
Optics-1 

 

The topics to be covered in this lecture are 

 Geometric Optics 

 Interference 

 Polarization 

 

1 Geometric Optics 

 

1A) Principle 

 

In geometric optics, we treat light waves as light rays, or lines, because the length scale of the 

optical elements we are dealing with, such as lenses and mirrors, is much larger than the 

wavelength of the light waves. In the sections of Interference and Diffraction we will then 

treat the EM waves like waves. The surfaces of these optical elements are spherical only 

(planes can be viewed as spherical with infinitely large radius), and we impose the condition 

that only the light rays nearly parallel to the optical axis are considered, i. e., the angle  

between the rays and the optical axis is so small that we can use the small angle 

approximation 

 

sin tan     (1a), 

cos 1    (1b). 

 

Such condition plus the law of refraction (Snell’s Law) are the foundation of all the lenses 

and mirrors. When applying Snell’s law for curved interface the plane is the tangential plane 

of the interface at the point the light ray reaches the interface. 

 

The following is an example of using refraction law and small angle 

approximation to find the image formed by a spherical interface 

between two media. The refractive indexes of the two media are n1 

and n2, respectively. The Snell’s law states 

 

1 1 2 2sin sinn n    (2a) 

With small angles, 

1 1 2 2n n    (2b) 

 

1B) Image Formation 

 

Consider the case below. The radius of the spherical interface between Medium-1 and 

Medium-2 is R. The interface is convex as viewed from Medium-1 to Medium-2. A point 

light source is placed on the left side of the interface in Medium-1. The line joining the 

source and the center of the sphere defines the optical axis of the system. Keep in mind that 

the light beam is actually nearly parallel to the optical axis, and AB << R, and nearly 

perpendicular to the optical axis. 

 

Let the distance between the light source S and the interface be so. Assume that all the light 

rays reaching the interface will converge onto a point P which we call the image of the source 

S. The distance from the image to the interface is si. The aim is to find the relation between so 

and si in terms of the system parameters such as the refractive indexes n1 and n2 and the 
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interface curvature R. The strategy is to express the distances in terms of appropriate angles 

and the length AB  shared by both sides, and then connect the angles using Snell’s law.  

 

 
 

0

( )
AB

ASB
s

    (3a) 

( ' )
i

AB
AS B

s
    (3b) 

( )
AB

AOB
R

    (3c) 

1 2( ' )n n S AO     (3d) 

 

We now need to express the two angles in Eq. 3d in terms of the three angles in Eqs. 3a-3c. 

By simple geometry considerations and take triangle ASO , we have 

( ) ( )ASB AOB       (3e) 

Take triangle 'AS O , we have 

( ) ( ' ) ( ' )AOB AS B S AO      (3f) 

 

Putting Eqs. 3a and 3c into Eq. 3e, Eqs. 3b and 3c into Eq. 3f, and finally putting Eqs. 3e and 

3f into Eq. 3d, we can find the image distance si in terms of the object distance so and the 

parameters of the system n1, n2, and R. 
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Everything in Eq. 3g is positive. Note that the result is independent of AB . What does that 

mean? It means that under the small angle approximation all the light rays reaching the 

interface will converge onto the image point, regardless where they strike. That is the 

condition for image formation. Otherwise, the image of a point source will be a patch of light, 

i. e., it is a blur and distorted image.  

 

What if the image is formed on the left side of the interface, as shown below? It is a virtual 

image because the light rays inside Medium-2 seem to come from the point source S’ inside 

Medium-1, but there is actually no such source there.  

 

Using the approach similar to the first case, and leaving the actual procedure as an exercise, 

we can get 
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  (3h) 

 

 

 
Equation 3h implies Eq. 3g is still applicable in the cases of virtual images, as long as the 

image distance takes negative values. 

 

What if the source is virtual, i. e., the rays in Medium-1 would converge onto a point in 

Medium-2 if there were no refraction at the interface? This can happen if there is another 

interface to the left of the present interface under consideration, and the image formed by that 

interface is to the right side of the present interface. 

 
Using the approach similar to the first case, and leaving the actual procedure as an exercise, 

we can get 
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Equation 3i implies that Eq. 3g is still applicable in the cases of virtual sources, as long as the 

object distance takes negative values. 
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Finally, in the cases of concave interface shown above, using the approach similar to the first 

case, and leaving the actual procedure as an exercise, we can get 
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Equation 3j implies Eq. 3g is still applicable in the cases of concave interfaces, as long as the 

radius takes negative values. 

