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by using trial values for and adjusting the values of until a self-
consistent answer is obtained.)
21.70 .. CP Two identical spheres are each attached to silk
threads of length and hung from a common point
(Fig. P21.68). Each sphere has mass The radius of
each sphere is very small compared to the distance between the
spheres, so they may be treated as point charges. One sphere is
given positive charge and the other a different positive charge

this causes the spheres to separate so that when the spheres are
in equilibrium, each thread makes an angle with the
vertical. (a) Draw a free-body diagram for each sphere when in
equilibrium, and label all the forces that act on each sphere. 
(b) Determine the magnitude of the electrostatic force that acts on
each sphere, and determine the tension in each thread. (c) Based
on the information you have been given, what can you say about
the magnitudes of and Explain your answers. (d) A small
wire is now connected between the spheres, allowing charge to 
be transferred from one sphere to the other until the two spheres
have equal charges; the wire is then removed. Each thread now
makes an angle of with the vertical. Determine the 
original charges. (Hint: The total charge on the pair of spheres is
conserved.)
21.71 .. Sodium chloride ( ordinary table salt) is made up
of positive sodium ions and negative chloride ions 
(a) If a point charge with the same charge and mass as all the

ions in 0.100 mol of is from a point charge
with the same charge and mass as all the ions, what is the
magnitude of the attractive force between these two point
charges? (b) If the positive point charge in part (a) is held in
place and the negative point charge is released from rest, what is
its initial acceleration? (See Appendix D for atomic masses.) 
(c) Does it seem reasonable that the ions in could be sepa-
rated in this way? Why or why not? (In fact, when sodium chlo-
ride dissolves in water, it breaks up into and ions.
However, in this situation there are additional electric forces
exerted by the water molecules on the ions.)
21.72 .. A point charge is on the x-axis at 
A second point charge Q is on the x-axis at What must
be the sign and magnitude of Q for the resultant electric field at the
origin to be (a) 45.0 N C in the -direction, (b) 45.0 N C in the

-direction?
21.73 .. CP A small 12.3-g plastic ball is tied
to a very light 28.6-cm string that is attached to
the vertical wall of a room (Fig. P21.73). A uni-
form horizontal electric field exists in this
room. When the ball has been given an excess
charge of you observe that it
remains suspended, with the string making an
angle of 17.4° with the wall. Find the magni-
tude and direction of the electric field in the
room.
21.74 .. CP At a very small object
with mass 0.400 mg and charge is traveling at 125 m s
in the direction. The charge is moving in a uniform electric field
that is in the +y-direction and that has magnitude .
The gravitational force on the particle can be neglected. How far is
the particle from the origin at ?
21.75 .. Two particles having charges and

are separated by a distance of At what point
along the line connecting the two charges is the total electric field
due to the two charges equal to zero?
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uu 21.76 ... Two point charges and
are held in place apart.

Another point charge 
of mass is initially located

from each of these charges
(Fig. P21.76) and released from rest.
You observe that the initial accelera-
tion of is upward, parallel
to the line connecting the two point
charges. Find and 
21.77 . Three identical point charges

are placed at each of three corners of
a square of side Find the magnitude
and direction of the net force on a point charge placed (a) at
the center of the square and (b) at the vacant corner of the square.
In each case, draw a free-body diagram showing the forces exerted
on the charge by each of the other three charges.
21.78 ... Three point charges are placed on the -axis: a charge 
at a charge at the origin, and a charge at 
Such an arrangement is called an electric quadrupole. (a) Find the
magnitude and direction of the electric field at points on the posi-
tive -axis. (b) Use the binomial expansion to find an approximate
expression for the electric field valid for Contrast this
behavior to that of the electric field of a point charge and that of
the electric field of a dipole.
21.79 .. CP Strength of the Electric Force. Imagine two

bags of protons, one at the earth’s north pole and the other at
the south pole. (a) How many protons are in each bag? (b) Calcu-
late the gravitational attraction and the electrical repulsion that
each bag exerts on the other. (c) Are the forces in part (b) large
enough for you to feel if you were holding one of the bags?
21.80 . Electric Force Within the Nucleus. Typical dimen-
sions of atomic nuclei are of the order of (a) If
two protons in a nucleus are apart, find the magnitude of
the electric force each one exerts on the other. Express the answer
in newtons and in pounds. Would this force be large enough for a
person to feel? (b) Since the protons repel each other so strongly,
why don’t they shoot out of the nucleus?
21.81 .. If Atoms Were Not Neutral . . . Because the charges
on the electron and proton have the same absolute value, atoms are
electrically neutral. Suppose this were not precisely true, and the
absolute value of the charge of the electron were less than the
charge of the proton by 0.00100%. (a) Estimate what the net
charge of this textbook would be under these circumstances. Make
any assumptions you feel are justified, but state clearly what they
are. (Hint: Most of the atoms in this textbook have equal numbers
of electrons, protons, and neutrons.) (b) What would be the magni-
tude of the electric force between two textbooks placed 
apart? Would this force be attractive or repulsive? Estimate what
the acceleration of each book would be if the books were 
apart and there were no non-
electric forces on them. (c)
Discuss how the fact that ordi-
nary matter is stable shows
that the absolute values of the
charges on the electron and
proton must be identical to a
very high level of accuracy.
21.82 ... CP Two tiny sph-
eres of mass 6.80 mg carry
charges of equal magnitude,
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21.57 . Point charges and are sep-
arated by forming an electric dipole. (a) Find the electric
dipole moment (magnitude and direction). (b) The charges are in a
uniform electric field whose direction makes an angle of 
with the line connecting the charges. What is the magnitude of
this field if the torque exerted on the dipole has magnitude

21.58 . The dipole moment of the water molecule is
Consider a water molecule located at the

origin whose dipole moment points in the A chlo-
rine ion of charge is located at

