PEP 2017

Assignment 4

(1) Solve the DE $\frac{1}{2} y^{\prime}+2 y=0$ subjected to the condition that $y(0)=3$.
(2) Solve $y^{\prime \prime}+y=2 y^{\prime}$ given that $y(0)=1$ and $y(1)=0$.
(3) Solve $y^{\prime}=e^{(x-2 y)}$ given that $y(0)=1$.
(4) A two-stage rocket in a zero gravitational field starts from rest and burns fuel. The fuel is ejected at a speed u relative to the rocket. After all the fuel has been burned, explosive bolts release the first stage and push it backwards with a speed v_{1} relative to the second stage. The mass of the first stage before ny fuel is burned is $m_{1}=m_{0}+m_{f}$, where m_{f} is the mass of the fuel. The mass of the second stage is m_{2}. The total mass of the rocket before any fuel is burnt is $m_{1}+m_{2}$. The goal of this problem is to find the speed of the second stage after the separation.

(a) When the rocket is travelling at speed v, derive a relation between the differential of the speed of the rocket $d v$, and the differential of the mass of the rocket $d m$, and the speed u relative to the rocket of the ejected fuel.
(b) What is the speed v_{f} of the rocket immediately after all the fuel has been burned but before the second stage is released? Express your answer in terms of u, m_{f}, m_{0}, and m_{2} as needed.
(c) What is the speed v_{2} of the second stage immediately after it has been released? Express your answers in terms of $v_{1}, v_{f}, m_{f}, m_{2}$ and m_{0} as needed.
(5) Physical pendulum A planar triangle of uniform surface density with mass M, base D and height H is hanged at the top and oscillates due to its own gravity. Assume the angle of oscillation is small, find the period of oscillation. (HINT: you need to find the position of the center of mass (CM) and the moment of inertia with respect to the rotational axis)

