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Simple harmonic motion

In mechanical physics, simple harmonic motion is a type of periodic
motion where the restoring force is directly proportional to the displacement. No
matter what the direction of the displacement, the force always acts in a
direction to restore the system to its equilibrium position. It can serve as
a mathematical model of a variety of motions, such as the oscillation of a spring,
motion of a simple pendulum as well as molecular vibration.
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Mathematics of simple harmonic motion

Simple harmonic motion is a type of periodic motion which can use mathematical
model to express it.
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: FIG. 15-1 (a) A sequence of “snapshots” (taken at

i equal time intervals) showing the position of a particle
1'_ as it oscillates back and forth about the origin of an x
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axis, between the limits +x,, and —x,,. The vector ar-
rows are scaled to indicate the speed of the particle.
The speed is maximum when the particle is at the ori-
gin and zero when it is at *x,,. If the time ¢ is chosen to
be zero when the particle is at +x,,, then the particle
returns to +x, att = T, where T is the period of the

Y i y— motion. The motion is then repeated. (b) A graph of x
m as a function of time for the motion of (a).
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Mathematics of simple harmonic motion

Since the motion returns to its initial value after one period T,
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FIG. 15-3 Inall three cases, the blue curve is obtained from Eq. 15-3 with
¢ = 0.(a) The red curve differs from the blue curve only in that the red-
curve amplitude x/, is greater (the red-curve extremes of displacement are
higher and lower). (b) The red curve differs from the blue curve only in
that the red-curve period is 7" = T/2 (the red curve is compressed horizon-
tally). (¢) The red curve differs from the blue curve only in that for the

red curve ¢ = —m/4 rad rather than zero (the negative value of ¢ shifts the
red curve to the right).
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Mathematics of simple harmonic motion

Velocity dx

v(t) = pm = %[xm cos(wt + ¢@)]

V(t) = —awxX, sin(wt + @)

Velocity amplitude V. =X
Acceleration at) :%:%[_wxm sin(at + 4)]

a(t) = —w*x_ cos(at + @) = - X(t)

Acceleration amplitude ~ a_=w?X_

Equation of motion >
dx ,
—+0°X=0
dt

This equation of motion will be wvery useful in
identifying simple harmonic motion and its frequency.
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FIG. 15-4 (a) The displacement x(¢)
of a particle oscillating in SHM

with phase angle ¢ equal to zero.

The period T marks one complete
oscillation. (b) The velocity v(¢) of the
particle. (¢) The acceleration a(f) of
the particle.
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Simple harmonic motion of spring

Simple harmonic motion of a mass on a spring is subject to the linear elastic
restoring force given by Hooke's Law. The motion is sinusoidal in time and

demonstrates a single resonant frequency.
SIS IILLIISIIISS,

For one-dimensional simple harmonic motion, the equation of motion, which is a
second-order linear ordinary differential equation with constant coefficients, could
be obtained by means of Newton's second law and Hooke's law.

unstretched
F = —kX spring
d 2 X Hooke's Law: It takes twice
Fzma:m—zz—kx F . —=—kx as much force
dt spring” tostretcha 2%

|
X
i
Spring constant k F ¢ spring twice
as far.
where m is the inertial mass of the oscillating body, X is 2F 1
its displacement from the equilibrium, and k is the spring constant.
2
d°x k
42 —x=0
t m
O " B OB/ B W UDepartmentofPhysics
The Hong Kong Academy for Gifted Education Hong Kong Baptist University 6



Simple harmonic motion of spring

Comparing with the equation of motion for simple harmonic motion,

Angular frequency

Period

Simple harmonic motion is the motion executed by a particle of mass m subject to a
force that is proportional to the displacement of the particle but opposite in sign.
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Examples

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 Nm™. The block is pulled a distance x = 11
cm from its equilibrium position at x = 0 on a frictionless surface
and released from rest at t = 0.

What are the angular frequency, the frequency, and the period
of the resulting oscillation?

What is the amplitude of the oscillation?

What is the maximum speed of the oscillating block?

What is the magnitude of the maximum acceleration of the
block?

What is the phase constant ¢ for the motion?