 

Summarizing the above results, we get the sign convention of the lens formulae Eq. 3g: 

radius is positive for convex, negative for concave interfaces; object distance is positive if the 

source is on the left side of the interface, is negative if the virtual source is on the right side 

of the interface; image distance is positive if the image is on the right side of the interface, is 

negative if the virtual image is on the left side of the interface. 

 

Example-1 

A point source is placed on the left side of a glass sphere of radius R and refractive index 1.5. 

The distance between the left surface and the source is d. 

Find the final image if (a) d = R, (b) d = 2R, (c) d = 2.5R, (d) 

If the final image is at the right surface, where should the 

source be and whether the source is real or virtual? 

 

Solution: 

(a) First (left) surface, os R , n1 = 1, n2 = 1.5, convex, 

1 1.5 1
(1.5 1)

iR s R
   , which leads to 3is R  , virtual image. 

Second (right) surface, ' 2 ( 3 ) 5os R R R    , n1 = 1.5, n2 = 1, concave 

1.5 1 1
(1 1.5)

5 iR s R
  


, which leads to ' 5is R . So the real image is at a point 5R from the 

right surface of the sphere. 

 

(b) First (left) surface, 2os R , n1 = 1, n2 = 1.5, convex, 

1 1.5 1
(1.5 1)

2 iR s R
   , which leads to is   . 

Second (right) surface, '

os   , n1 = 1.5, n2 = 1, concave 
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, which leads to ' 2is R . So the real image is at a point 2R from the 

right surface of the sphere. 

 

(c) First (left) surface, 2.5os R , n1 = 1, n2 = 1.5, convex, 

1 1.5 1
(1.5 1)

2.5 iR s R
   , which leads to 15is R . 

Second (right) surface, ' 2 15 13os R R R     (virtual source), n1 = 1.5, n2 = 1, concave 

1.5 1 1
(1 1.5)

13 iR s R
  

 
, which leads to ' 13

1.625
8

is R R  . So the real image is at a point 

1.625R from the right surface of the sphere. 

 

(d) The image formed by the first (left) surface should be at the second (right) surface. 

2is R , n1 = 1, n2 = 1.5, convex 

1 1.5 1
(1.5 1)

2os R R
   , which leads to 4os R  . So the virtual source should be at 4R distance 

from the left surface. 

 

1C) Magnification 

 

We now consider the magnification of the image. For that we place a second point source at a 

distance h from the optical axis. Its image will still at a distance si from the interface, but at a 

distance h’ from the axis. 

 
The ray from the second source towards the center of the interface O should not change its 

direction, as shown above. The by simple geometry, we get the magnification is  
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Equation 4a is actually a general expression for all cases, including the ones where the object 

distance, the image distance, and the radius are negative. The image is real if M is positive. 

The image is a virtual one if M is negative. Take the case shown below, the magnification is 
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  (4b) 

If we use the sign conventions, the image distance is negative. Put negative image distance to 

Eq. 4a, we get 
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  (4c) 

 

The result in Eq. 4c takes the negative value but has the same magnitude as in Eq. 4b.  

 
For mirrors, the same lens formulae applies with the difference from the lenses that the focal 

length = R/2, positive for concave and negative for convex; object and image on the left side 

are positive, on the right side are negative.  

 

2 Interference 

 

2A) Principle 

 

Consider two point sources in space. At source-1 the emitted electromagnetic (EM) wave is 

 

1 1( ) cos( )E t E t . 

 

At source-2 the emitted EM wave is 

 

2 2( ) cos( )E t E t  

 

Both sources emit spherical waves of the form 

0 cos( )
r

E kr t
r

 .  (5a) 

At an observation position in space r , the displacement vector from source-1 to the position 

is 1r , and that from source-2 is 2r . As one can see, both will change with the change of r . As 

the change of 1r and 2r  are small, we ignore the amplitude change of the waves at the position 

due to the denominators in Eq. 5a and treat the amplitudes as constants. 

The EM wave from source-1 at the observation position is 1 1 1( , ) cos( )E r t E kr t  . 