Find the magnitude and direction of the elec-
tric force that the water molecule exerts on the chlorine ion. Is this
force attractive or repulsive? Assume that is much larger than the
separation between the charges in the dipole, so that the approxi-
mate expression for the electric field along the dipole axis derived
in Example 21.14 can be used.
21.59 . Torque on a Dipole. An electric dipole with dipole
moment is in a uniform electric field (a) Find the orientations
of the dipole for which the torque on the dipole is zero. (b) Which
of the orientations in part (a) is stable, and which is unstable?
(Hint: Consider a small displacement away from the equilibrium
position and see what happens.) (c) Show that for the stable orien-
tation in part (b), the dipole’s own electric field tends to oppose the
external field.
21.60 .. Consider the electric dipole of Example 21.14. (a)
Derive an expression for the magnitude of the electric field pro-
duced by the dipole at a point on the -axis in Fig. 21.33. What is
the direction of this electric field? (b) How does the electric field at
points on the -axis depend on when is very large?
21.61 . Three charges are at
the corners of an isosceles trian-
gle as shown in Fig. E21.61.
The charges form 
a dipole. (a) Find the force
(magnitude and direction) the

charge exerts on the
dipole. (b) For an axis perpendi-
cular to the line connecting the

charges at the mid-
point of this line, find the torque
(magnitude and direction) exerted
on the dipole by the 
charge.
21.62 . A dipole consisting of charges apart, is
placed between two very large (essentially infinite) sheets carrying
equal but opposite charge densities of (a) What is the
maximum potential energy this dipole can have due to the sheets,
and how should it be oriented relative to the sheets to attain this
value? (b) What is the maximum torque the sheets can exert on the
dipole, and how should it be oriented relative to the sheets to attain
this value? (c) What net force do the two sheets exert on the
dipole?

PROBLEMS
21.63 ... Four identical charges are placed at the corners of a
square of side (a) In a free-body diagram, show all of the
forces that act on one of the charges. (b) Find the magnitude and
direction of the total force exerted on one charge by the other
three charges.
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are placed on the -axis, one at the origin and the other
at as shown in Fig. P21.64. Find the position on the
-axis where the net force on a small charge would be zero.

21.65 .. Three point charges are arranged along the x-axis.
Charge is located at and charge

is at A positive point charge q3 is
located at the origin. (a) What must the value of q3 be for the net
force on this point charge to have magnitude (b) What is
the direction of the net force on q3? (c) Where along the x-axis can
q3 be placed and the net force on it be zero, other than the trivial
answers of and 
21.66 .. A charge is placed at the origin of an 

-coordinate system, and a charge is placed on
the positive -axis at (a) If a third charge 

is now placed at the point 
find the - and -components of the total force exerted on this
charge by the other two. (b) Find the magnitude and direction of
this force.
21.67 .. CP Two positive point charges are held fixed on the 
-axis at and A third positive point charge , with

mass , is placed on the -axis away from the origin at a coordi-
nate such that The charge , which is free to move
along the -axis, is then released. (a) Find the frequency of oscilla-
tion of the charge . (Hint: Review the definition of simple har-
monic motion in Section 14.2. Use the binomial expansion

valid for the case
) (b) Suppose instead that the charge q were placed on the

-axis at a coordinate such that and then released. If
this charge is free to move anywhere in the -plane, what will
happen to it? Explain your answer.
21.68 .. CP Two identical spheres
with mass are hung from silk
threads of length as shown in 
Fig. P21.68. Each sphere has the same
charge, so The radius of
each sphere is very small compared to
the distance between the spheres, so
they may be treated as point charges.
Show that if the angle is small, 
the equilibrium separation between
the spheres is 
(Hint: If is small, then

)
21.69 ... CP Two small spheres with
mass are hung by silk threads of length 
from a common point (Fig. P21.68). When the spheres are given
equal quantities of negative charge, so that each
thread hangs at from the vertical. (a) Draw a diagram
showing the forces on each sphere. Treat the spheres as point
charges. (b) Find the magnitude of . (c) Both threads are now
shortened to length while the charges and 
remain unchanged. What new angle will each thread make with the
vertical? (Hint: This part of the problem can be solved numerically
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solution. The solution is placed in an external electric field E so
that the electric force on a particle of charge q is (a) Show
that when the electric field is adjusted so that the two forces (elec-
tric and viscous drag) just balance, the ratio of q to R is
(b) Show that if we leave the electric field on for a time T, the distance
x that the molecule moves during that time is
(c) Suppose you have a sample containing three different biologi-
cal molecules for which the molecular ratio for material 2 is
twice that of material 1 and the ratio for material 3 is three times
that of material 1. Show that the distances migrated by these mole-
cules after the same amount of time are and 
In other words, material 2 travels twice as far as material 1, and
material 3 travels three times as far as material 1. Therefore, we
have separated these molecules according to their ratio of charge to
size. In practice, this process can be carried out in a special gel or
paper, along which the biological molecules migrate. (Fig. P21.94).
The process can be rather slow, requiring several hours for separa-
tions of just a centimeter or so.
21.95 . CALC Positive charge is distributed uniformly along
the from to Negative charge is distrib-
uted uniformly along the from to (a) A
positive point charge lies on the positive -axis, a distance from
the origin. Find the force (magnitude and direction) that the posi-
tive and negative charge distributions together exert on . Show
that this force is proportional to for (b) Suppose
instead that the positive point charge lies on the positive -axis, a
distance from the origin. Find the force (magnitude and
direction) that the charge distribution exerts on . Show that this
force is proportional to for 
21.96 .. CP A small sphere with mass carries a positive charge

and is attached to one end of a silk fiber of length . The other
end of the fiber is attached to a large vertical insulating sheet that
has a positive surface charge density Show that when the sphere
is in equilibrium, the fiber makes an angle equal to arctan

with the vertical sheet.
21.97 .. CALC Negative charge is distributed uniformly
around a quarter-circle of radius that lies in the first quadrant, with
the center of curvature at the origin. Find the - and -components of
the net electric field at the origin.
21.98 .. CALC A semicircle
of radius a is in the first and
second quadrants, with the
center of curvature at the ori-
gin. Positive charge +Q is dis-
tributed uniformly around the
left half of the semicircle, and
negative charge is distrib-
uted uniformly around the right
half of the semicircle (Fig.
P21.98). What are the mag-
nitude and direction of the net
electric field at the origin pro-
duced by this distribution of
charge?
21.99 .. Two noncon-
ducting wires meet at a right
angle. One segment carries

of charge distrib-
uted uniformly along its length,
and the other carries 
distributed uniformly along it,
as shown in Fig. P21.99. 
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(a) Find the magnitude and direction of the electric field these
wires produce at point , which is from each wire. (b) If
an electron is released at , what are the magnitude and direction
of the net force that these wires exert on it?
21.100 . Two very large parallel sheets are apart. Sheet