What is the displacement function x(t)?
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\f ,/ 65 _9.78rads? f=-—2=156Hz
27

X, =11cm

(c) v.=wx_ =(9.78)(0.11) =1.08 ms™

(d) & =w’x, =(9.78)?(0.11) =10.5ms

(e) Att=0, x(0)=x_cos¢=0.11
V(0) =—awx_ Sing =0
Sing=0= ¢=0

(f)  x(t) = x, cos(at + ¢) = 0.11c0s(9.78t)

O " B OB/ B W
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Examples

At t =0, the displacement of x(0) of the block in a linear oscillator is
—8.50 cm. Its velocity v(0) then is —0.920 ms1, and its acceleration
a(0) is +47.0 ms—2.

What are the angular frequency @?

What is the phase constant ¢ and amplitude x,?

X(t) = x_ cos(at + ¢) V(t) = —ax_sin(at + @) a(t) = —w"x,, cos(at + @)
Att=0, X(0) = x, cos¢ =—0.085 (1)
v(0) = —awx_ Sin ¢ =—-0.920 (2)
a(0) = —w’x, cos¢ = +47.0 (3)
@+ Oy - J_@ A0 o35 rads
x(0) x(0) —0.0850
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(2) + (1): v(0) __ sing _

=—w—— =—otang
x(0) COS ¢
ang=- 0O 0920 _ ;603
wx(0)  (23.51)(-0.085)
¢ =—24.7° or $ =180° — 24.7° = 155°
_x(0) _ x =098 _ 4 094m=—g.4cm
(1): Xn = @ It ¢=-24.7°, " c0s24.7°
—0.085
— X = =0.094m=9.4cm
It ¢ =155, " c0s155°

Since x, is positive, ¢ = 155° and x_ = 9.4 cm.
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Energy in Simple Harmonic Motion

Potential energy
X(t) = X cos(at + @)

U (t) = % kx® = % kx? cos® (at + ¢)

Kinetic ener
o V(t) = —aX,, sin( wt + @)

K (t) :%mv2 :%ma)zxﬁ] sin® (wt + @)

w=k/m

K (t) :%erisinZ(wtw).
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Energy in Simple Harmonic Motion : U + K
n U(t)
Mechanical energy K()
. /2 7
1 1 : @
E=U+K-= Eerf] cos® (wt + @) +§kx§]sm2(a)t + @)
E U(x) + K(x)
l - J(x
:Ekxé[cosz(a)t+¢)+sm2(a)t+¢)] : o
s K(x)

o [cos®(at+ @) +sin®(at +@)] =1 - e
()
FIG. 15-6 (a) Potential energy U(?),

1 kineti K i
2 inetic energy K(¢),and mechanical
E=U+K ——Ekxm

energy FE as functions of time ¢ for a
linear harmonic oscillator. Note that
all energies are positive and that the
potential energy and the kinetic en-
ergy peak twice during every period.
(b) Potential energy U(x), kinetic en-
ergy K(x),and mechanical energy E
The mechanical energy IS conserved ! as functions of position x for a linear
harmonic oscillator with amplitude
x,,- For x = 0 the energy is all kinetic,
and for x = *x,, it is all potential.
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Examples

Suppose the damper of a tall building has mass m =2.72 x 105 kg and
is designed to oscillate at frequency f = 10 Hz and with amplitude x,
20 cm.

(a) What is the total mechanical energy E of the damper?

(b) What is the speed of the damper when it passes through the
equilibrium point?
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(a) k =mao® =m(2xf)?
=(2.72x10%)(207)* =1.073x10° N
The energy:
E—K+U = mv+ k¢
2 2
_ 0+%(1.073><109)(o.2)2

=2.147x10" J = 215MJ

(b) Using the conservation of energy,

E=K+U =Emv2+lkx2
2 2

2147 x107 = %(2.72><105)v2 +0

v=12.6ms™
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An Angular Simple Harmonic Oscillator

When the suspension wire is twisted through an angle 0, the tor5|onal
pendulum produces a restoring torque given by

=10, K is called the torsion constant.
Using Newton’s law for angu lar motion, Suspension wire
=la : .../~ Reference line
—k0=le,
d’6 « +6,,
—+—-6=0. "
dt® | —8
i i ; : FIG. 15-7 A torsion pendulum is an
C.ompa ring W|th the e'q uation of motion for ngnlavversiomat o liiess Swle
simple harmonic motion, harmonic oscillator. The disk oscil-
lates in a horizontal plane; the refer-
w? = E ence line oscillates with angular

amplitude 6,,. The twist in the sus-
pension wire stores potential energy

. 21 | as a spring does and provides the
Since T=— T= 27[\/; ' restoring torque.
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Example

A thin rod whose length L is 12.4 cm and whose mass mis 135 g is
suspended at its midpoint from a long wire. Its period T, of angular
SHM is measured to be 2.53 s. An irregularly shaped object, which
we call X, is then hung from the same wire, and its period T, is
found to be 4.76 s. What is the rotational inertia of object X about
its suspension axis?

