## 1.

Molar mass of water is about $18 \mathrm{~g} / \mathrm{mol}$, hence there are 0.167 moles of water molecules. Besides, there are $4.41 \times 10^{-4}$ moles of air.
By ideal gas law, the final pressure is $8.31 \times 373 \mathrm{x}\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{w}}\right) / 1=519 \mathrm{~Pa}$. Here $\mathrm{m}_{\mathrm{a}}$ and $\mathrm{m}_{\mathrm{w}}$ are the number of mole of air and water respectively.

## 2.

The ratio of mass of the two cup of liquid is $110 /(300+0.001 \times 100)=1 / 3$
Then $\mathrm{T}_{\mathrm{f}}=100 / 4=25^{\circ} \mathrm{C}$. The final volume is then

$$
300+110+300 \times 0.001 \times 25-110 \times 0.001 \times 75=409.25 \mathrm{~cm}^{3}
$$

## 3.

Consider an air column just above the funnel, the force difference due to pressure $=\left(\mathrm{P}_{\mathrm{gas}}-\mathrm{P}\right) \mathrm{A}=(\mathrm{nRT} / \mathrm{LA}-\mathrm{P})=\Delta \mathrm{nMv} / \Delta \mathrm{t}, \Delta \mathrm{n}=$ number of mole of gas in the column, use


## 4.

Since all three cubes are of the same material and volume, their heat capacities are the same. When they are in contact, the final temperature is simply the average. First, say, let A and B reach thermal equilibrium, the final temperature is $100^{\circ} \mathrm{C}$. Then let A and C in contact to reach temperature of $50^{\circ} \mathrm{C}$. After that, let B and C in contact, temperature becomes $75^{\circ} \mathrm{C}$. Now A is of temperature lower than both B and C .

## 5.

Initial conditions:

$$
\begin{gathered}
P_{i}=P_{0} \\
V_{i}=\frac{1}{2} l S
\end{gathered}
$$

Where $l=1 m, S$ is the cross section of the tube.
The tube being lifted out of the water into the atmosphere, we must have

$$
P_{f} S+\rho g h S=P_{0} S
$$

Also, the ideal gas law gives us

$$
P_{i} V_{i}=P_{f} V_{f}
$$

Which yields

$$
\frac{1}{2} l P_{0}=h P_{f}
$$

Combined, we can solve

$$
h \approx 0.25 m
$$