carries a uniform surface charge density of and
sheet which is to the right of carries a uniform charge density
of . Assume the sheets are large enough to be treated
as infinite. Find the magnitude and direction of the net electric field
these sheets produce at a point (a) to the right of sheet 
(b) to the left of sheet (c) to the right of sheet 
21.101 . Repeat Problem 21.100 for the case where sheet is
positive.
21.102 . Two very large horizontal sheets are apart and
carry equal but opposite uniform surface charge densities of mag-
nitude You want to use these sheets to hold stationary in the
region between them an oil droplet of mass that carries an
excess of five electrons. Assuming that the drop is in vacuum, (a)
which way should the electric field between the plates point, and
(b) what should be?
21.103 .. An infinite sheet with positive charge per unit area 
lies in the -plane. A second infinite sheet with negative charge
per unit area lies in the -plane. Find the net electric field at
all points that do not lie in either of these planes. Express your
answer in terms of the unit vectors and 
21.104 .. CP A thin disk with a
circular hole at its center, called
an annulus, has inner radius 
and outer radius (Fig.
P21.104). The disk has a uniform
positive surface charge density 
on its surface. (a) Determine the
total electric charge on the annu-
lus. (b) The annulus lies in the 

-plane, with its center at the ori-
gin. For an arbitrary point on the
-axis (the axis of the annulus),

find the magnitude and direction of the electric field Consider
points both above and below the annulus in Fig. P21.104. (c) Show
that at points on the -axis that are sufficiently close to the origin,
the magnitude of the electric field is approximately proportional to
the distance between the center of the annulus and the point. How
close is “sufficiently close”? (d) A point particle with mass and
negative charge is free to move along the -axis (but cannot
move off the axis). The particle is originally placed at rest at

and released. Find the frequency of oscillation of the
particle. (Hint: Review Section 14.2. The annulus is held station-
ary.)

CHALLENGE PROBLEMS
21.105 ... Three charges are
placed as shown in Fig.
P21.105. The magnitude of is

but its sign and the
value of the charge are not
known. Charge is 
and the net force on is
entirely in the negative -direc-
tion. (a) Considering the different possible signs of , there are four
possible force diagrams representing the forces and that and

exert on Sketch these four possible force configurations.q3 .q2
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sheet, as shown in Fig. P22.43. The charge density on the surface
of the sheet is uniform and equal to Find the
angle of the thread.
22.44 . A Sphere in a Sphere. A solid conducting sphere car-
rying charge has radius It is inside a concentric hollow con-
ducting sphere with inner radius and outer radius The hollow
sphere has no net charge. (a) Derive expressions for the electric-
field magnitude in terms of the distance from the center for the
regions and (b) Graph the
magnitude of the electric field as a function of from to

(c) What is the charge on the inner surface of the hollow
sphere? (d) On the outer surface? (e) Represent the charge of the
small sphere by four plus signs. Sketch the field lines of the system
within a spherical volume of radius 2
22.45 . A solid conducting sphere with radius that carries posi-
tive charge is concentric with a very thin insulating shell of radius

that also carries charge The charge is distributed uniformly
over the insulating shell. (a) Find the electric field (magnitude and
direction) in each of the regions and

(b) Graph the electric-field magnitude as a function of 
22.46 . A conducting spherical shell with inner
radius and outer radius has a positive point
charge located at its center. The total charge on
the shell is and it is insulated from its sur-
roundings (Fig. P22.46). (a) Derive expressions
for the electric-field magnitude in terms of the
distance from the center for the regions

and (b) What is the surface
charge density on the inner surface of the conducting shell? 
(c) What is the surface charge density on the outer surface of the con-
ducting shell? (d) Sketch the electric field lines and the location of all
charges. (e) Graph the electric-field magnitude as a function of 
22.47 . Concentric Spherical Shells. A
small conducting spherical shell with inner
radius and outer radius is concentric with
a larger conducting spherical shell with inner
radius and outer radius (Fig. P22.47).
The inner shell has total charge and
the outer shell has charge (a) Calcu-
late the electric field (magnitude and direc-
tion) in terms of and the distance from
the common center of the two shells for 
(i) (ii) (iii) (iv) 
(v) Show your results in a graph of the radial component of

as a function of (b) What is the total charge on the (i) inner sur-
face of the small shell; (ii) outer surface of the small shell; (iii) inner
surface of the large shell; (iv) outer surface of the large shell?
22.48 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.49 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.50 . A solid conducting sphere with radius carries a positive
total charge The sphere is surrounded by an insulating shell
with inner radius and outer radius The insulating shell has a
uniform charge density (a) Find the value of so that the net
charge of the entire system is zero. (b) If has the value found in
part (a), find the electric field (magnitude and direction) in each of
the regions and Show your
results in a graph of the radial component of as a function of 
(c) As a general rule, the electric field is discontinuous only at
locations where there is a thin sheet of charge. Explain how your
results in part (b) agree with this rule.
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22.51 . Negative charge is distributed uniformly over the
surface of a thin spherical insulating shell with radius Calculate
the force (magnitude and direction) that the shell exerts on a positive
point charge located (a) a distance from the center of 
the shell (outside the shell) and (b) a distance from the center
of the shell (inside the shell).
22.52 .. (a) How many excess electrons must be distributed uni-
formly within the volume of an isolated plastic sphere 30.0 cm
in diameter to produce an electric field of just outside
the surface of the sphere? (b) What is the electric field at a point
10.0 cm outside the surface of the sphere?
22.53 ... CALC An insulating hollow sphere has inner radius a
and outer radius b. Within the insulating material the volume
charge density is given by , where is a positive con-
stant. (a) In terms of and a, what is the magnitude of the electric
field at a distance r from the center of the shell, where ?
(b) A point charge q is placed at the center of the hollow space, at

. In terms of and a, what value must q have (sign and mag-
nitude) in order for the electric field to be constant in the region