Suspension
wire |

IG.15-8  Two torsion b Rod
endulums, consisting of o I N
a)a wire and a rod and I~ 4 l
b) the same wire and an
tregularly shaped ob- >
th (a) (b) Object X
%
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Rotational inertia of the rod about the center
=1, = i ML?
12

1 2
- (Ej(0.135)(0.124)

=1.7298x10* kgm?

| | Suspension%
Since T,=27,-* and T,=27,2> wire

T. |l IG. 15-8 Two torsion ] __Rod
Thus T_b B E endulums, consisting of T i
a)a wire and a rod and a = l
Therefore, ?)) the same wire and an
tregularly shaped ob-
(a)

2
L= Tl bet.
b Ta a t

2
_ (3—@ (1.73x107*) =6.12x10™* kgm®
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The Simple Pendulum

The restoring torque about the point of
suspension is 7=—mg sin@L.
Using Newton’s law for angular motion, 7= lq,

—mgsinéL = mle,

2
?ij+%sin9:O.

When the pendulum swings through a small angle,
sind= 6. Therefore

R
dt’
Comparing with the equation of motion

for simple harmonic motion,

+QH:Q
L

L
Since T=2%, T=2”\P-
@ 9
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The Physical Pendulum

The restoring torque about the point of
suspension is 7=—mg siné h.

Using Newton’s law for angular motion,
7=,

—mgsindh=lq,

2
d (29+ mghsiné’zo.
dt
When the pendulum swings through a small
angle, sin@~ 6. Therefore
d’6 mgh

it + | 6 =0.

Comparing with the equation of motion for
simple harmonic motion,

> _ Mgh

| , 27
Since T=—,
& ol oW OB OB ow W % @
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T=2rx L
\/ mgh

FIG. 15-10 A physical pendulum.
The restoring torque is AF, sin 6.
When 6 = 0, center of mass C hangs
directly below pivot point O.
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If the mass is concentrated at the center of mass C, such as in the
simple pendulum, then

2
T=2x /L=27z /£:27z\/g.
mgh mgL g

We recover the result for the simple pendulum.

H O ' OB A F OB I.J Department of Physics
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Examples

A meter stick, suspended from one end, swings as a physical
pendulum.

(a) What is its period of oscillation T7?

(b) A simple pendulum oscillates with the same period as the stick.

What is the length L, of the simple pendulum?
0

(0)

FIG. 15-11 (a) A meter stick suspended from one end as a
physical pendulum. (b) A simple pendulum whose length L, is
oW oW O B W M 5 chosen so that the periods of the two pendulums are equal.
e Hong Kong Academy for Gfted Education Point P on the pendulum of (¢) marks the center of oscillation. 2



(a) Rotational inertia of a rod about one end

:EML2
3
Period T =21 L
mgh

mL?/3
=27 |———
mgL/2
=27 &
\ 39

(b) For a simple pendulum of length L,

>

L
g () (%)
oL FIG. 15-11 (a) A meter stick suspended from one end as a
2 5 —2r | == physical pendulum. (b) A simple pendulum whose length L is
g 39 chosen so that the periods of the two pendulums are equal.

Point P on the pendulum of (a) marks the center of oscillation.

T O " OB B 7 8 m"! [
The Hong Kong Academy for Gifted Education I.J Eeparl'iment of Physics
ong Kong Baptist University

23



Examples

A physical pendulum has a radius of gyration k. When it is
suspended at distances / and /” from the center of mass, the
periods of oscillation are the same. (a) Find the relation between
[and I’. (b) This has been used to determine g accurately. Find an
expression for g.

