PEP 2017

Assignment 3

(1) Expand the following functions at $x_{0}=0$ in a series up to the first four terms:
(a) $f(x)=\ln (1+x)^{5}$
(b) $f(x)=\cosh x$
(c) $f(x)=\sqrt{1-x}$
(2) (a) Given $z=2 e^{i \pi / 4}$, calculate z^{3}
(b) Given $z=\frac{1}{16} e^{i 6 \pi}$, calculate $z^{1 / 4}$
(c) Calculate $\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{3}$
(d) Put the following complex numbers into exponential form:
(i) $5-5 i$
(ii) $15-13 i$
(e) Determine the real and imaginary parts of $\frac{(1+i)^{2}}{\sqrt{2}(1-i)}$
(3) Two balls 1 and 2 on a frictionless horizontal track with a vertical wall on the right. Their masses are m_{1} and m_{2} respectively. Initially, the ball 2 is at rest while the ball 1 is moving to right with velocity v and collides with ball 2. Find the range of the ratio m_{2} / m_{1} such that the second collisions between two balls become possible. You can assume all the collisions are elastic.

1

(4) A smooth hemisphere with mass M and radius R is on a horizontal frictionless table. A small ball of mass m is sliding down at rest from the top of the hemisphere and lose contact with the hemisphere at angle θ such that $\cos \theta=0.7$. Find the ratio M / m.