, and what then is the value of the constant field in this
region?
22.54 .. CP Thomson’s Model of the Atom. In the early years
of the 20th century, a leading model of the structure of the atom
was that of the English physicist J. J. Thomson (the discoverer of
the electron). In Thomson’s model, an atom consisted of a sphere
of positively charged material in which were embedded negatively
charged electrons, like chocolate chips in a ball of cookie dough.
Consider such an atom consisting of one electron with mass and
charge which may be regarded as a point charge, and a uni-
formly charged sphere of charge and radius (a) Explain why
the equilibrium position of the electron is at the center of the
nucleus. (b) In Thomson’s model, it was assumed that the positive
material provided little or no resistance to the motion of the elec-
tron. If the electron is displaced from equilibrium by a distance less
than show that the resulting motion of the electron will be simple
harmonic, and calculate the frequency of oscillation. (Hint: Review
the definition of simple harmonic motion in Section 14.2. If it can
be shown that the net force on the electron is of this form, then it
follows that the motion is simple harmonic. Conversely, if the net
force on the electron does not follow this form, the motion is not
simple harmonic.) (c) By Thomson’s time, it was known that
excited atoms emit light waves of only certain frequencies. In his
model, the frequency of emitted light is the same as the oscillation
frequency of the electron or electrons in the atom. What would the
radius of a Thomson-model atom have to be for it to produce red light
of frequency Compare your answer to the radii of
real atoms, which are of the order of (see Appendix F for
data about the electron). (d) If the electron were displaced from
equilibrium by a distance greater than would the electron oscil-
late? Would its motion be simple harmonic? Explain your reason-
ing. (Historical note: In 1910, the atomic nucleus was discovered,
proving the Thomson model to be incorrect. An atom’s positive
charge is not spread over its volume as
Thomson supposed, but is concentrated in
the tiny nucleus of radius to

)
22.55 . Thomson’s Model of the Atom,
Continued. Using Thomson’s (outdated)
model of the atom described in Problem
22.54, consider an atom consisting of two
electrons, each of charge embedded in
a sphere of charge and radius InR.+2e
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS ! b
S

.
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d
d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
S
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS ! b
S
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d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS ! b
S
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d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
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same as if all the charge were on the axis. Compare your result to the
result for a line of charge in Example 22.6 (Section 22.4).
22.32 . Two very large, nonconduct-
ing plastic sheets, each 10.0 cm thick,
carry uniform charge densities 

and on their surfaces, as
shown in Fig. E22.32. These surface
charge densities have the values 

and
Use Gauss’s law to find the

magnitude and direction of the electric
field at the following points, far from
the edges of these sheets: (a) point 5.00 cm from the left face of
the left-hand sheet; (b) point 1.25 cm from the inner surface of the
right-hand sheet; (c) point in the middle of the right-hand sheet.
22.33 . A negative charge is placed inside the cavity of a
hollow metal solid. The outside of the solid is grounded by con-
necting a conducting wire between it and the earth. (a) Is there
any excess charge induced on the inner surface of the piece of
metal? If so, find its sign and magnitude. (b) Is there any excess
charge on the outside of the piece of metal? Why or why not? 
(c) Is there an electric field in the cavity? Explain. (d) Is there an
electric field within the metal? Why or why not? Is there an elec-
tric field outside the piece of metal? Explain why or why not. 
(e) Would someone outside the solid measure an electric field
due to the charge Is it reasonable to say that the grounded
conductor has shielded the region from the effects of the charge

In principle, could the same thing be done for gravity? Why
or why not?

PROBLEMS
22.34 .. A cube has sides of length It is placed
with one corner at the origin as shown in Fig. E22.6. The electric
field is not uniform but is given by 

(a) Find the electric flux through each of the six
cube faces and (b) Find the total electric
charge inside the cube.
22.35 . The electric field in 
Fig. P22.35 is everywhere parallel
to the -axis, so the components 
and are zero. The -component
of the field depends on but not
on and At points in the -plane
(where ), 
(a) What is the electric flux through
surface I in Fig. P22.35? (b) What
is the electric flux through sur-
face II? (c) The volume shown in
the figure is a small section of a
very large insulating slab 1.0 m thick. If there is a total charge of

within the volume shown, what are the magnitude and
direction of at the face opposite surface I? (d) Is the electric field
produced only by charges within the slab, or is the field also due to
charges outside the slab? How can you tell?
22.36 .. CALC In a region of space there is an electric field that
is in the z-direction and that has magnitude .
Find the flux for this field through a square in the xy-plane at 
and with side length 0.350 m. One side of the square is along the 

x-axis and another side is along the y-axis.++
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22.37 .. The electric field at
one face of a parallelepiped is uni-
form over the entire face and is
directed out of the face. At the oppo-
site face, the electric field is also
uniform over the entire face and is
directed into that face (Fig. P22.37).
The two faces in question are
inclined at from the horizontal,
while and are both horizon-
tal; has a magnitude of and has a magni-
tude of (a) Assuming that no other electric field
lines cross the surfaces of the parallelepiped, determine the net
charge contained within. (b) Is the electric field produced only by
the charges within the parallelepiped, or is the field also due to
charges outside the parallelepiped? How can you tell?
22.38 . A long line carrying a uniform linear charge density

runs parallel to and 10.0 cm from the surface of a
large, flat plastic sheet that has a uniform surface charge density of

on one side. Find the location of all points where an
particle would feel no force due to this arrangement of charged

objects.
22.39 . The Coaxial Cable. A long coaxial cable consists of an
inner cylindrical conductor with radius and an outer coaxial
cylinder with inner radius and outer radius The outer cylinder
is mounted on insulating supports and has no net charge. The inner
cylinder has a uniform positive charge per unit length Calculate
the electric field (a) at any point between the cylinders a distance 
from the axis and (b) at any point outside the outer cylinder. 
(c) Graph the magnitude of the electric field as a function of the
distance from the axis of the cable, from to 
(d) Find the charge per unit length on the inner surface and on the
outer surface of the outer cylinder.
22.40 . A very long conducting tube (hollow cylinder) has inner
radius and outer radius It carries charge per unit length 
where is a positive constant with units of A line of charge
lies along the axis of the tube. The line of charge has charge per
unit length (a) Calculate the electric field in terms of and 
the distance from the axis of the tube for (i) (ii)

(iii) Show your results in a graph of as a
function of (b) What is the charge per unit length on (i) the inner
surface of the tube and (ii) the outer surface of the tube?
22.41 . Repeat Problem 22.40, but now let the conducting tube
have charge per unit length As in Problem 22.40, the line of
charge has charge per unit length 
22.42 . A very long, solid cylinder with radius has positive
charge uniformly distributed throughout it, with charge per unit
volume (a) Derive the expression for the electric field inside the
volume at a distance from the axis of the cylinder in terms of 
the charge density (b) What is the electric field at a point outside
the volume in terms of the charge
per unit length in the cylinder?
(c) Compare the answers to parts
(a) and (b) for (d) Graph
the electric-field magnitude as a
function of from to

22.43 .. CP A small sphere with
a mass of and
carrying a charge of 

hangs from a thread near
a very large, charged insulating
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21.67.  (a) IDENTIFY:   Use Coulomb’s law to calculate the force exerted by each Q on q and add these forces as 
vectors to find the resultant force. Make the approximation x a�  and compare the net force to F kx= −  
to deduce k and then (1/2 ) /f k mπ= .  
SET UP:   The placement of the charges is shown in Figure 21.67a. 