H O ' OB A F OB U Department of Physics
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(a) When it is suspended at a distance | from the center of mass,

| = Mk* + MI*
T_or Mk* + Ml o k*+1
Mgl gl
.y , k* +1"
Similarly, T'=21
gl

Equating T and T, K rl = K T‘I

I'k* +1°I'=1k* +11”
II'=k*

(b) Substituting into the expression of T,

T=2g [0 oy 14T
gl g

1+
T2

H O ' OB A F OB @-DepartmentofPhysics
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Examples

A diver steps on the diving board and makes it move downwards. As the board
rebounds back through the horizontal, she leaps upward and lands on the free
end just as the board has completed 2.5 oscillations during the leap. (With such
timing, the diver lands when the free end is moving downward with greatest
speed. The landing then drives the free end down substantially, and the rebound
catapults the diver high into the air.) Modeling the spring board as the rod-
spring system (Fig. 15-12(d)), what is the required spring constant k? Given m =
20 kg, diver’s leaping time t; = 0.62 s.

L >|
FIG. 15-12 (a) A diving board. () The diver leaps upward
and forward as the board moves through the horizontal. (c)

. oW T O N B B % The diver lands 2.5 oscillations later. (d) A spring-oscillator
The Hong Kong Academy for Gifted Education model Of the OSCillating board.
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When the board is displaced by an angle 6,

The restoring torque:

7 =—kxL = —kL?sin @
~ —kL?0

Using Newton’s law for angular motion,

=l
2
—kL29=1mL2—(29
dt

Comparing with the equation of motion for simple harmonic motion,

2 2
o =K = k=@ :m(Z_yzj

m 3 3T
The period should be T = o _0.62
25 25
Therefore k= 20( 27
310.62/2.5

O " B OB/ B W
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j = 4280 Nm™
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Damped Simple Harmonic Motion

The liquid exerts a damping force proportional to the velocity. Then,

F, =—bv, b = damping constant.

Using Newton’s second law,
—bv —kx=ma.

2
moI ;(+bdx+kx:0.
dt dt

Solution:  X(t) = x_e™"?"cos(w't + @),

where  ,_ k_ b* .
m 4m°

If b=0, @ reducesto @=~k/m

of the undamped oscillator.

If b<<+km ,then o ~ w.

O " B OB/ B W
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x B g8 Rigid support

y Springiness, k&

Damping, b

FIG. 15-15 Anidealized damped

simple harmonic oscillator. A vane
immersed in a liquid exerts a damp-
ing force on the block as the block
oscillates parallel to the x axis.



The amplitude, X(t) = Xme_btlzm, gradually decreases with time.

The mechanical energy decreases exponentially with time.

E(t) = %kxﬁ]e‘b” ",

E\T 15-8 | Damped Simple Harmonic Motion
+X,,

/_ —I)t/ 2m
m€

- x(£)
T\ r\ A n [W\ n n [\ ﬂ ﬂ FIG. 15-16 The displacement func-
U tion x(¢) for the damped oscillator of

ol

U U \[LU V \iy v \f Fig. 15-15, with values given in

| \‘ Sample Problem 15-7. The ampli-
—X | \ /2 tude, which is x,,, e ?/>" decreases
exponentially with time.

O " B OB/ B W @-DepartmentofPhysics
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Example

For the damped oscillator with m =250 g, k =85 Nm=, and b = 70 gs*.

(a) What is the period of the motion?

(b) How long does it take for the amplitude of the damped oscillations to drop to half
its initial value?

(c) How long foes it take for the mechanical energy to drop to half its initial value?

@ T-= 27r\/E = 27[1/% =0.34s
K 85

—bt/2m 1

(b) When the amplitude drops by half, x_ e = Exm
e—bt/2m — 1
2
Taking logarithm, - bt =1In 1 =—In2
2m 2

~2min2  (2)(0.25)(In2)
b 0.07

t =4.95s

H O ' OB A F OB @-DepartmentofPhysics
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(c) When the energy drops by half,

Eerie—bt/m _ E(}kXZJ
2 2

2 m
e—bt/m _ 1
2
Taking logarithm, — bt =In 1 —In2
m 2

~miIn2 _(0.25)(In2)
b 0.07

t

O " B OB/ B W

The Hong Kong Academy for Gifted Education

=2.48s

@

Department of Physics
Hong Kong Baptist University

31



Forced Oscillations and Resonance

When a simple harmonic oscillator is driven by a periodic external force, we have forced
oscillations or driven oscillations.
Its behavior is determined by two angular frequencies:

(1) the natural angular frequency @=+k/m

(2) the angular frequency w, of the external driving force.
The motion of the forced oscillator Is given by x(t)=x_cos(w ,t+¢).

