PEP Assignment 1 Solutions

1(a) $\quad f(x)=x^{3}$
$\frac{d}{d x} x^{3}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x}$

One can then use the binomial theorem to get
$(x+\Delta x)^{3}=(\Delta x)^{3}+\left(6 x^{2} \Delta x\right)+x^{3}$
After simplifying, this leads to
$\frac{d}{d x} x^{3}=\lim _{\Delta x \rightarrow 0}(\Delta x)^{2}+(3 x \Delta x)+3 x^{2}$
If $\Delta x=0$, then
$\frac{\mathrm{d}}{\mathrm{d} x} x^{3}=3 x^{2}$

1(b) $\quad f(x)=\frac{1}{\sqrt{x}}, x>0$
$\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{\sqrt{x+\Delta x}}-\frac{1}{\sqrt{x}}}{\Delta x}$

After simplifying, this leads to
$\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=\lim _{\Delta x \rightarrow 0} \frac{-1}{x \sqrt{x+\Delta x}+\sqrt{x}(x+\Delta x)}$

If $\Delta x=0$, then
$\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\sqrt{x}}=-\frac{1}{2 x^{\frac{3}{2}}}$

1(c) $f(x)=\sec x=\frac{1}{\cos x}$
$\frac{\mathrm{d}}{\mathrm{d} x} \sec x=\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{\cos (x+\Delta x)}-\frac{1}{\cos x}}{\Delta x}$
After simplifying, this leads to
$\frac{\mathrm{d}}{\mathrm{d} x} \sec x=\lim _{\Delta x \rightarrow 0} \frac{\cos x-\cos (x+\Delta x)}{\Delta x \cos x \cos (x+\Delta x)}$
Using trig. Identity, one can get
$\cos (x+\Delta x)=\cos x \cos \Delta x-\sin x \sin \Delta x$
This leads to
$\frac{\mathrm{d}}{\mathrm{d} x} \sec x=\lim _{\Delta x \rightarrow 0} \frac{1-\cos \Delta x}{\Delta x \cos (x+\Delta x)}+\left(\frac{\sin x}{\cos x}\right) \frac{\sin \Delta x}{\Delta x \cos (x+\Delta x)}$
If $\Delta x=0$, then
$\sin \Delta x=0$
$\cos \Delta x=1$

1(c) Continued ...

Knowing that
$\lim _{\Delta x \rightarrow 0} \frac{1-\cos \Delta x}{\Delta x}=0 \quad \lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x}=1$
One can then get
$\frac{\mathrm{d}}{\mathrm{d} x} \sec x=0+\frac{1}{\cos x} \tan x$
$\frac{\mathrm{d}}{\mathrm{d} x} \sec x=\sec x \tan x$

2(a) $\quad f(x)=x^{2}+x+3$

One can use a combination of the power rule and the sum rule to get
$\frac{\mathrm{d}}{\mathrm{d} x} f(x)=2 x+1$

2(b) $\quad f(x)=\sin x \cos x$

One can use the product rule
$\frac{\mathrm{d}}{\mathrm{d} x}[g(x) h(x)]=g(x) \frac{\mathrm{d}}{\mathrm{d} x} h(x)+h(x) \frac{\mathrm{d}}{\mathrm{d} x} g(x)$
$g(x)=\sin x$
$\frac{\mathrm{d}}{\mathrm{d} x} g(x)=\cos x$
$h(x)=\cos x$ $\frac{\mathrm{d}}{\mathrm{d} x} h(x)=-\sin x$

Putting all the terms together to get
$\frac{\mathrm{d}}{\mathrm{d} x} f(x)=-\sin ^{2} x+\cos ^{2} x$

2(c) $\quad f(x)=\sqrt{1-x^{3}}$

Let $u=1-x^{3}$ and $y=\sqrt{u}$

One can then use the chain rule
$\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{1}{2 \sqrt{u}}
$$

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=-3 x^{2}
$$

Putting all the terms together to get
$\frac{\mathrm{d}}{\mathrm{d} x} f(x)=-\frac{3 x^{2}}{2 \sqrt{1-x^{3}}}$

2(d) $\quad f(x)=\sin \sqrt{1-x^{2}}$
Let $k=1-x^{2}, c=\sqrt{k}$ and $y=\sin c$
One can use the chain rule
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} c} \frac{\mathrm{~d} c}{\mathrm{~d} k} \frac{\mathrm{~d} k}{\mathrm{~d} x}$
$\frac{\mathrm{d} k}{\mathrm{~d} x}=-2 x \quad \frac{\mathrm{~d} c}{\mathrm{~d} k}=\frac{1}{2 \sqrt{k}} \quad \frac{\mathrm{~d} y}{\mathrm{~d} c}=\cos c$

Putting all the terms together to get
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{\sqrt{1-x^{2}}} \cos \sqrt{1-x^{2}}$

2(e) $\quad f(x)=\frac{x+2}{x-2}$
Let $g(x)=x+2$ and $h(x)=x-2$
One can use the quotient rule
$\frac{d}{d x} \frac{g(x)}{h(x)}=\frac{g(x) \frac{d}{d x} h(x)+h(x) \frac{d}{d x} g(x)}{[h(x)]^{2}}$
$g(x)=x+2$
$\frac{d}{d x} g(x)=1$
$h(x)=x-2$
$\frac{d}{d x} h(x)=1$

