fg
Fom (2 T~ Ma !
1 (a) (0)
From (1): mg —EMa: ma
mg = (m + M)a
2
_2mg  (QQ2)98) . a=2-%8 _oarads?
a= = =4.8ms R 2
M+2m 25+ (2)(1.2) '

1 1
NN TZEMa:(E)(Z'S)(A'B):ESN

U Department of Physics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University
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Examples

(Physics of judo) To throw an 80 kg opponent with a basic judo hip throw, you
intend to pull his uniform with a force F and a moment arm d,=0.30 m from a
pivot point (rotation axis) on your right hip, about which you wish to rotate him
with an angular acceleration of —6.0 rad s2, that is, with a clockwise acceleration.
Assume that his rotational inertia | is 15 kg m?2.

(a) What must the magnitude
of F be if you initially bend
your opponent forward to
bring his centre of mass to
your hip?

(b) What must the magnitude
of F be if he remains upright
and his weight mg has a
moment arm d, = 0.12 m from
the pivot point?

o ' O A F OB
The Hong Kong Academy for Gifted Education

Moment arm d,
of your pull

Moment arm 4,
of gravitational

Opponent's
pp 4 force on . i
center of S ETN T
4 OPPONENt — " A
mass /. 4 /J, T
7 -, {‘ S |
N\ AP N
‘;,..»\‘ \\\.’ i 41, 5] g /'///
|’ \\r,',» R ‘ J\ \\i
\ Fg 2_. Fg : f‘;
Y % L L I . Moment
. ¥ B ) Ebvak V' /| armd
| /il ~ 4 + onhip i -J -4 4 ofyour pull
(a) (b)

FIG. 10-19 A judo hip throw (a) correctly executed and (b)
incorrectly executed.



(a) Newton’s law for the rotating opponent
(we define anticlockwise is positive):

r=—0,F =la

la (15)(-6)
d 0.3

=300 N

F=

(b) >z=-d,F+d,mg=la

la_d,mg __(15)(-6)  (0.12)(80)(9.8)

Moment arm d;

of your pull Moment arm d,

of gravitational

Opponent's Py ot
pp 1 force on Pl
center of T 0
opponent - A, A
mass _.f // T e
o -
;.' \\ \\v, _\,\.( ‘/ T «/,/ 3
4,! i :.":f—) n
- o B
¥ - F - P . Moment
' v S | Pivot Pl ) arm d,
i .4 onhi ‘} A e
' {I p ,§ v Ve of your pull
N I
B ]-‘H

~614 N

d, d 0.3

(&)
FIG. 10-19 A judo hip throw (a) correctly executed and (b)
incorrectly executed.

Remark: In the correct execution of the hip throw, you should bend your opponent to

bring his center of mass to your hip.

O " B OB/ B W

The Hong Kong Academy for Gifted Education

U Department of Physics
Hong Kong Baptist University 34



Work and Rotational Kinetic Energy
Work done by the force:
dW =F.ds = Fds=Frdg = dé.

Total work done;

0,
w;j 0.

o

Work-kinetic energy theorem:

r=la=1—=1
dt do dt do  do

Integrating over the angular displacement,

0, 0,
W= | 6 =J i(lla)zjdﬁzlla)f—lla)iz=AK
d 2 2

a s O\ 2

W =AK.

O " B OB/ B W
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do ,dwdé do d(l 2)
=lw low” |.

@
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Power

Cdw _ do

P=—=7—=
dt dt

Q.

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis) -
Position X Angular position 0
Velocity v = dx/dy | Angular velocity w = doldt
Acceleration a = dv/dt Angular acceleration a = doldt
Mass m Rotational inertia I
Newton’s second law F. .. = ma | Newton’s second law Toot = 1t
Work W = [ Fdx| Work W= [r1do
Kinetic energy = Imv? | Kinetic energy K = 31o?
Power (constant force) P = Fv Power (constant torque) P =10
Work —kinetic energy theorem W = AK Work —kinetic energy theorem W = AK

Department of Physics

The Hong Kong Academy for Gifted Education H K Babtist Uni it
ong Kong Baptist University 36




Example

A uniform disk of mass M = 2.5 kg

and radius R =20 cm is mounted on a =
fixed horizontal axle. A block whose
mass m is 1.2 kg hangs from a (@ 1
massless cord that is wrapped around {'\
the rim of the disk. What is the T
rotational kinetic energy Katt=2.5s? "1
Fg
¥

H O ' OB A F OB @-DepartmentofPhysics
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Method 1: Use Newton’s law directly.
Using Newton’s law, we have found o = 24 rad s=.
=0+t =0+t =t

Rotational inertia:

= L MR?
2

Kinetic energy:

K = 1g? = 1(1 I\/Isz(at)Z
2 2\ 2

_ % M (Rat)’ i(a) 0

_ %(2.5)[(0.2)(24)(2.5)]2 - 901

H O ' OB A F OB @-DepartmentofPhysics

The Hong Kong Academy for Gifted Education Hong Kong Baptist University 38



Method 2: Use work-kinetic energy theorem.
Word done by the torque:

W =70 =TREO

Since

¢9:a)0t+l 2 =0+ S at? = t?
2 2 2
1 .

