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Simple harmonic motion

In mechanical physics, simple harmonic motion is a type of periodic

motion where the restoring force is directly proportional to the displacement. No

matter what the direction of the displacement, the force always acts in a

direction to restore the system to its equilibrium position. It can serve as

a mathematical model of a variety of motions, such as the oscillation of a spring,

motion of a simple pendulum as well as molecular vibration.
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Mathematics of simple harmonic motion

Simple harmonic motion is a type of periodic motion which can use mathematical

model to express it.
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Mathematics of simple harmonic motion

Since the motion returns to its initial value after one period T,
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Mathematics of simple harmonic motion

Velocity
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Equation of motion

This equation of motion will be very useful in

identifying simple harmonic motion and its frequency.
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Simple harmonic motion of spring

Simple harmonic motion of a mass on a spring is subject to the linear elastic

restoring force given by Hooke's Law. The motion is sinusoidal in time and

demonstrates a single resonant frequency.

For one-dimensional simple harmonic motion, the equation of motion, which is a

second-order linear ordinary differential equation with constant coefficients, could

be obtained by means of Newton's second law and Hooke's law.

where m is the inertial mass of the oscillating body, x is

its displacement from the equilibrium, and k is the spring constant.
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Period

Angular frequency

Simple harmonic motion of spring

Comparing with the equation of motion for simple harmonic motion,

Simple harmonic motion is the motion executed by a particle of mass m subject to a

force that is proportional to the displacement of the particle but opposite in sign.
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A block whose mass m is 680 g is fastened to a spring whose 
spring constant k is 65 Nm-1. The block is pulled a distance x = 11 
cm from its equilibrium position at x = 0 on a frictionless surface 
and released from rest at t = 0.
What are the angular frequency, the frequency, and the period 
of the resulting oscillation?
What is the amplitude of the oscillation?
What is the maximum speed of the oscillating block?
What is the magnitude of the maximum acceleration of the 
block?
What is the phase constant  for the motion?
What is the displacement function x(t)?

Examples
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(e) At t = 0,


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(b) 

(c) 
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At t = 0, the displacement of x(0) of the block in a linear oscillator is 
8.50 cm. Its velocity v(0) then is 0.920 ms1, and its acceleration 
a(0) is +47.0 ms2.
What are the angular frequency ?
What is the phase constant  and amplitude xm?

Examples
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At t = 0, (1)
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(3)  (1): 
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(2)  (1): 

or   

(1): If  = 24.7o, 

If  = 155o, 

Since xm is positive,  = 155o and xm = 9.4 cm.
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Energy in Simple Harmonic Motion

Potential energy
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Energy in Simple Harmonic Motion

Mechanical energy
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The mechanical energy is conserved !
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Suppose the damper of a tall building has mass m = 2.72  105 kg and 
is designed to oscillate at frequency f = 10 Hz and with amplitude xm = 
20 cm.
(a) What is the total mechanical energy E of the damper?
(b) What is the speed of the damper when it passes through the 
equilibrium point?

Examples
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(a) 

The energy:

(b) Using the conservation of energy,
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An Angular Simple Harmonic Oscillator

When the suspension wire is twisted through an angle , the torsional 
pendulum produces a restoring torque given by

 is called the torsion constant.
Using Newton’s law for angular motion, 

Comparing with the equation of motion for 
simple harmonic motion,

Since 
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A thin rod whose length L is 12.4 cm and whose mass m is 135 g is 
suspended at its midpoint from a long wire. Its period Ta of angular 
SHM is measured to be 2.53 s. An irregularly shaped object, which 
we call X, is then hung from the same wire, and its period Tb is 
found to be 4.76 s. What is the rotational inertia of object X about 
its suspension axis?

Example
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Rotational inertia of the rod about the center

Since and 

Thus

Therefore,
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The Simple Pendulum

The restoring torque about the point of 
suspension is  = mg sin L.
Using Newton’s law for angular motion,  = I,

When the pendulum swings through a small angle, 
sin  . Therefore

Comparing with the equation of motion 
for simple harmonic motion,

Since 
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The Physical Pendulum

The restoring torque about the point of 
suspension is  = mg sin h.
Using Newton’s law for angular motion, 
 = I,

When the pendulum swings through a small 
angle, sin  . Therefore

Comparing with the equation of motion for 
simple harmonic motion,

Since 



21

Department of Physics
Hong Kong Baptist University

If the mass is concentrated at the center of mass C, such as in the 
simple pendulum, then

.222
2

g

L

mgL

mL

mgh

I
T  

We recover the result for the simple pendulum.
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A meter stick, suspended from one end, swings as a physical 
pendulum.
(a) What is its period of oscillation T?
(b) A simple pendulum oscillates with the same period as the stick. 
What is the length L0 of the simple pendulum?

Examples
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(a) Rotational inertia of a rod about one end

Period 

(b) For a simple pendulum of length L0,


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A physical pendulum has a radius of gyration k. When it is 
suspended at distances l and l’ from the center of mass, the 
periods of oscillation are the same. (a) Find the relation between 
l and l’. (b) This has been used to determine g accurately. Find an 
expression for g.