The EM wave from source-2 at the observation position is 2 2 2( , ) cos( )E r t E kr t   

Suppose the directions of the electric fields of the two EM waves are the same, then 

according to the superposition principle, the total field at position r  is 

 

1 2 1 1 2 2( , ) ( , ) ( , ) cos( ) cos( )E r t E r t E r t E kr t E kr t       . (5b) 
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As has been shown in the EM wave part of the EM lectures, the light intensity is the time-

averaged Poynting vector of the EM wave. So 
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 (5c) 

The time average is over many periods of the EM wave. Note that the average over one 

period of EM wave is 

2
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2 2
kr t kr t        ,   (5d) 

because the average of any sine or cosine functions over one period is always zero. 
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So finally, 
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Here 1 2| | | |r r r   , and  is the wavelength. Equation 5f is the basic formulae for ideal two-

source interference. For multiple-source cases we should simply add the electric fields of all 

the sources, and then take the time average of the square of the total field. Diffraction is in 

fact a problem of multiple-source interference, so it can be dealt with accordingly. 

 

2B) Optical Path 

 

The optical path difference r  is a function of observation position r . A small change in r  

(over a value of wavelength / 2 ) will change the total intensity from 
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Such change of light intensity over a relatively 

small distance in space is called the interference 

effect of waves. Below is an example. 

 

Example-2 

Two light sources are at the positions (0, a/2) and 

(0, – a/2), respectively. The observation position is 

at (L, y), and L >> a.  

The optical path difference is then 

2 2 2 2( ) ( )
2 2

a a ay
r L y L y

L
       .  (6a) 

 

Taylor expansion is used to get the final result. This is 

equivalent to what is shown in the right figure where the 
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optical path difference is r a  , with 1
y

L
   . In more general cases, the optical path 

difference is 

 

sinr a     (6b) 

 

Some of the other two-source cases are shown below. In the case of the left figure, the image 

due to the mirror is the second source. In the case of the right figure, the lens is cut in half in 

the middle. The upper half is lifted a little and the lower part is pulled down a little. As a 

result, two images of the point source are formed which serve as the two sources. There are 

many configurations like Newton’s ring, thin film interference, which are the cases where the 

reflection beam of the first surface and that of the second surface interfere. The optical path 

difference, in normal incidence, is given by 2dn, where n is the refractive index of the film 

and d the thickness. The calculation of optical path becomes the main task in solving the 

interference problems. In all these cases, the two sources are actually originated from a single 

source, so the electric field directions are always the same. 

     
 

2C) Visibility (Contrast) 

 

Visibility (contract) is defined as 

 

max min 1 2

2 2

max min 1 2
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.  (7) 

 

The second equal sign holds only for ideal interference cases. A takes the maximum value of 

1 if 1 2E E , and takes the minimum value of 0 if max minI I , i. e., there is no interference 

effect at all. To see how one can get no interference effect, please read the following text 

concerning realistic interference cases. 

 

2D) Coherent Length of Sources 

 

An ideal source would emit EM waves in the form of 0 cos( )E E t    forever. A real 

source emits something similar, except that the phase   changes in a random fashion after a 

period of time , i. e.,  

1

2

3

,  0

,  2
( )

,  2 3

.............

t

t
t

t

 

  


  

  
 

  
  

  
  

  (8) 

 

Here  is much larger than the period of the wave 2 /  , but still much smaller than the 

observation time. That is, we still need to take time average over a duration much longer 
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than . The phases 1 , 
2 , …take random values.   is called the coherent time of the source, 

and L c  is called the coherent length of the source, where c is the speed of light in 

vacuum. We call each continuous wave with a fixed phase a wave train. Obviously, in 

vacuum the length of such wave train is the coherent length of the source. Sources like 

ordinary light bulbs usually have coherent length of a few centimeters, while lasers can have 

coherent length of several meters. A real light source therefore emits a continuous series of 

wave trains n = 1, 2, …, with phases 1 , 2 , … 

 

Consider two sources (say two red laser pointers) 

emitting EM waves of the same frequency. For 

simplicity, assume that they are turned on at the 

same time. Their initial phases are 1 , 2 , …, and 1 , 2 , …, and we choose a position in 

space where the optical path difference is r . The above figure shows the two series of wave 

trains from the two sources, the red ones from source-1, and the green ones from source-2, at 

the observation position. For simplicity, we assume r  << L c  for the time being. Similar 

to the ideal interference case, and take time average over a period of N , the intensity at the 

observation position is 
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Because the phase differences ( n n  )’s are all random, the sum over many cosines of them 

becomes zero. That is: 
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We then get 
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i. e., there is no interference effect since the total intensity does not depend on the optical path 

difference r , and the interference contrast is zero. 

