PEP Assignment 2 Solutions

1 (a)
$I=\int \sqrt{x} \mathrm{~d} x$

Use the power rule to get
$I=\frac{2 x^{\frac{3}{2}}}{3}+C$

1(b)
$I=\int 3 \sin ^{2} x \cos x \mathrm{~d} x$
One can use the method of substitution

Let $u=\sin x$, then $\mathrm{d} u=\cos x \mathrm{~d} x$
$I=3 \int u^{2} d u=3\left[\frac{u^{3}}{3}\right]+C$
$I=3\left[\frac{\sin ^{3} x}{3}\right]+C$

1(c)
$I=\int \frac{1}{2}-2 x^{2} \mathrm{~d} x$

One can use the difference rule to get
$I=\frac{1}{2} x-\frac{2 x^{3}}{3}+C$

1(d)
$I=\int_{0}^{1} x \sqrt{1-x} \mathrm{~d} x$
Let $u=x$ and $\mathrm{d} v=\sqrt{1-x} \mathrm{~d} x$
And so
$\mathrm{d} u=\mathrm{d} x$ and $v=-\frac{2}{3}(1-x)^{\frac{3}{2}}$

Use integration by parts,
$\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$
Put everything together to get
$I=\left[-\frac{2 x}{3}(1-x)^{\frac{3}{2}}-\frac{4}{15}(1-x)^{\frac{5}{2}}\right]_{0}^{1}=\frac{4}{15}$

1(e)
$I=\int_{0}^{\pi} x^{2} \sin x \mathrm{~d} x$
Let $u=x^{2}$ and $\mathrm{d} v=\sin x \mathrm{~d} x$

And so
$\mathrm{d} u=2 x \mathrm{~d} x$ and $v=-\cos x$

Use integration by parts,
$\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$
$\int u \mathrm{~d} v=-x^{2} \cos x-\int 2 x \cos x \mathrm{~d} x$
Need to perform integration by parts again for $\int 2 x \cos x \mathrm{~d} x$
Let $u=x$ and $\mathrm{d} v=\cos x \mathrm{~d} x$

And so
$\mathrm{d} u=1 \mathrm{~d} x$ and $v=\sin x$
$\int 2 x \cos x \mathrm{~d} x=x \sin x+\cos x+c$

Where c is a constant. By putting everything together, we have to following:
$I=\left[\left(-x^{2}+2\right) \cos x+2 x \sin x\right]_{0}^{\pi}=\pi^{2}-4$
$\underline{2}$

To find the area bounded, we will need to solve the following:
$I=\int_{0}^{36}(25 x)^{\frac{1}{2}} \mathrm{~d} x$
$I=\left[\frac{10}{3} x^{\frac{3}{2}}\right]_{0}^{36}=720$ sq. unit

3

To find the arc length s, we will need to use
$s=\int_{a}^{b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$
Where $y=\sqrt{(7-x)(5+x)}, a=-5$ and $b=+1$
To find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, the use of chain rule is required. This leads to
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x+1}{\sqrt{(7-x)(5+x)}}$

3 Continued ..

We will now need to compute
$s=\int_{-5}^{1} \sqrt{1+\frac{(-x+1)^{2}}{(7-x)(5+x)}} \mathrm{d} x$

By completing the square
$(7-x)(5+x)=-(x-1)^{2}+36$
and integrate by substitution using $u=x-1$, this leads to
$s=6 \int \frac{1}{\sqrt{36-u^{2}}} \mathrm{~d} u$
(For simplicity, we ignore the integration limits for now ...)

Let $u=6 \sin v$ and so $\mathrm{d} u=6 \cos v \mathrm{~d} v$, this leads to
$s=6 \int \frac{\cos v}{\sqrt{1-\sin ^{2} v}} \mathrm{~d} v$
Using $\sin ^{2} x+\cos ^{2} x=1$, we get
$s=6 v$

Since $v=\sin ^{-1}\left(\frac{x-1}{6}\right)$, we then need to compute the following
$s=\left[6 \sin ^{-1}\left(\frac{x-1}{6}\right)\right]_{-5}^{1}=3 \pi$ units
OR
$s=9.42$ units

4

For the equation
$\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$,
we know that $a=3$ and $b=5$, where a is the semi minor axis along the x-axis and b is the semi major axis along the y-axis.

Furthermore,
$y^{2}=25\left(1-\frac{x^{2}}{9}\right)$

To calculate the resulting volume V when the object is revolved by the x axis, we can use
$V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x$

This leads to
$V=\pi \int_{-3}^{+3} 25\left(1-\frac{x^{2}}{9}\right) \mathrm{d} x$

4 Continued ...
$V=25 \pi\left[x-\frac{x^{3}}{27}\right]_{-3}^{+3}=100 \pi$ cubic units

OR
$V=314.16$ cubic units

5

Using the method as described in the tutorial notes. Consider a function that describes a circle with its edge located at the origin
$y=\sqrt{-x^{2}+2 R x}$
$\mathrm{d} m=\rho \pi y^{2} \mathrm{~d} x$, where ρ is the mass per unit volume.

Total mass M is then
$M=\int_{0}^{R} \mathrm{~d} m=\int_{0}^{R} \rho \pi\left(-x^{2}+2 R x\right) \mathrm{d} x$
$M=\rho \pi\left[\frac{-x^{3}}{3}+\frac{2 R x^{2}}{2}\right]_{0}^{R}=\rho \pi\left[\frac{2 R^{3}}{3}\right]$

Based the geometry and by symmetry, we know that its center of mass must be located along the x axis only. The definition of the center of mass is
$\bar{x}=\frac{\int_{0}^{R} x \mathrm{~d} m}{M}$
$\bar{x}=\frac{\int_{0}^{R} x \rho \pi\left(-x^{2}+2 R x\right) \mathrm{d} x}{M}$
$\bar{x}=\frac{1}{M}\left(\frac{5 R^{4}}{12} \rho \pi\right)$
$\bar{x}=\frac{5}{8} R$ from the origin

OR
$\bar{x}=\frac{3}{8} R$ from the base of the hemisphere

PEP Assignment 2 Solutions