W =TR Eat

Using the work-kinetic energy theorem,

(a) (0)

K = %TRatz - %(6)(0.2)(24)(2.5)2 903

H O ' OB A F OB @-DepartmentofPhysics
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Example

A tall, cylindrical chimney will fall over when its base is ruptured.
Treat the chimney as a thin rod of length L = 55 m. At the instant it

makes an angle of &= 35° with the vertical, what is its angular
speed w;?

FIG. 10-20 (a) A
cylindrical chimney.
(b) The height of its
center of mass 1s deter-
mined with the right
triangle.

;
’/
l -

l ;ﬁ/ "

H O ' OB A F OB U Department of Physics
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Using the conservation of energy,

K +U,; =K, +U,

Rotational inertia about the base:

2
|=|Cm+Mh2=imL2+m(Ej L
12 2 3
K, =0
K, :1|a)2 :l(lmsza)2
2 2\3
L
U =mg| —
i 9 5
U. =mg L cos o
2
Therefore,

1w’ +1mchosH = 0+1mgL
6 2 2

W= \/%g(l—cos@) = \/%(1—005350)

0Bl rd s, , 4 4
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Rolling

2 points of view:
(1) Combined rotation and translation

(a) Translation: the center of mass moves with velocity v
' cm’
(b) Rotation: the wheel rotates about the center of mass.

If the wheel rolls without slipping, s = RO, then
V., = oR.

2\'cm4>

TVem T R

A0 8 —>

p ~

e C Vem [:

(a) .- et NI AT e (’)) . — - S (()

FicURrE 9-30. Rolling can be viewed as a superposition of pure translation and rotation about the
center of mass. (a) The translational motion, in which all points move with the same linear velocity.
(b) The rotational motion, in which all points move with the same angular velocity about the central
axis. (¢) The superposition of (@) and (b), in which the velocities at 7, C, and B have been obtained by
vector addition of the translational and rotational components.
ity 42



(2) Pure Rotation

FiGUuRE 9-31. Arolling body can be considered to be rotating
about an instantaneous axis at the point of contact B. The vectors
show the instantaneous linear velocities of selected points.

Rolling can also be considered as a pure rotation, with
angular speed w, about an axis through the contact point.
e.g. velocity at the top: Viop = (w)(2R) = 2(wR) = 2v_,

H O ' OB A F OB @DepartmentofPhysics
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.
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9. A photo of a rolling bicycle wheel. Note that the
spokes near the top of the wheel are more blurred than those near
the bottom. This is because the top has a greater linear velocity.

FIGURE 9-2
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Relationshi
p between the angular velocity/acceleration and linear

velocity/acceleration

i (b)

FIGURE 8-11. (@) A particle at P in the rotating rigid body of
igin O. The particle
has angular velocity & (directed along the z axis) and tangen
velocity V. (b) The particle at P has angular acceleration @ along
the z axis. The particle also has tangential acceleration @ and ra-

Fig. 8-3a is located at R with respect to the or

dial acceleration ag.
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Kinetic Energy of Rolling
If we consider the motion as a pure rotation about the contact point,

K= 1 |’
2
Using the parallel axis theorem,
I, =1_ +MR’.
Hence

1 1
Kzglcm(()z-F%MRza)z ,and Kzalcma)z‘FEMvsm.

The kinetic energy consists of:
(a) the kinetic energy of the translational motion of the center of mass
(b) the kinetic energy of the rotation about the center of mass.
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Friction and Rolling

FIG. 11-7 A wheel rolls horizon-
tally without sliding while accelerat-
ing with linear acceleration d,,,. A
static frictional force ?; acts on the

wheel at P, opposing its tendency to
slide.

(a) When the cyclist applies a torque on the wheel intending to make it
rotate faster, the bottom of the wheel tends to slide to the left at point
P. A frictional force at P, directed to the right, opposes the tendency to
slide.

(b) The frictional force acts on the wheel and produces the acceleration
of the bicycle.
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Rolling Down a Ramp

The gravitational force tends to make the wheel slide down the ramp. There

is a frictional force opposing this sliding, and is thus directed up the ramp.
Fy

Using Newton’s second law for translational motion,
Mgsind—-f, =Ma (1)

Using Newton’s second law for rotational motion,
Rf. =1_ (2)

Since a = Ra, we obtain from (2):

__ _¢cm
f. = o a
Substituting into (1), FIG. 11-8 A round uniform body of
radius R rolls down a ramp. The
- forces that act on it are the gravita-
g sin @ tional force F a normal force Fy,
9 " and a fnctlonal force fs pointing up
1+ 1 cm / MR the ramp. (For clarity, vector F ~ has

been shifted in the direction it points

A untif 1ts tail is at the center of the
Ao owW oM OB ow m
body.)