 

Note that if the two sources are ideal ones, then the result would be 
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where  and  are the initial phases of the two sources, which remain constant all the time 

for ideal sources. Now the total intensity does depend on r , and we would have interference 

effect. The reason that we do not get interference from two actual light sources, even though 

they have the same frequency, is because they are not ideal sources. 

 

It is now clear that in order to obtain interference, we 

need to somehow ‘split’ one real source into two, 

such as in the case of using a mirror to create an 

n n -1n + 1 n n -1n + 1

n n -1n + 1 n n -1n + 1



image source to form a two-source scheme, or using the split-lens to create a two-source 

scheme. The wave trains from such two sources at the observation position are shown in the 

right figure. Although each wave train has different initial phase, the two wave trains that 

arrive at the observation point at the same time always have the same initial phase (That is 

why all the wave trains in the figure are red in color). In such cases, although the initial phase 

changes, but because both sources have the same initial phase, such change cancels out if the 

optical path difference r c  . The result is then 
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And we have interference like in the ideal source case. 

 

Now we consider the more realistic case that the optical path difference is comparable to the 

length of the wave trains (the coherent length). The figure below shows the wave trains at the 

observation point. The two wave trains from the two (split) sources with the same initial 

phase are not completely overlap in space or time. One train is ahead of the other by a 

distance r . The overlapping length of the pair of wave trains with the same initial phase is 

no longer the entire length of the wave train, but is shortened by r , i. e., the overlapping 

length for Eq. 10 is c , but in this case it is ( )c r  . 

 

 
 

Similar to the ideal source case, the light intensity is 
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The last summation term is zero because of the randomness of the phases 1( )n n   . So 

finally  
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It is also clear based on the discussion above that if r c  , we will have 
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That is, if the optical path difference is larger than the coherent length of the sources, then 

there is no interference effect. One can perform experiments to verify such effect. One way is 

to introduce some transparent medium of refractive index n in one optical path, therefore 

increasing its value by n times. The resulting optical path difference is then increased 

significantly without even changing position of any other parts, such as the sources and the 

n n – 1 n + 1 

r 



observation screen. For sources with relatively short coherent length, the interference pattern 

on the observation screen will then disappear. 

 

3 Polarization of Light 
 

The polarization of light refers to the evolution pattern of the electric field in time at a fixed 

point in space. Consider the simple case // , 0D E D E k    . The electric field of the 

EM wave is therefore within the plane perpendicular to the wave vector k . The general form 

of the electric field of a plane EM wave is then  

 

0 0 0 0cos( ) cos( )x x y yE E t x E t y         (13) 

 

at any fixed point in space. 

 

 yx  , ---- phase, 00 , yx EE  are real and positive. 

 

Let  

0 cos( )x x xE E t   ;   (14a) 

0 cos( )y y yE E t   ,   (14b) 

then 0 0x yE E x E y     (14c) 

 

Consider a position vector 0 0( ) ( )r x t x y t y   of a point in the X-

Y coordinate system. As time t goes by the position of the point 

forms a trajectory. Similar to this, here we plot E


 in Eq. 14c in the 

yx EE ,  coordinate system. Putting a point at the end of E


, the 

trajectory of the point in the yx EE ,  coordinate system determines 

the polarization state of the light beam. If the trajectory is a line, 

we call it as linearly polarized, or linear polarization. If the 

trajectory is a circle, we call it circular polarization, and so on. 

In the special case yx   , then 
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leading to a straight line trajectory, and we call such polarization state ‘linearly polarized 

state.’  

 

For more complicated cases one should eliminate time t first, and we get the general form 
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 (15).  

    ( 

This is the equation for an ellipse. So the most general form 

of polarization is elliptical polarization. The parameters of the 

ellipse are given below.  
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     (16a) 

Right means right hand polarization, i. e., clockwise, and left hand polarization means 

counter clockwise. 
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 Some special case 00cos,1sin,
2

  n . It is an ellipse shown in 

the right figure. 

 Furthermore, if 00 xy EE  , Circular Polarizations. 

 

Ways to find out where the polarization is right-hand or left-hand 
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So the polarization is left handed. 

