Assignment 1

1) Obtain the derivative of the following functions using the first principle method

$$
\begin{equation*}
\frac{d}{d x} f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \tag{1}
\end{equation*}
$$

(a) $f(x)=x^{3}$
(b) $f(x)=\frac{1}{\sqrt{x}}, x>0$
(c) $f(x)=\sec x=\frac{1}{\cos x}$
2) Evaluate the first order derivatives of the following functions:
(a) $f(x)=x^{2}+x+3$
(b) $f(x)=\sin x \cos x$
(c) $f(x)=\sqrt{1-x^{3}}$
(d) $f(x)=\sin \sqrt{1-x^{2}}$
(e) $f(x)=\frac{x+2}{x-2}$

3(a) A cylindrical tank, flat at the top and the bottom, is to be made from thin sheet metal. The volume is $4 \mathrm{~m}^{3}$. We wish to know the diameter D and the height H of the cylinder for which the total area A of sheet metal is a minimum.
(b) Suppose this cylindrical tank is produced automatically with an error of 2% in the dimensions of D and H, what is the resulting error in the volume of the tank?

4(a) A particle is moving with the trajectory $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ where $x(t)=\cos t, y(t)=\sin t$ and $z(t)=2 t$ respectively. Sketch the trajectory of the particle.
(b) Calculate the velocityof the particle at time t .
(c) Calculate the acceleration of the particle at time t.

5 A particle is projected up an inclined plane with initial speed v at an angle α with the plane. The inclined plane is at angle θ with the horizontal Determine the angle α such that the particle will hit on the inclined plane at the highest position.