Substituting into the equation of motion,
2
md ;(+bdx+kx= F cos w,t,
dt dt

X [(k —ma?)cos(m,t + @) —bw, sin(w,t + @) | = F cosm t.

Using the identity cos(A+ B) = cos Acos B —sin Asin B

J(K-ma’) +b*w’x_cos(m,t+¢+a)=Fcosat,

b,
where cosa = .
J(k —-mw)) +b’w;
F
Hence x = and ¢=-a.

]
Jm (e’ - @) + 0’
H O ' OB A F OB @-DepartmentofPhysics
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(1) It oscillates at the angular frequency o, of the external driving force.
(2) Its amplitude x_ is greatest when o =w.

This is called resonance.
See Youtube “Tacoma Bridge Disaster”.

Amplitude

0.6 0.8 1.0 1.2 1.4
W,/ O

FIG. 15-17 The displacement ampli-
tude x,, of a forced oscillator varies
as the angular frequency w, of the
driving force is varied. The curves
here correspond to three values of
the damping constant b.

w o oW OB OB " OB oW I e
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Two Coupled Oscillators and Normal Coordinates

koM™ T, kK

Using Newton’s second law, ~ MX =—kx +K (X, = X),

mXZ - _kXZ + kO(Xl o X2)'

Possible solution, x =ReAe™ and X, = ReBe ™

It is convenient to adopt the third trial solution. Then

(k+k —ma*)A—k B =0,
(k +k —maw’)B—k A=0.

For non-trivial solutions, we have

0

(A and B are complex.)

k, _ k+k —ma’

A
B
More generally, we can use the matrix form: [

O " B OB/ B W
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K+k, —mo’

k+k,—-mo’
k.

k

—k
kK+k, —

@

o 5) (o)
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K +k —me’ —k,

= 0.
—k, K +k —me’

and for non-trivial solutions,

Either way, we arrive at a secular equation, (k+k, —m®)* -k =0,

.k ,  K+2Kk,
w'=—, or W =—"".

f w-m= "% A=_B
m

Hence we obtain two solutions. In each solution, the two particles oscillate
with the same frequency. They are called normal modes. Their frequencies
are called normal frequencies. Any other solutions are combinations of the
normal modes.

H O ' OB A F OB U Department of Physics
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Symmetric mode: o, = \ﬁ and x =X, = Acos(at + ¢)
m

k+ 2K,
m

Antiymmetric mode: o, = x, = Acos(at+¢) and x, =—Acos(at+¢)

In general, the mode that has the highest symmetry will have

the lowest frequency, while the antisymmetric mode has the
highest frequency.

The symmetric mode can be excited by pulling the two particles from their equilibrium
positions by equal amounts in the same direction so that

x(0)=x0)=A and  x(0)=x(0)=0

The antisymmetric mode can be excited by pulling apart the two particles
equally in opposite directions and then released, so that

x.(0) = —x,(0) = A and  x(0)=%(0)=0

H O ' OB A F OB U Department of Physics
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Examples

Find the frequencies of small oscillations of a double pendulum.
Tangential component of forces acting on the upper particle:

F. =—-mgsiné, +Tsin(6, —6,)

For small oscillations, T = mg,

: X : X, — X : X, —2X
sm@lzf sing, ~ 2L : sin(@, — 0,) = = 1 L
Using Newton’s second law,
mLé, =-F = mxlz—m—fx1+m—l?(x2—2xl)
.. . . m
mLéO, =-mgsing, = mX, :—Tg(x2 —X,)

%) (-3g9/L g/L \x
£, ) \ g/L —-g/L\x,

H O ' OB A F OB @-DepartmentofPhysics
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Let =Rel _|e
X, B
—_— 2 —_—
Then 39/ L-w g/L2 X, 0
—g/L g/L-—w" \ X,
3g/L-0® —gl/L

=0
—g/L g/L-o’

For non-trivial solutions, ‘

Symmetric mode: 4?=(2-+2)g/L  and B=+2A

Antisymmetric mode:  ? =(2++/2)g/L  and B=—/2A

H O ' OB A F OB @-DepartmentofPhysics
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Examples

Consider two pendula of length L and mass m coupled by a spring with force
constant k. Find the normal frequencies, the normal modes and the general

solution.

Symmetric mode:

@:% A=B

Antisymmetric mode:

O " B OB/ B W
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