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1 Electromagnetic Induction 

 

1.1 Lorentz force on moving charge 

 

Point charge moving at velocity v


, BvqF


   (1) 

For a section of electric current I in a thin wire ld


is lId


, the force is BlIdFd


   (2) 

 

Electromotive force sf


– any force on a charged particle other than that due to other charges. 

Electromotance ldf

b

a

s


  . Conventionally called emf, but it is not really a force. The 

Chinese translation 電動勢, is more appropriate.  

 

The emf in a section of wire due to B-field is ldBv

b

a


  )(   (3) 

 

Example-1 

 

A rod of length L is sliding down a slope in a uniform B-

field at speed v. Find emf in the rod. 

 

Solution: 

 

The amplitude of )( Bv


  is vBcosθ and its direction is 

pointing straight out of the paper plane, parallel to the length 

of the rod. So emf = LvBcosθ 

 

Example-1A 

 

The same rod is spinning at angular speed ω in the B-field 

around one of its end. The angular momentum is parallel to 

the B-field. Find emf between the two ends of the rod. 

 

Solution: 

 

Take a small length of the rod dr at distance r from the fixed end. The speed of it is ωr so its 

emf is Bωrdr. Total emf along the whole length is 2

0
2

1
LBrdrB

L

     ans. 

 

1.2 Faraday’s law – A changing magnetic field induces an electric field.  

Their relation is given by: 
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where ‘S’ is the surface enclosed by the closed line ‘l’. 
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In differential form: 
t
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  (5) 

The total electric field now consists of two ‘kind’s of electric fields. One is due to charges, 

and the other is due to change B-field. The direction of the induced E-field is such that it 

would generate an electric current to counter the change of the B-field. 

 

It can be shown that when a wire loop is moving relative to the B-field, Eqs. (3) and (4) are 

equivalent. However, Eq. (4) is more general, and works even when there is no relative 

motion, or the wire loop can be at the location where there is no B-field. 

 

Example-2 

The current in a long solenoid (N turns per unit length) is 

decreasing linearly with time t, I = I0 - kt. Find the induced E-field. 

 

Solution 

 

By symmetry argument, we can see that the B-field is along the axis 

of the solenoid. Take an Ampere’s loop-1 outside the solenoid, we 

find that the B-field is constant. But far away the B-field must be 

zero, so the B-field outside is zero. Now take loop-2, BL =0NIL, so 

B = 0N(I0 – kt)  

 

Note that outside the solenoid there is no B-field, but the changing 

B-field induces an E-field so that if the circular wire carries charge, 

it will spin. Note also that Eq. (4) is of the same in mathematical 

form as Ampere’s law, when 
t

B








 is viewed as ‘electric current’ 

and the induced E-field as the ‘magnetic field’. Applying Eq. (4), 

the left hand side = 2πrE, where r is the radius of the loop, and the 

right hand side = 0NkA, where A is the cross section area of the 

solenoid. So 
r
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0 . Ans. 

 

1.3 Self and mutual inductance (of coils) 

 

Consider a coil (a loop of wire) carrying current I. If I changes with time, its magnetic field, 

and therefore the magnetic flux Φ through the coil (See Eq. (4)) will change, inducing an emf. 

As the field (hence flux) is proportional to I, we can define a quantity L which depends only 

on the geometrics of the coil, called self-inductance, such that  

 

Φ = LI   (6),  

 

because 
dt

dI
L

dt

d



   (6A). 

 

The mutual inductance between two coils, M12 and M21, are similarly defined. 

 

Φ2 = M12I1, and Φ1 = M21I2.  (Φ2 is the magnetic flux through coil-2 due to the current I1 in 

coil-1).  
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It can be shown that M12 = M21, and they depend only on the coils geometrics.  

Example-3 

 

A very small coil of radius a is placed at distance z above a large coil of 

radius b along its axis, as shown in the figure. If there is current I 

flowing in the small loop, find the magnetic flux through the big loop. 

 

Solution: 

 

The small loop can be treated as a magnetic dipole and its magnetic 

field can be expressed exactly. The flux through the big loop can then 

be integrated out. But there is a simpler approach by using M12 = M21. 

So let instead the same current I flow in the large loop, and find the 

magnetic field at the center of the small loop, and treat such B-field as 

uniform over the entire loop. 

 

Take a diagonal pair of small sections of wire on the big loop, as shown, it is easy to see that 

the combined B-field is pointing along the vertical direction, and the amplitude is 
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Everything in the expression is constant so the integral over dl is l = 2b.  

So 
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. Ans. 

 

Example-4 

The magnetic flux through a coil of resistance R changes from Φ1 to Φ2, Find the total charge 

passing through any cross section of the wire. 

 

Solution: 

 

From Eq. (6) and (6A) 
dt

dQ
RRI

dt

d



  , so Q = (Φ2 - Φ1)/R. ans. 

 

2 Maxwell’s Equations 

 

2.1 Maxwell’s displacement current 

 

What will the B-field be if J


is changing with time? So far we assume that the current I in 

wires change with time but I is still the same along the wire so there is no charge piling up 

anywhere. In more precise terms, we assumed that 0 J


still holds. Let us look at the 

Ampere’s law again, 
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0   (7) 

There are infinite number of surfaces bound by the loop. Any surface bound by the loop will 

do as long as 0 J


, because the current through any one will be the same as the others. 

The general charge conservation implies 
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  (8). 

 

0 J


 implies that there is charge accumulation somewhere, 0




t


. 