Putting all the terms together to get
$\frac{d}{d x} f(x)=-\frac{4}{(x-2)^{2}}$

3(a)
Knowing that
$V=\pi H\left(\frac{D}{2}\right)^{2}$
$A=\pi D H+2 \pi\left(\frac{D}{2}\right)^{2}$
$A=$ Total surface area of the cylindrical tank
$V=$ Total volume of the cylindrical tank
$H=$ Height of the cylindrical tank
$D=$ Diameter for the base of the cylindrical tank

From (1), we get
$H=\frac{16}{\pi D^{2}}$

Substitute (3) into (2)
$A=\frac{16}{D}+\frac{\pi}{2} D^{2}$

To get a minimum
$\frac{d A}{d D}=0$
$-\frac{16}{D^{2}}+\pi D=0$

Solving (5) for D
$D=\left(\frac{16}{\pi}\right)^{3}$ meters
OR
$D=1.721$ meters

* Substitute the value of D into (1), should find that $\boldsymbol{H}=\boldsymbol{D}$

Substitute the value of D into (2), the total surface area A of the metal sheet required is
$A=\frac{3 \pi}{2} D^{2}$ sq.meters
OR

$A=13.949$ sq.meters

3(b)

Recall the relationship between V, H and D from 3(a):
$H=D$
$V=\pi H\left(\frac{D}{2}\right)^{2}$

Substitute (1) into (2)
$V=\pi\left(\frac{D}{2}\right)^{3}$

Differentiate (3) with respect to D gives
$\frac{\mathrm{d} V}{\mathrm{~d} D}=\frac{3}{4} \pi D^{2}$

3(b) continued ...

If ΔD is the error in D (and in H), then (4) can be rewritten as
$\Delta V \approx \frac{3}{4} \pi D^{2} \Delta D$
Therefore, the relative error in V is
$\frac{\Delta V}{V} \approx 3 \frac{\Delta D}{D}$
If the relative error in D is 2%, then
$\frac{\Delta V}{V} \approx 6 \%$

4(a)

$\mathbf{r}=\cos t \hat{\boldsymbol{\imath}}+\sin t \hat{\boldsymbol{\jmath}}+2 t \widehat{\boldsymbol{k}}$

The trajectory is a spiral.
Differentiate r with respect to time t to get the velocity v
$\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} t}=-\sin t \hat{\boldsymbol{\imath}}+\cos t \hat{\jmath}+2 \hat{\mathbf{z}}$

Obtain the second derivative of \boldsymbol{r} to get the acceleration \boldsymbol{a}
$\boldsymbol{a}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\cos t \hat{\boldsymbol{\imath}}-\sin t \hat{\boldsymbol{\jmath}}$

5(a)

The position vector of the projectile at any time is
$r=v \cos (\theta+\alpha) t \hat{\imath}+\left[v \sin (\theta+\alpha) t-\frac{1}{2} g t^{2}\right] \hat{\jmath}$
Therefore, the x and y component of the position vector are

$$
\begin{align*}
& x=v \cos (\theta+\alpha) t \tag{1}\\
& y=v \sin (\theta+\alpha) t-\frac{1}{2} g t^{2} \tag{2}
\end{align*}
$$

$y=x \tan \theta$

Sometime later, the trajectory and the incline will meet. This leads to (2) being the same as (3), so that
$\sin (\theta+\alpha) t-\frac{1}{2} g t^{2}=x \tan \theta$
$\sin (\theta+\alpha) t-\frac{1}{2} g t^{2}=v \cos (\theta+\alpha) t \tan \theta$

Rearrange (4) to get t
$t=\frac{2 v(\sin (\theta+\alpha) \cos \theta-\sin \theta \cos (\theta+\alpha))}{g \cos \theta}$

Can use the following trig. Identity to simplify (5),

$$
\sin (\theta+\alpha-\theta)=\sin (\theta+\alpha) \cos \theta-\cos (\theta+\alpha) \sin \theta
$$

Then we get
$t=\frac{2 v \sin \alpha}{g \cos \theta}$

Using the geometry outlined in the problem,
$R=x \sec \theta$

Substitute (1) and (6) into (7), we obtain
$R=\frac{v^{2}}{g \cos ^{2} \theta}(\sin (2 \alpha+\theta)-\sin \theta)$

To find the maximum value of angle α, need to find $\frac{d R}{d \alpha}$ and solve for α when $\frac{d R}{d \alpha}=0$. Using the sum rule and the chain rule, we then obtain
$\frac{\mathrm{d} R}{\mathrm{~d} \alpha}=2 \cos (2 \alpha+\theta)$
$2 \cos (2 \alpha+\theta)=0$

Finally, we solve (9) for α to obtain
$\alpha=\frac{\pi}{4}=\frac{\theta}{2}$

5(a) continued ...

The equation of the incline is

PEP Assignment 1 Solutions