 

 
Figure 21. 67a 

 

EXECUTE:   Find the net force on q. 
 

 1 2 andx x xF F F= + 1 1 2 2,x xF F F F= +  = −  

Figure 21. 67b   

 

1 22 2
0 0

1 1,
4 4( ) ( )

qQ qQF F
a x a xπ π

=  =
+ −! !

 

1 2 2 2
0

1 1
4 ( ) ( )x
qQF F F

a x a xπ
⎡ ⎤

= − = −⎢ ⎥
+ −⎣ ⎦!

 

2 2

2
0

1 1
4x
qQ x xF

a aaπ

− −⎡ ⎤⎛ ⎞ ⎛ ⎞= + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦!

 

Since x a�  we can use the binomial expansion for 2 2(1 / )  and (1 / )x a x a− −− +  and keep only the first two 

terms: (1 ) 1nz nz+ ≈ + .  For 2(1 / ) ,x a −−  /z x a= −  and 2n = −  so 2(1 / ) 1 2 /x a x a−− ≈ + .  For 2(1 / ) ,x a −+  

/z x a= +  and 2n = −  so 2(1 / ) 1 2 /x a x a−+ ≈ − .  Then 2 3
0 0

2 21 1
4
qQ x x qQF x

a aa aπ π
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − − + = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

2
! !

 

For simple harmonic motion F kx= −  and the frequency of oscillation is (1/2 ) /f k mπ= .  The net force 

here is of this form, with 3
0/k qQ aπ= .!  Thus 3

0

1
2

qQf
maπ π

= .
!

 

(b) The forces and their components are shown in Figure 21.67c. 
 

 
Figure 21.67c 

 

The x-components of the forces exerted by the two charges cancel, the y-components add, and the net force 
is in the -directiony+  when 0y > and in the -directiony−  when 0.y <  The charge moves away from the 
origin on the y-axis and never returns. 
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EVALUATE:   The directions of the forces and of the net force depend on where q is located relative to the 
other two charges. In part (a), 0 at 0F x= = and when the charge q is displaced in the -x+ or -directionx−  
the net force is a restoring force, directed to return to 0q x = . The charge oscillates back and forth, similar 
to a mass on a spring. 

 21.68. IDENTIFY:   Apply 0xF∑ = and 0yF∑ =  to one of the spheres. 

SET UP:   The free-body diagram is sketched in Figure 21.68. eF is the repulsive Coulomb force between 
the spheres. For small ,θ  sin tanθ θ.≈  

EXECUTE:   esin 0xF T Fθ∑ = − = and cos 0.yF T mgθ∑ = − =  So 
2

e 2
sin .

cos
mg kqF

d
θ

θ
= =  But 

tan sin ,
2
d
L

θ θ≈ =  so 
2

3 2kq Ld
mg

= and 
1/32

0
.

2
q Ld
mgπ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠!

 

EVALUATE:   d increases when q increases. 
 

 
Figure 21.68 

 

21.69.  IDENTIFY:   Use Coulomb’s law for the force that one sphere exerts on the other and apply the 1st 
condition of equilibrium to one of the spheres. 
(a) SET UP:   The placement of the spheres is sketched in Figure 21.69a. 

 

 
Figure 21.69a 

 

The free-body diagrams for each sphere are given in Figure 21.69b. 
 

 
Figure 21.69b 

 

cF  is the repulsive Coulomb force exerted by one sphere on the other. 
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21.73.  IDENTIFY:   The electric field exerts a horizontal force away from the wall on the ball. When the ball hangs 
at rest, the forces on it (gravity, the tension in the string, and the electric force due to the field) add to zero. 

SET UP:   The ball is in equilibrium, so for it 0xF∑ =  and 0.yF∑ =  The force diagram for the ball is 

given in Figure 21.73. EF  is the force exerted by the electric field. .q=F E
G G

 Since the electric field is 

horizontal, E
G
F  is horizontal. Use the coordinates shown in the figure. The tension in the string has been 

replaced by its x- and y-components. 
 

 
Figure 21.73 

 

EXECUTE:   0yF∑ =  gives 0yT mg .− =  cos 0T mgθ − =  and 
cos

mgT .
θ

=  0xF∑ =  gives 0E xF T .− =  

sin 0EF T .θ− =  Combing the equations and solving for EF  gives 

3 2 2sin tan (12 3 10  kg)(9 80 m/s )(tan17 4 ) 3 78 10  N.
cos

E
mgF mg . . . .θ θ

θ
− −⎛ ⎞

= = = × ° = ×⎜ ⎟
⎝ ⎠

EF q E=  so 

2
4

6

3 78 10  N
3 41 10  N/C.

1 11 10  C

EF .E .
q .

−

−
×= = = ×
×

 Since q is negative and E
G
F  is to the right, 

G
E  is to the left in the figure. 

EVALUATE:   The larger the electric field E the greater the angle the string makes with the wall. 
21.74.  IDENTIFY:   We can find the force on the charged particle due to the electric field. Then we can use 

Newton’s second law to find its acceleration and the constant-acceleration kinematics formulas to find the 
components of the distance it moves.  

SET UP:   The x-component of the electric force on a charged particle is and .x x x xF qE F ma= =  For 

constant acceleration in the x-direction, 2
0 0

1
.

2
x xx x v t a t− = +  Similar equations apply in the y-direction. 

EXECUTE:   The only nonzero acceleration is in the y-direction, so 0xa = and 

6 3(9.00 10  C)(895 N/C) 8.055 10  N.y yF qE − −= = × = ×
3

4 2
6

8.055 10  N
2.014 10  m/s .

0.400 10  kg

y
y
F

a
m

−

−
×= = = ×
×

 

2 3
0 0

1
( 125 m/s)(7.00 10  s) 0.875 m.

2
x xx x v t a t −− = + = − × = −

2 4 2 3 2
0 0

1 1
(2.014 10  m/s )(7.00 10  s) 0.4934 m.