The Hong Kong Academy for Gifted Education



Example

A uniform ball, of mass M = 6.00 kg and radius R, rolls smoothly from
rest down a ramp at angle &= 30.0°.

(a) The ball descends a vertical height h = 1.20 m to reach the bottom
of the ramp. What is its final speed?

(b) What are the magnitude and direction of the frictional force on
the ball as it rolls down the ramp?

e
Eyh

o ' O A F OB
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(a) Method 1: Conservation of energy

K:+U, =K. +U.

1 1 1(2

2\ 5 R®

Other terms: U:=K=0,U;= Mgh. Hence
Y

—Mv; +0=0+ Mgh

10

v = /?gh _ \/2 (9.8)(1.2) = 4.1ms ™

O " B OB/ B W

The Hong Kong Academy for Gifted Education
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Method 2: Newton’s law
Translational motion:

Mgsind - f, = Ma (1)

Rotational motion:

Rf. =1, (2) where | ZEMRZ
cm 5
Since a = Re, (2): leﬂa
S R2
gsiné 5 .
1): a= =—gsinéd
1) 1+1,_ /MR? 79
VZ:Za(—_h )zl—ogh
siné 7
V= ,/1—0 gh = E(9.8)(1.2) =4.1ms™
7 7
(b) f='ﬂa=glvla=3Mgsin9:3(6)(9.8)sin300 -8.4N
* R® 5 7 7
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The Yo-Yo

Using Newton’s second law for translational

motion,

Mg —T = Ma. )

Using Newton’s second law for rotational motion,

R,T =1_.c 2)

Since a = Ry, we obtain from (2):

— Cm
T = >-a

0

Substituting into (1),

9

X
ok oW OB W W B 1+Icm/MRO

The Hong Kong Academy for Gifted Education
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FIG. 11-9 (a) A yo-yo,shown in
cross section. The string, of assumed
negligible thickness, is wound
around an axle of radius R,. (b) A
free-body diagram for the falling yo-
yo. Only the axle is shown.



Uniform circular motion

FIGURE 4-14. A ball on a string is whirled in a horizontal cir-
cle. Vectors representing the velocity and the force of the string on
the ball are shown at three different instants.

The Hong Kong Academy for Gifted Education
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FIGURE 4-16. A particle moves at constant speed in a circle of

X
vy
AV = Vz— V1
Vo

radius r. It is shown at locations P, and P,, where the radius makes
equal angles 0 on opposite sides of the y axis. The inset shows the

vector AV = V, — ¥,; this vector always points toward the center

of the circle, no matter where we choose points P, and P, .
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SAMPLE PROBLEM 4-5. The Moon revolves about the
Earth, making a complete revolution in 27.3 days. Assume that the
orbit is circular and has a radius r = 238,000 miles. What is the

magnitude of the gravitational force exerted on the Moon by the
Earth?

Solution We have r = 238,000 mi = 3.82 X 10® m. From Ap-
pendix C, we find the mass of the Moon is m = 7.36 X 10%? kg.
The time for one complete revolution, called the period, is
I'=1273d= 236X 10°s. The speed of the Moon (assumed
constant) is therefore

2mr 27(3.82 X 108 m)

. . = 1018 m/s.
YT 2.36 X 10°s e

The centripetal force is provided by the gravitational force on the
Moon by the Earth:

mv> (7.36 X 10* kg)(1018 m/s)?
Byp=——=

F 3.82 X 10°m
= 2.00.X 10 N.
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SAMPLE PROBLEM 4-6. A satellite of mass 1250 kg is to
be placed in a circular orbit at a height # = 210 km above the
Earth’s surface, where ¢ = 9.2 m/s?. (@) What is the weight of the
satellite at this altitude? (b) With what tangential speed must it be
inserted into its orbit? The Earth’s radius is R = 6370 km.

Solution (a) The weight of the satellite is
W= mg = (1250 kg)(9.2 m/s?) = 1.15 X 10* N.

(D) The weight is the force of gravity Fg; exerted on the satellite
by the Earth. Since this is the only force that acts on the satellite,

it must provide the centripetal force. Solving Eq. 4-30 for the tan-
gential speed v, we obtain (with r = R + h):

| Fsr \/(1.15 X 10* N)(6370 km + 210 km)
m 1250 kg

= 7780 m/s = 17,400 mi/h.

At this speed, the satellite completes one orbit every 1.48 h.
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