PEP 2017

Assignment 11

23.19 • Two point charges $q_{1}=+2.40 \mathrm{nC}$ and $q_{2}=$ -6.50 nC are 0.100 m apart. Point A is midway between them; point B is 0.080 m from q_{1} and 0.060 m from q_{2} (Fig. E23.19). Take the electric potential to be zero at infinity. Find (a) the potential at point A;

Figure E23.19

(b) the potential at point B; (c) the work done by the electric field on a charge of 2.50 nC that travels from point B to point A.
23.59 .. An Ionic Crystal. Figure P23.59 shows eight point charges arranged at the corners of a cube with sides of length d. The values of the charges are $+q$ and $-q$, as shown. This is a model of one cell of a cubic ionic crystal. In sodium chloride (NaCl), for instance, the positive ions are Na^{+}and the negative ions are Cl^{-}. (a) Calculate the potential energy U of this

Figure P23.59

 arrangement. (Take as zero the potential energy of the eight charges when they are infinitely far apart.) (b) In part (a), you should have found that $U<0$. Explain the relationship between this result and the observation that such ionic crystals exist in nature.
23.29 .- A uniformly charged, thin ring has radius 15.0 cm and total charge +24.0 nC . An electron is placed on the ring's axis a distance 30.0 cm from the center of the ring and is constrained to stay on the axis of the ring. The electron is then released from rest. (a) Describe the subsequent motion of the electron. (b) Find the speed of the electron when it reaches the center of the ring.
23.47 .- CALC A metal sphere with radius r_{a} is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius r_{b}. There is charge $+q$ on the inner sphere and charge $-q$ on the outer spherical shell. (a) Calculate the potential $V(r)$ for (i) $r<r_{a}$; (ii) $r_{a}<r<r_{b}$; (iii) $r>r_{b}$. (Hint: The net potential is the sum of the potentials due to the individual spheres.) Take V to be zero when r is infinite. (b) Show that the potential of the inner sphere with respect to the outer is

$$
V_{a b}=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)
$$

(c) Use Eq. (23.23) and the result from part (a) to show that the electric field at any point between the spheres has magnitude

$$
E(r)=\frac{V_{a b}}{\left(1 / r_{a}-1 / r_{b}\right)} \frac{1}{r^{2}}
$$

(d) Use Eq. (23.23) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance r from the center, where $r>r_{b}$. (e) Suppose the charge on the outer sphere is not $-q$ but a negative charge of different magnitude, say $-Q$. Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.
23.65 - CP Deflection in a CRT. Cathode-ray tubes (CRTs) are often found in oscilloscopes and computer monitors. In Fig. P23.65 an electron with an initial speed of $6.50 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is projected along the axis midway between the deflection plates of a cathoderay tube. The potential difference between the two plates is 22.0 V and the lower plate is the one at higher potential. (a) What is the force (magnitude and direction) on the electron when it is between the plates? (b) What is the acceleration of the electron (magnitude and direction) when acted on Figure P23.65 by the force in part (a)? (c) How far below the axis has the electron moved when it reaches the end of the plates? (d) At what angle with the axis is it
 moving as it leaves the plates? (e) How far below the axis will it strike the fluorescent screen S ?

23.87 •• Nuclear Fission. The

 unstable nucleus of uranium236 can be regarded as a uniformly charged sphere of charge $Q=+92 e$ and radius $R=$ $7.4 \times 10^{-15} \mathrm{~m}$. In nuclear fission, this can divide into two smaller nuclei, each with half the charge and half the volume of the original uranium-236
Figure P23.87

 nucleus. This is one of the reactions that occurred in the nuclear weapon that exploded over Hiroshima, Japan, in August 1945. (a) Find the radii of the two "daughter" nuclei of charge $+46 e$. (b) In a simple model for the fission process, immediately after the uranium-236 nucleus has undergone fission, the "daughter" nuclei are at rest and just touching, as shown in Fig. P23.87. Calculate the kinetic energy that each of the "daughter" nuclei will have when they are very far apart. (c) In this model the sum of the kinetic energies of the two "daughter" nuclei, calculated in part (b), is the energy released by the fission of one uranium236 nucleus. Calculate the energy released by the fission of 10.0 kg of uranium-236. The atomic mass of uranium- 236 is 236 u , where $1 \mathrm{u}=1$ atomic mass unit $=1.66 \times 10^{-24} \mathrm{~kg}$. Express your answer both in joules and in kilotons of TNT (1 kiloton of TNT releases $4.18 \times 10^{12} \mathrm{~J}$ when it explodes). (d) In terms of this model, discuss why an atomic bomb could just as well be called an "electric bomb."
24.21 •• For the system of capacitors shown in Fig. E24.21, a potential difference of 25 V is maintained across $a b$. (a) What is the equivalent capacitance of this system between a and b ? (b) How much charge is stored by this system? (c) How much charge does the $6.5-\mathrm{nF}$ capacitor store? (d) What is the potential difference across the $7.5-\mathrm{nF}$ capacitor?
24.22 - Figure E24.22 shows a system of four capacitors, where the potential difference across $a b$ is 50.0 V . (a) Find the equivalent capacitance of this system between a and b. (b) How much charge is stored by this combination of capacitors? (c) How much charge is stored in each of the $10.0-\mu \mathrm{F}$ and the $9.0-\mu \mathrm{F}$ capacitors?

Figure E24.22

24.52 ... In one type of computer keyboard, each key holds a small metal plate that serves as one plate of a parallel-plate, airfilled capacitor. When the key is depressed, the plate separation decreases and the capacitance increases. Electronic circuitry detects the change in capacitance and thus detects that the key has been pressed. In one particular keyboard, the area of each metal plate is $42.0 \mathrm{~mm}^{2}$, and the separation between the plates is 0.700 mm before the key is depressed. (a) Calculate the capacitance before the key is depressed. (b) If the circuitry can detect a change in capacitance of 0.250 pF , how far must the key be depressed before the circuitry detects its depression?
24.66 . An air capacitor is made by using two flat plates, each with area A, separated by a distance d. Then a metal slab having thickness a (less than d) and the same shape and size as the plates is inserted between them, parallel to the plates and not touching

Figure P24.66
 either plate (Fig. P24.66). (a) What is the capacitance of this arrangement? (b) Express the capacitance as a multiple of the capacitance C_{0} when the metal slab is not present. (c) Discuss what happens to the capacitance in the limits $a \rightarrow 0$ and $a \rightarrow d$.