2 2
y yy y v t a t −− = + = × × = 2 2 1.00 m.r x y= + =  

EVALUATE:   The 1.00 m is the distance of the particle from the origin at the end of 7.00 ms, but it is not 
the distance the particle has traveled in 7.00 ms. 

21.75.  IDENTIFY:   For a point charge, 
2

.
q

E k
r

=  For the net electric field to be zero, 1

G
E and 2

G
E  must have equal 

magnitudes and opposite directions. 

SET UP:   Let 1 0 500 nCq = + .  and 2 8 00 nCq = + . .  
G
E  is toward a negative charge and away from a 

positive charge. 
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(b) For ,x R�  
2 2

2 2
2 2 2

0 0 0 0
[1 (1 /2 )] .

2 2 2 4 4
R R QE R x
x x x

σ σ σπ
π π

= − − + ⋅ ⋅ ⋅ ≈ = =
! ! ! !

 

(c) The electric field of (a) is less than that of the point charge (0.90 N/C) since the first correction term to 
the point charge result is negative. 

(d) For 0.200 m,x =  the percent difference is (1.58 1.56) 0.01 1%.
1.56

− = =  For 0.100 m,x =  

disk 6.00 N/CE =  and point 6.30 N/C,E =  so the percent difference is (6.30 6.00) 0.047 5%.
6.30

− = ≈  

EVALUATE:   The field of a disk becomes closer to the field of a point charge as the distance from the disk 
increases. At 10.0 cm,x = / 25%R x =  and the percent difference between the field of the disk and the field 
of a point charge is 5%. 

21.94.  IDENTIFY:   When the forces on it balance, the acceleration of a molecule is zero and it moves with 
constant velocity. 
SET UP:   The electrical force is EF qE= and the viscous drag force is DF = KRv.  

EXECUTE:   (a) DF F=  so qE KRv=  and .q Kv
R E

=  

(b) The speed is constant and has magnitude Eqv
KR

= . Therefore .Eq ET qx vt T
KR K R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(c) ,ET qx
K R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where ET
K

 is constant. 
2 1

2q q
R R

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
3 1

3 .q q
R R

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 1
2 1

2 2 ;ET q ET qx x
K R K R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 3 1
3 1

3 3 .ET q ET qx x
K R K R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE:   The distance a particle moves is not proportional to its charge, but rather is proportional to 
the ratio of its charge to its radius (size). 

 21.95. IDENTIFY:   Find the resultant electric field due to the two point charges. Then use q=
G G
F E  to calculate the 

force on the point charge. 
SET UP:   Use the results of Problems 21.90 and 21.89. 
EXECUTE:   (a) The y-components of the electric field cancel, and the x-component from both charges, as 

given in Problem 21.90, is 2 2 1/2
0

1 2 1 1 .
4 ( )x

QE
a y y aπ

⎛ ⎞−= −⎜ ⎟⎜ ⎟+⎝ ⎠!
 Therefore, 

2 2 1/2
0

1 2 1 1 ˆ.
4 ( )

Qq
a y y aπ

⎛ ⎞−= −⎜ ⎟⎜ ⎟+⎝ ⎠
F i
G

!
 If ,y a�  2 2

3
0 0

1 2 1ˆ ˆ(1 (1 /2 )) .
4 4

Qq Qqaa y
ay yπ π

−≈ − − + ⋅ ⋅ ⋅ = −F i i
G

! !
 

(b) If the point charge is now on the x-axis the two halves of the charge distribution provide different 

forces, though still along the x-axis, as given in Problem 21.89: 
0

1 1 1 ˆ
4

Qqq
a x a xπ+ +
⎛ ⎞= = −⎜ ⎟−⎝ ⎠

F E i
G G

!
 

and
0

1 1 1 ˆ.
4

Qqq
a x x aπ− −
⎛ ⎞= = − −⎜ ⎟+⎝ ⎠

F E i
G G

!
 Therefore, 

0

1 1 2 1 ˆ.
4

Qq
a x a x x aπ+ −
⎛ ⎞= + = − +⎜ ⎟− +⎝ ⎠

F F F i
G G G

!
 For 

,x a�  
2 2

2 2 3
0 0

1 1 2ˆ ˆ1 2 1 .
4 4

Qq a a a a Qqa
ax x xx x xπ π

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟≈ + + + . . . − + − + − . . . =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

F i i
G

! !
 

EVALUATE:   If the charge distributed along the x-axis were all positive or all negative, the force would be 
proportional to 21/y  in part (a) and to 21/x in part (b), when y or x is very large. 

 21.96. IDENTIFY:   Apply 0xF∑ = and 0yF∑ = to the sphere, with x horizontal and y vertical. 

SET UP:   The free-body diagram for the sphere is given in Figure 21.96. The electric field 
G
E of the sheet 

is directed away from the sheet and has magnitude 
02

E σ=
!

(Eq. 21.12). 
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 22.46. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE:   (a) For  ,r a<  2
0

1 ,
4

QE
rπ

=
!

 radially outward, since the charge enclosed is Q, the charge of 

the point charge. For ,a r b< <  0E =  since these points are within the conducting material. For ,r b>  

2
0

1 2 ,
4

QE
rπ

=
!

 radially inward, since the total enclosed charge is 2 .Q−  

(b) Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero net charge, the total charge on 

the inner surface is Q−  and the surface charge density on the inner surface is 2 .
4
Q
a

σ
π

= −  

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q−  on 

the outer surface. The surface charge density on the outer surface is 2
2 .

4
Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.46a. 
(e) The graph of E versus r is sketched in Figure 22.46b. 

 

     

Figure 22.46 
 

EVALUATE:   For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is 
due to the charge 2Q−  that is on the outer surface of the shell. 

 22.47. IDENTIFY:   Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at 
the surface of the Gaussian sphere. 
(a) SET UP:   (i) :r a<  The Gaussian surface is sketched in Figure 22.47a. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed 

encl

0
E

QΦ =
!

 says  

2(4 ) 0 and 0.E r Eπ = =  
 

Figure 22.47a   
 

(ii) :a r b< <  Points in this region are in the conductor of the small shell, so 0.E =  
(iii) SET UP:   :b r c< <  The Gaussian surface is sketched in Figure 22.47b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
! ! !

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

! !
 

2
0

6 .
4
qE
rπ

=
!

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
! ! !

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

! !
 

2
0

6 .
4
qE
rπ

=
!