Examples
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(a) When it is suspended at a distance l from the center of mass,

.

Similarly, 

Equating T and T’,
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(b) Substituting into the expression of T,

,

.
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A diver steps on the diving board and makes it move downwards. As the board 
rebounds back through the horizontal, she leaps upward and lands on the free 
end just as the board has completed 2.5 oscillations during the leap. (With such 
timing, the diver lands when the free end is moving downward with greatest 
speed. The landing then drives the free end down substantially, and the rebound 
catapults the diver high into the air.) Modeling the spring board as the rod-
spring system (Fig. 15-12(d)), what is the required spring constant k? Given m = 
20 kg, diver’s leaping time tfl = 0.62 s.

Examples



27

Department of Physics
Hong Kong Baptist University

 sin2kLkxL 

2kL

 I

2

2
22

3

1

dt

d
mLkL


 

0
3

2

2

 


m

k

dt

d

m

k32 

22 2

33










T

mm
k



5.2

62.0

5.2


flt
T

1

2

Nm 4280
5.2/62.0

2

3

20 










k

When the board is displaced by an angle ,

The restoring torque:

Using Newton’s law for angular motion,



Comparing with the equation of motion for simple harmonic motion,



The period should be 

Therefore
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Damped Simple Harmonic Motion

The liquid exerts a damping force proportional to the velocity. Then,

Using Newton’s second law,

Solution: 

where

If b = 0, ’ reduces to 

of the undamped oscillator.

, then ’  .

b = damping constant.

If 
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The mechanical energy decreases exponentially with time.

The amplitude, , gradually decreases with time.



30

Department of Physics
Hong Kong Baptist University

For the damped oscillator with m = 250 g, k = 85 Nm1, and b = 70 gs1.

(a) What is the period of the motion?

(b) How long does it take for the amplitude of the damped oscillations to drop to half 

its initial value?

(c) How long foes it take for the mechanical energy to drop to half its initial value?

Example
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(a) 

(b) When the amplitude drops by half,

Taking logarithm, 
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(c) When the energy drops by half,

Taking logarithm, 
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When a simple harmonic oscillator is driven by a periodic external force, we have forced 

oscillations or driven oscillations.

Its behavior is determined by two angular frequencies:

(2) the angular frequency d of the external driving force.

The motion of the forced oscillator is given by

Substituting into the equation of motion,

Using the identity 

where 

and   

Forced Oscillations and Resonance

(1) the natural angular frequency 

Hence 
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 
d
 .

(1) It oscillates at the angular frequency d of the external driving force.
(2) Its amplitude xm is greatest when

This is called resonance.

See Youtube “Tacoma Bridge Disaster”.
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Two Coupled Oscillators and Normal Coordinates

Using Newton’s second law,

Possible solution, and 

It is convenient to adopt the third trial solution. Then

For non-trivial solutions, we have

More generally, we can use the matrix form:

(A and B are complex.)
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and for non-trivial solutions,

Either way, we arrive at a secular equation,

or   

If 

If 

Hence we obtain two solutions. In each solution, the two particles oscillate 

with the same frequency. They are called normal modes. Their frequencies 

are called normal frequencies. Any other solutions are combinations of the 

normal modes.
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Symmetric mode: and 

Antiymmetric mode: and 

.

In general, the mode that has the highest symmetry will have 

the lowest frequency, while the antisymmetric mode has the 

highest frequency.
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The symmetric mode can be excited by pulling the two particles from their equilibrium 

positions by equal amounts in the same direction so that 

and 

The antisymmetric mode can be excited by pulling apart the two particles 

equally in opposite directions and then released, so that 

and 
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)sin(sin 121   TmgFt

L

x1
1sin 

L

xx 12
2sin




L

xx 12
12

2
)sin(




tFmL 1
 )2( 1211 xx

L

mg
x

L

mg
xm 

22 sin mgmL  )( 122 xx
L

mg
xm 































2

1

2

1

//

//3

x

x

LgLg

LgLg

x

x





Examples

Find the frequencies of small oscillations of a double pendulum.

Tangential component of forces acting on the upper particle:

For small oscillations, T  mg,

Using Newton’s second law,




L

L

m

m
1

2

x1

x2

L

L

m

m
1

2

x1

x2
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tie
B

A

x

x



















Re

2

1

0
//

//3

2

1

2

2
























x

x

LgLg

LgLg





0
//

//3
2

2










LgLg

LgLg

Lg /)22(2  AB 2

Lg /)22(2  AB 2

Let 

Then

For non-trivial solutions,

Symmetric mode: and 

Antisymmetric mode: and 
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L

g
2

1

m

k

L

g 22

2 

Consider two pendula of length L and mass m coupled by a spring with force 

constant k. Find the normal frequencies, the normal modes and the general 

solution.

Symmetric mode: 

Antisymmetric mode:

, A = B

Examples

, A = B

m

LL

k
m

x1 x2

1
2

m

LL

k
m

x1 x2

1
2 LL

k
m

x1 x2

1
2


