## PEP Assignment 3 Solutions

1 (a)
$f(x)=\operatorname{Ln}(1+x)^{5}$

|  |  | $f(0)$ | 0 |
| :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | $5(1+x)^{-1}$ | $f^{\prime}(0)$ | 5 |
| $f^{\prime \prime}(x)$ | $-5(1+x)^{-2}$ | $f^{\prime \prime}(0)$ | -5 |
| $f^{\prime \prime \prime}(x)$ | $10(1+x)^{-3}$ | $f^{\prime \prime \prime}(0)$ | 10 |
| $f^{\prime \prime \prime \prime}(x)$ | $-30(1+x)^{-4}$ | $f^{\prime \prime \prime \prime}(0)$ | -30 |

Therefore, its Taylor series up to the first four terms is

$$
f(x)=5 x-\frac{5}{2} x^{2}+\frac{5}{2} x^{3}-\frac{5}{4} x^{4}
$$

## 1 (b)

$f(x)=\cosh (x)$

|  |  | $f(0)$ | 1 |
| :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | $\sinh (x)$ | $f^{\prime}(0)$ | 0 |
| $f^{\prime \prime}(x)$ | $\cosh (x)$ | $f^{\prime \prime}(0)$ | 1 |
| $f^{\prime \prime \prime}(x)$ | $\sinh (x)$ | $f^{\prime \prime \prime}(0)$ | 0 |
| $f^{\prime \prime \prime \prime}(x)$ | $\cosh (x)$ | $f^{\prime \prime \prime \prime}(0)$ | 1 |
| $f^{\prime \prime \prime \prime \prime}(x)$ | $\sinh (x)$ | $f^{\prime \prime \prime \prime \prime}(x)$ | 0 |
| $f^{\prime \prime \prime \prime \prime \prime}(x)$ | $\cosh (x)$ | $f^{\prime \prime \prime \prime \prime}(x)$ | 1 |

Therefore, its Taylor series up to the first four terms is
$f(x)=1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}$

1 (c)
$f(x)=\sqrt{1-x}$

|  |  | $f(0)$ | 1 |
| :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | $-\frac{1}{2}(1-x)^{-\frac{1}{2}}$ | $f^{\prime}(0)$ | $-\frac{1}{2}$ |
| $f^{\prime \prime}(x)$ | $-\frac{1}{4}(1-x)^{-\frac{3}{2}}$ | $f^{\prime \prime}(0)$ | $-\frac{1}{4}$ |
| $f^{\prime \prime \prime}(x)$ | $-\frac{3}{8}(1-x)^{-\frac{5}{2}}$ | $f^{\prime \prime \prime}(0)$ | $-\frac{3}{8}$ |

Therefore, its Taylor series up to the first four terms is
$f(x)=1-\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$

2(b)
$Z=\frac{1}{16} e^{i 6 \pi}$
$Z^{\frac{1}{4}}=\frac{1}{2} e^{i \frac{3 \pi}{2}}=\frac{1}{2}\left(\cos \frac{3 \pi}{2}+\sin \frac{3 \pi}{2} i\right)$

2(c)
$Z=\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{3}$
$Z=\left(e^{i \frac{i \pi}{3}}\right)^{3}=-1$

2(d)i
$Z=5-5 i$
$|Z|=5 \sqrt{2}$
$\boldsymbol{\theta}=-\frac{\pi}{4}$
$Z=5 \sqrt{2} e^{-i \frac{\pi}{4}}$

2(d)ii
$Z=15-13 i$
$|Z|=\sqrt{394}$
$\theta=-0.714$
$Z=\sqrt{394} e^{-i 0.714}$

2(e)
$Z=\frac{(1+i)^{2}}{\sqrt{2}(1-i)}$
Multiply by a factor of $\frac{(1+i)}{(1+i)}$ to get
$Z=\frac{(1+i)^{3}}{2 \sqrt{2}}=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$

## Therefore,

$\operatorname{Re}(Z)=-\frac{1}{\sqrt{2}}$
and
$\operatorname{Im}(Z)=\frac{1}{\sqrt{2}}$
(3)

Let's define the following variables:

|  |  |
| :---: | :--- |
| $\boldsymbol{v}_{\mathbf{1 , i}}$ | Velocity of the object with <br> mass $m_{1}$ before the collision |
| $\boldsymbol{v}_{2, i}$ | Velocity of the object with <br> mass $m_{2}$ before the collision |
| $\boldsymbol{v}_{\mathbf{1 , f}}$ | Velocity of the object with <br> mass $m_{1}$ after the collision |
| $\boldsymbol{v}_{2, f}$ | Velocity of the object with <br> mass $m_{2}$ after the collision |
| $\boldsymbol{v}_{2, f}^{\prime}$ | Velocity of the object with <br> mass $m_{2}$ after the collision <br> with the wall |

Elastic collision occurs when the kinetic energy and the momentum are conserved. Therefore, we can write the following equations:

From the conservation of kinetic energy:
$\frac{1}{2} m_{1} v_{1, i}^{2}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{1} v_{2, f}^{2}$

From the conservation of momentum:
$\frac{1}{2} m_{1} v_{1, i}^{2}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{1} v_{2, f}^{2}$
From these two equations, we get
$v_{1, f}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1, i}$
and
$v_{2, f}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1, i}$
Since the collision between the object with mass $m_{2}$ and the wall is considered to be elastic, we can also write
$v_{2, f}^{\prime}=-v_{2, f}$
For the case when $v_{2, f}^{\prime}$ and $v_{1, f}$ are the same (i.e. no second collision), then
$\frac{m_{2}}{m_{1}}=3$

Therefore, in order for the second collision to occur
$v_{2, f}^{\prime}>v_{1, f}$
and so
$\frac{m_{2}}{m_{1}}<3$
(4)

Let's define the following variables:

|  |  |
| :---: | :--- |
| $\boldsymbol{M}$ | Velocity of the hemisphere |
| $\boldsymbol{\theta}$ | Anss of the hemisphere <br> hemisphere and the object <br> sliding down the hemisphere |
| $\boldsymbol{m}$ | Mass of the object sliding <br> down the hemisphere |
| $\boldsymbol{v}^{\prime}$ | Velocity of the object sliding <br> down the hemisphere |

In this scenario, we can write the following equations:

By conservation of momentum:
$M V=m\left(v^{\prime} \cos \theta-V\right)$

By conservation of energy:
$\frac{1}{2} m\left[\left(v^{\prime} \cos \theta-V\right)^{2}+\left(v^{\prime} \sin \theta\right)^{2}\right]+\frac{1}{2} M V^{2}=m g R(1-\cos \theta)$
By Newton's $2^{\text {nd }}$ law (when the object is no longer in contact with the hemisphere):
$m g \cos \theta=\frac{m\left(v^{\prime}\right)^{2}}{R}$
With these three equations, we get
$\frac{M}{m}=2.43$

PEP Assignment 3 Solutions