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
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(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in part 
(i) that there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius 

.c r d< <  The surface lies within the conductor of the large shell, where 0,E =  so 0.EΦ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses the 2q+  on the small shell so there must be charge 2q−  on 
the inner surface of the large shell to make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in part 
(iii) that the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE:   The electric field lines for b r c< <  originate from the surface charge on the outer surface of 
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface 
charges have equal magnitude and opposite sign. The electric field lines for r d>  originate from the 
surface charge on the outer surface of the outer sphere. 

 22.48. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the 

points are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
!

outward, since the charge 

enclosed is 2q+ .  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 
, 0,r d E> =  since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.48. 

(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 2 ,q−  the charge on this surface is zero. 
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 

Figure 22.48 
 

 22.49. IDENTIFY:   Apply Gauss’s law 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) , 0,a r b E< < =  since the points 

are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
!

 outward, since the charge enclosed  

is 2 .q+  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 

2
0

1 2, ,
4

qr d E
rπ

> =
!

 inward, since the charge enclosed is 2 .q−  The graph of the radial component of the 

electric field versus r is sketched in Figure 22.49, where we use the convention that outward field is 
positive and inward field is negative. 
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 22.36. IDENTIFY:   The electric field is perpendicular to the square but varies in magnitude over the surface of the 
square, so we will need to integrate to find the flux. 
SET UP and EXECUTE:   ˆ(964 N/(C m)) .x= ⋅E k

G
 Consider a thin rectangular slice parallel to the y-axis and 

at coordinate x with width dx. ˆ( ) .d Ldx=A k
G

 (964 N/(C m)) .Ed d LxdxΦ = ⋅ = ⋅E A
GG

 
2

0 0
(964 N/(C m)) (964 N/(C m)) .

2E E
L L Ld L xdx L

⎛ ⎞
Φ = Φ = ⋅ = ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

3 21 (964 N/(C m))(0 350 m) 20 7 N m /C.
2EΦ = ⋅ . = . ⋅  

EVALUATE:   To set up the integral, we take rectangular slices parallel to the y-axis (and not the x-axis) 
because the electric field is constant over such a slice. It would not be constant over a slice parallel to the x-axis. 

 22.37. (a) IDENTIFY:   Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find 
the net charge within. Flux out of the surface is positive and flux into the surface is negative. 
SET UP:   1E

G
 gives flux out of the surface. See Figure 22.37a. 

 

 EXECUTE:   1 1E A⊥Φ = +  
3 2(0.0600 m)(0.0500 m) 3.00 10  mA −= = ×  

4
1 1 cos60 (2.50 10  N/C)cos60E E⊥ = ° = × °  

4
1 1.25 10  N/CE ⊥ = ×  

Figure 22.37a   
 

1

4 3 2 2
1 (1.25 10  N/C)(3.00 10  m ) 37.5 N m /CE E A −
⊥Φ = + = + × × = ⋅  

SET UP:   2E
G

 gives flux into the surface. See Figure 22.37b. 
 

 EXECUTE:   2 2E A⊥Φ = −  
3 2(0.0600 m)(0.0500 m) 3.00 10 mA −= = ×  

4
2 2 cos60 (7.00 10  N/C)cos60E E⊥ = ° = × °  

4
2 3.50 10  N/CE ⊥ = ×  

Figure 22.37b   
 

2

4 3 2 2
2 (3.50 10  N/C)(3.00 10  m ) 105.0 N m /CE E A −

⊥Φ = − = − × × = − ⋅  

The net flux is 
1 2

2 2 237.5 N m /C 105.0 N m /C 67.5 N m /C.E E EΦ = Φ + Φ = + ⋅ − ⋅ = − ⋅  

The net flux is negative (inward), so the net charge enclosed is negative. 

Apply Gauss’s law: encl

0
E

QΦ =
!

 

2 12 2 2 10
encl 0 ( 67.5 N m /C)(8.854 10  C /N m ) 5.98 10  C.EQ − −= Φ = − ⋅ × ⋅ = − ×!  

(b) EVALUATE:   If there were no charge within the parallelpiped the net flux would be zero. This is not the 
case, so there is charge inside. The electric field lines that pass out through the surface of the parallelpiped 
must terminate on charges, so there also must be charges outside the parallelpiped. 

 22.38. IDENTIFY:   The α  particle feels no force where the net electric field due to the two distributions of charge 
is zero. 
SET UP:   The fields can cancel only in the regions A and B shown in Figure 22.38, because only in these 
two regions are the two fields in opposite directions. 
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 22.59. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   In spherical polar coordinates 2 ˆsin .d r d dθ θ φ=  A r

G
 sin 4 .d dθ θ φ π=∫v  

EXECUTE:   (a) 
2

2
sin 4 .g

r d dd Gm Gm
r
θ θ φ πΦ = ⋅ = − = −∫ ∫g A

GGv v  

(b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux passing through the 
surface. Thus the formula above holds for any situation where m  is the mass enclosed by the Gaussian 
surface. 
That is, encl4 .g d GMπΦ = ⋅ = −∫ g A

GGv  

EVALUATE:   The minus sign in the expression for the flux signifies that the flux is directed inward. 
 22.60. IDENTIFY:   Apply encl4 .d GMπ⋅ = −∫ g A

GGv  

SET UP:   Use a Gaussian surface that is a sphere of radius r, concentric with the mass distribution. Let 

gΦ denote d⋅∫ g A
GGv  

EXECUTE:   (a) Use a Gaussian sphere with radius ,r R>  where R is the radius of the mass distribution. 
g is constant on this surface and the flux is inward. The enclosed mass is M. Therefore, 

24 4g g r GMπ πΦ = − = −  and 2 ,GMg
r

=  which is the same as for a point mass. 

(b) For a Gaussian sphere of radius ,r R<  where R is the radius of the shell, encl 0, so 0.M g= =  
(c) Use a Gaussian sphere of radius ,r R<  where R is the radius of the planet. Then 

3 3 3
encl

4 / .
3

M r Mr Rρ π⎛ ⎞= =⎜ ⎟
⎝ ⎠

 This gives 
3

2
encl 34 4 4g

rg r GM G M
R

π π π
⎛ ⎞

Φ = − = − = −  ⎜ ⎟⎜ ⎟
⎝ ⎠

 and 3 ,GMrg
R

=  

which is linear in r.  
EVALUATE:   The spherically symmetric distribution of mass results in an acceleration due to gravity gG  
that is radical and that depends only on r, the distance from the center of the mass distribution. 

