PEP Assignment 3 Solutions

<u>1 (a)</u>

$$f(x) = \operatorname{Ln}(1+x)^5$$

		f(0)	0
f'(x)	$5(1+x)^{-1}$	f'(0)	5
f''(x)	$-5(1+x)^{-2}$	f''(0)	-5
$f^{\prime\prime\prime}(x)$	$10(1+x)^{-3}$	f'''(0)	10
f''''(x)	$-30(1+x)^{-4}$	f''''(0)	-30

Therefore, its Taylor series up to the first four terms is

$$f(x) = 5x - \frac{5}{2}x^2 + \frac{5}{2}x^3 - \frac{5}{4}x^4$$

<u>1 (b)</u>

 $f(x) = \cosh(x)$

		f(0)	1
f'(x)	$\sinh(x)$	f'(0)	0
f''(x)	$\cosh(x)$	f''(0)	1
$f^{\prime\prime\prime}(x)$	$\sinh(x)$	f'''(0)	0
f''''(x)	$\cosh(x)$	f''''(0)	1
f'''''(x)	$\sinh(x)$	f''''(x)	0
f'''''(x)	$\cosh(x)$	f'''''(x)	1

Therefore, its Taylor series up to the first four terms is

$$f(x) = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \frac{1}{720}x^6$$

<u>1 (c)</u>

$$f(x) = \sqrt{1-x}$$

		f(0)	1
f'(x)	$-\frac{1}{2}(1-x)^{-\frac{1}{2}}$	f'(0)	$-\frac{1}{2}$
f''(x)	$-\frac{1}{4}(1-x)^{-\frac{3}{2}}$	f''(0)	$-\frac{1}{4}$
<i>f'''</i> (<i>x</i>)	$-\frac{3}{8}(1-x)^{-\frac{5}{2}}$	<i>f</i> '''(0)	$-\frac{3}{8}$

Therefore, its Taylor series up to the first four terms is

$$f(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

2(a)

 $Z = 2e^{\frac{i\pi}{4}}$ $Z^3 = 8e^{\frac{i3\pi}{4}} = 8\left(\cos\frac{3\pi}{4} + \sin\frac{3\pi}{4}i\right)$

2(b)

$$Z = \frac{1}{16} e^{i6\pi}$$
$$Z^{\frac{1}{4}} = \frac{1}{2} e^{i\frac{3\pi}{2}} = \frac{1}{2} \left(\cos \frac{3\pi}{2} + \sin \frac{3\pi}{2} i \right)$$

$$Z = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$$
$$Z = \left(e^{\frac{i\pi}{3}}\right)^3 = -1$$

2(d)i

$$Z = 5 - 5i$$
$$|Z| = 5\sqrt{2}$$

$$\theta = -\frac{\pi}{4}$$
$$Z = 5\sqrt{2} \ e^{-i\frac{\pi}{4}}$$

2(d)ii

$$Z = 15 - 13i$$
$$|Z| = \sqrt{394}$$
$$\theta = -0.714$$

$$Z = \sqrt{394} \ e^{-i0.714}$$

2(e)

$$Z = \frac{(1+i)^2}{\sqrt{2}(1-i)}$$

Multiply by a factor of $\frac{(1+i)}{(1+i)}$ to get

$$Z = \frac{(1+i)^3}{2\sqrt{2}} = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

Therefore,

$$\operatorname{Re}\left(Z\right)=-\frac{1}{\sqrt{2}}$$

and

$$\operatorname{Im}(Z)=\frac{1}{\sqrt{2}}$$

(3)

Let's define the following variables:

22	Velocity of the object with
$v_{1,i}$	mass m_1 before the collision
"	Velocity of the object with
$v_{2,i}$	mass m_2 before the collision
33	Velocity of the object with
$v_{1,f}$	mass m_1 after the collision
11	Velocity of the object with
$v_{2,f}$	mass m_2 after the collision
	Velocity of the object with
$v'_{2,f}$	mass m_2 after the collision
÷	with the wall

Elastic collision occurs when the kinetic energy and the momentum are conserved. Therefore, we can write the following equations:

From the conservation of kinetic energy:

$$\frac{1}{2}m_1v_{1,i}^2 = \frac{1}{2}m_1v_{1,f}^2 + \frac{1}{2}m_1v_{2,f}^2$$

From the conservation of momentum:

$$\frac{1}{2}m_1v_{1,i}^2 = \frac{1}{2}m_1v_{1,f}^2 + \frac{1}{2}m_1v_{2,f}^2$$

From these two equations, we get

$$v_{1,f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1,i}$$

and

$$v_{2,f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1,i}$$

Since the collision between the object with mass m_2 and the wall is considered to be elastic, we can also write

$$v_{2,f}' = -v_{2,f}$$

For the case when $v_{2,f}^\prime$ and $v_{1,f}$ are the same (i.e. no second collision), then

 $\frac{m_2}{m_1} = 3$

Therefore, in order for the second collision to occur

$$v'_{2,f} > v_{1,f}$$

and so

$$\frac{m_2}{m_1} < 3$$

(4)

Let's define the following variables:

V	Velocity of the hemisphere	
М	Mass of the hemisphere	
θ	Angle between the top of the hemisphere and the object sliding down the hemisphere	
m	Mass of the object sliding down the hemisphere	
$oldsymbol{ u}'$	Velocity of the object sliding down the hemisphere	

In this scenario, we can write the following equations:

By conservation of momentum:

$$MV = m(v'\cos\theta - V)$$

By conservation of energy:

$$\frac{1}{2}m[(v'\cos\theta - V)^2 + (v'\sin\theta)^2] + \frac{1}{2}MV^2 = mgR(1 - \cos\theta)$$

By Newton's 2^{nd} law (when the object is no longer in contact with the hemisphere):

$$mg\cos\theta = \frac{m(v')^2}{R}$$

With these three equations, we get

$$\frac{M}{m} = 2.43$$

PEP Assignment 3 Solutions