 

Note that JB


 0)(0  , so the Ampere’s law must be modified when 0 J


. 

Maxwell introduced a second term to Eq. (7), 

t
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000    (9). 

 

It is easy to show that now the divergence (  ) of both sides of Eq. (9) is always zero. This 

new term in Eq. (9) is called the Maxwell’s displacement current. It serves as another source 

to generate B-field. 

 

2.2 The Maxwell’s Equations for E&M fields 

 

 

(i) 
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In a medium 
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   (10).        

(i)  D


 (ii) 0 B


 (iii) 
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2.3 Energy of the EM fields 

 

Poynting’s vector is the energy flow density (watts/m
2
) 

In vacuum BES



0
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  (11) 

 

In medium HES


   (11A) 

Energy density )(
2

1
HBDEW


   (12) 

Energy is stored in the field. 
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Example-4 

Current flows in a section of 

conductor wire.  

 

Solution: 

 

The wire is neutral so the E-field 

is uniform inside the wire (V/L) 

and zero outside, where V is the 

voltage difference between the 

two end surfaces, and L is the 

distance between them. The B-

field can be found using Ampere’s 

law. 
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2.4 Boundary conditions  
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2.4 Boundary conditions (continue..) 
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2.5 Plane wave solutions of M’s Equations (EM waves) 

 

For plane waves, the fields are of the form )(

0or  trkieABE 


, where k


is the wavevector of 

the wave, and ω is the frequency. They are called plane waves because the equal-phase 

surface,  

 

 zkykxkrk zyx


constant  

 

forms a plane. We now look for solutions of Eq. M above. Note that for plane waves, 
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. 

 

In vacuum, there is no current or charge. The M’s equations become 

 

0Ek


 (13a),   0Bk


  (13b) 

BEk


  (13c),   EBk


 00  (13d) 

 

The equations above imply that BEk


 . Choose 0zkk


 , 0xEE


 , 0yBB


 , where E and 

B are constants, and apply k


 to both sides of Eq. (13c) and put the result in Eq. (13d), we 

get  

c
k


  00   (14), 

where c is the speed of EM-wave propagation in vacuum. (c = 2.99792458 10
8
 m/s) 

Equation (14) means that for a given frequency ω, which describes the time variation of the 

EM fields, the spatial variation parameter k is fixed, as given by Eq. (14). The dependence of 

k on ω is called the dispersion relation, and is determined by the medium in which EM waves 

propagate. 

 

In non-conducting medium with no free charge and current, the M’s equations become 

(after replacing D


 and H


 by E


 and B


 using Eq. (10)) 

 

0Ek


 (15a),   0Bk


  (15b) 

BEk


  (15c),   EBk


 00  (15d). 

 

So the results in vacuum still apply except that  

c

n
k


  00   (16). 

The speed of wave propagation is c/n, where n  is the refractive index in optics. 

Notice that the k in Eq. (16) is different from that in Eq. (14), for the same frequency ω. This 

again shows that dependence of k on ω is determined by the medium in which EM waves 

propagate. 
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The energy flow, Poynting’s vector S, of the EM wave, using Eq. (11), is … (HW-3). S is 

what we usually refer to as the light intensity. 

 

In conducting medium 

EJ f


 , while everything else remains the same as in a non-conducting medium (The free 

charge density due to the free current can be shown to decay exponentially with time, so can 

be taken as zero if we wait long enough). Equation (15d) becomes 

EiiEiEBki


)( 0000    (17). 

 

The solution is then  IRIR kkkkik 222
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  is real, so k is complex 
2

1

0

1 










 i

c
ikkk IR   (18) 

 
Solving Eq. (18) 
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The E-wave is    tzkizktkzi RI eeEeEE
   00   (20) 

Attenuation factor zkIe
 , skin depth 

Ik
dp

1
  (penetration depth) 

1. Good conductors: 1
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2. Poor conductors: 1
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so s


attenuates 
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E-M wave is loosing energy to media. 

 

Energy loss = heat 

Heat = seEEEJEJE
zkI
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Plasma (neutral ionized gas) 

 

Either one type of charge is mobile, free electrons in ideal conductors, or both can move, like 

in the upper atmosphere. Usually, if electrons are present, they will dominate because of their 

much lighter mass (1/1840 of a Hydrogen nucleus) than any other ions. 

Consider the case with one type of mobile charge particles with charge q and mass m, and 

number density N per unit volume. 

The force due to EM fields on a particle is )( BvEqf


   (25). 

But B = E/c in vacuum so if v << c the B-field force can be neglected.  

Newton’s law:  vmi
dt

vd
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Current density of plasma E
m
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vqNJ p
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  (27) 

One can see in Eq. (27) that the particles with lighter mass contribute more to the current. 

Applying Ampere’s law, 
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Here  is due to the polarization of the particles, such as the immobile ions. Equation (28) is 

similar to the one in insulating (dielectric) medium except that now the effective dielectric 

constant is given by 
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where 
m

Nq
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    (30) 

 is the plasma characteristic frequency. 

)()(  n   (31) 

The dielectric constant, and refractive index, is now a function of frequency. So we should 

refer it as dielectric function, instead of dielectric constant. 

When the frequency of the EM-wave is below p , the dielectric function )( is negative, 

so the refractive index )(n  is imaginary, and k = nω/c is also imaginary. The EM-wave 

cannot propagate. When ω > p  the plasma behaves like ‘normal’ dielectric medium, except 

that )(n  may be less than 1. 