 22.61. (a) IDENTIFY:   Use ( )E r
G G  from Example (22.9) (inside the sphere) and relate the position vector of a point 

inside the sphere measured from the origin to that measured from the center of the sphere. 
SET UP:   For an insulating sphere of uniform charge density ρ  and centered at the origin, the electric 

field inside the sphere is given by 3
0/4E Qr Rπ= ′ !  (Example 22.9), where ′rG  is the vector from the center 

of the sphere to the point where E is calculated. 
But 33 /4Q Rρ π=  so this may be written as 0/3 .E rρ= !  And E

G
 is radially outward, in the direction of 

0, so /3 .ρ′ = ′r E r
GG G

!  

For a sphere whose center is located by vector ,b
G

 a point inside the sphere and located by rG  is located by 
the vector ′ = −r r b

GG G  relative to the center of the sphere, as shown in Figure 22.61. 
 

 
EXECUTE:   Thus 

0

( )
3

ρ −= r bE
GGG

!
 

Figure 22.61   
 

EVALUATE:   When 0b =  this reduces to the result of Example 22.9. When ,=r b
GG  this gives 0,E =  

which is correct since we know that 0E =  at the center of the sphere. 22-28   Chapter 22 
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(b) IDENTIFY:   The charge distribution can be represented as a uniform sphere with charge density ρ  and 
centered at the origin added to a uniform sphere with charge density ρ−  and centered at .=r b

GG  
SET UP:   uniform hole uniform,  where = +E E E E

G G G G
 is the field of a uniformly charged sphere with charge 

density ρ  and holeE
G

 is the field of a sphere located at the hole and with charge density .ρ−  (Within the 
spherical hole the net charge density is 0.ρ ρ+ − = ) 

EXECUTE:   uniform
0

,
3
ρ= rE
GG

!
 where rG  is a vector from the center of the sphere. 

hole
0

( ) ,
3

ρ− −= r bE
GGG

!
 at points inside the hole. 

Then 
0 0 0

( ) .
3 3 3
ρ ρ ρ⎛ ⎞− −= + =⎜ ⎟

⎝ ⎠

r r b bE
G GG GG

! ! !
 

EVALUATE:   E
G

 is independent of rG  so is uniform inside the hole. The direction of E
G

 inside the hole is in 
the direction of the vector ,b

G
 the direction from the center of the insulating sphere to the center of the hole. 

 22.62. IDENTIFY:   We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP:   Let rG  locate a point within the hole, relative to the axis of the cylinder and let ′rG  locate this 
point relative to the axis of the hole. Let b

G
 locate the axis of the hole relative to the axis of the cylinder. As 

shown in Figure 22.62, .′ = −r r b
GG G  Problem 22.42 shows that at points within a long insulating cylinder, 

0
.

2
ρ= rE
GG

!
 

EXECUTE:   off axis
0 0

( ) .
2 2
ρ ρ

−
′ −= =r r bE

GG GG
! !

 hole cylinder off axis
0 0 0

( ) .
2 2 2
ρ ρ ρ

−
−= − = − =r r b bE E E
G GG GG G G

! ! !
 

Note that E
G

 is uniform. 
EVALUATE:   If the hole is coaxial with the cylinder, 0b =  and hole 0.E =  

 

 

Figure 22.62 
 

 22.63. IDENTIFY:   The electric field at each point is the vector sum of the fields of the two charge distributions. 

SET UP:   Inside a sphere of uniform positive charge, 
0

.
3
rE ρ=

!
 

3 3 34
03

3  so ,
4 4

Q Q QrE
R R R

ρ
π π π

= = =
!

 directed away from the center of the sphere. Outside a sphere of 

uniform positive charge, 2
0

,
4
QE
rπ

=
!

 directed away from the center of the sphere. 
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(b) IDENTIFY:   The charge distribution can be represented as a uniform sphere with charge density ρ  and 
centered at the origin added to a uniform sphere with charge density ρ−  and centered at .=r b

GG  
SET UP:   uniform hole uniform,  where = +E E E E

G G G G
 is the field of a uniformly charged sphere with charge 

density ρ  and holeE
G

 is the field of a sphere located at the hole and with charge density .ρ−  (Within the 
spherical hole the net charge density is 0.ρ ρ+ − = ) 

EXECUTE:   uniform
0

,
3
ρ= rE
GG

!
 where rG  is a vector from the center of the sphere. 

hole
0

( ) ,
3

ρ− −= r bE
GGG

!
 at points inside the hole. 

Then 
0 0 0

( ) .
3 3 3
ρ ρ ρ⎛ ⎞− −= + =⎜ ⎟

⎝ ⎠

r r b bE
G GG GG

! ! !
 

EVALUATE:   E
G

 is independent of rG  so is uniform inside the hole. The direction of E
G

 inside the hole is in 
the direction of the vector ,b

G
 the direction from the center of the insulating sphere to the center of the hole. 

 22.62. IDENTIFY:   We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP:   Let rG  locate a point within the hole, relative to the axis of the cylinder and let ′rG  locate this 
point relative to the axis of the hole. Let b

G
 locate the axis of the hole relative to the axis of the cylinder. As 

shown in Figure 22.62, .′ = −r r b
GG G  Problem 22.42 shows that at points within a long insulating cylinder, 

0
.

2
ρ= rE
GG

!
 

EXECUTE:   off axis
0 0

( ) .
2 2
ρ ρ

−
′ −= =r r bE

GG GG
! !

 hole cylinder off axis
0 0 0

( ) .
2 2 2
ρ ρ ρ

−
−= − = − =r r b bE E E
G GG GG G G

! ! !
 

Note that E
G

 is uniform. 
EVALUATE:   If the hole is coaxial with the cylinder, 0b =  and hole 0.E =  

 

 

Figure 22.62 
 

 22.63. IDENTIFY:   The electric field at each point is the vector sum of the fields of the two charge distributions. 

SET UP:   Inside a sphere of uniform positive charge, 
0

.
3
rE ρ=

!
 

3 3 34
03

3  so ,
4 4

Q Q QrE
R R R

ρ
π π π

= = =
!

 directed away from the center of the sphere. Outside a sphere of 

uniform positive charge, 2
0

,
4
QE
rπ

=
!

 directed away from the center of the sphere. 