 

Exercise: Determine the polarization state of the EM waves below 

i)  cos( ), sin( )x yE A t E A t        

ii) cos( ), sin( )x yE A t E A t         

 

Finally, if the phases yx  , in Eq. 13 change randomly with time, we then get light with no 

polarization. This is usually the case as the real sources all have finite coherent length (or 

time). 

 

3B) Polarizing Media 

 

Polarizing media include linear polarizer, birefringence wave plates, and Faraday rotation 

media. 

 

I Linear Polarizer 

 

Linear polarizers are made of media that allow only the EM waves with the electric field 

along its axis in the plane perpendicular to the wave propagation direction to 

pass. For example, devices consisting of equally spaced parallel thin metal 

wires called (wire grids) can serve such function. For EM waves with the 

polarization parallel to the wires, the electric field of the wave drives the 

electrons in the wire to move back and forth, thereby dissipating energy and 

absorbing the EM wave. For waves with the polarization perpendicular to the 

wires, no absorption of EM wave occurs as the electrons cannot move in the 

Ex 

Ey 

Wire gridWire grid



direction perpendicular to the wires. Some polymers (long molecule chains) can act like wire 

grids. 

 

Consider an EM wave
( )( )

0 0 0 0 0
yx

i ti t

x yE E x e E y e
   

  , after passing through a linear 

polarizer with its transmitting (passing) axis along the direction 0 0cos sine x y   , the 

resulting electric field is 
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      (17a) 

 

which is linearly polarized because there is no phase difference between the X- and Y-

components of the electric field. Using complex number algebra, we can express Eq. 17a as 

 
( )

0 0 0( cos sin )i tE E e x y       (17b). 

 

(As an exercise, determine 0E  and  in terms of 0xE , 0yE , and .) If the phases x  and y  are 

randomly changing with time as in the non-polarization case, then it can be shown (the 

process is left as an exercise) that the intensity of the EM wave is 
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2 2
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Equation 17c means that there is no interference effect between the two waves as there is no 

fixed phase difference, so each one can be viewed as independent. This is similar to the case 

of waves from two independent sources (Eq. 9c). 

 

II Birefringence plates 

 

Birefringence media are anisotropic ones, i. e., its dielectric constant and 

therefore refractive index depends on the direction of the electric field in 

the media. A common example is shown in the figure. For light 

polarized along the X-axis of the birefringence plate, the refractive index 

is nx, while for light polarized along the Y-axis of the birefringence plate, 

the refractive index is ny. Suppose the incident wave right before 

entering the plate (at z = 0) is a linearly polarized wave at an angle   to 

the X-axis, 0 0 0( 0) ( cos sin ) i tE z E x y e     , after passing over a distance d in the plate, 

the electric field is 
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The phase difference between the X- and Y-components is 
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      (18b). 

 

ny

nx

ny

nx



If   equals to / 2 , that is
1

( )
4

y xd n n   , and 45  , then 0 ( )E d  is circularly polarized. 

The sense of polarization (left or right) depends on the sign of ( )y xn n . As an exercise, find 

other thickness values of the plate that can also turn a linearly polarized wave into a circularly 

polarized wave. 

 

III Faraday rotation 

 

There is another kind of media that their refractive indexes are different for different sense of 

circularly polarized waves. Plasma in a magnetic field is such a medium. The refractive index 

for right circularly polarized wave is nR, and that for left circularly polarized wave is nL. 

Consider an EM wave linearly polarized along the X-axis before entering the medium, 

 

0 0 0 0 0 0 0

1
( 0) [( ) ( )]

2

i t i tE z E x e E e x iy x iy         (19a). 

 

As an exercise, verify that the first term 0 0( )x iy  represents left circular wave and the second 

one 0 0( )x iy  represents right circular wave. Equation 19a means that a linearly polarized 

wave can be decomposed into two circularly polarized waves of equal amplitude, one being 

left and the other right. 

 

The wave after passing through the medium by a distance d is then 

 

0 0 0 0 0 0 0

1
( ) [( ) ( ) ]

2
L Rikn d ikn di t i tE z d E x e E e x iy e x iy e           (19b). 

 

To examine its polarization state, we calculate the ratio of its X-component over the Y-

component. 

 
2 2 ( ) ( )

2 2 ( ) ( )

R L R L L R L R

L R R L L R L R

ikn d ikn d i i i i
y

ikn d ikn d i i i i

x

E e e e e e e
i i i

E e e e e e e

     

     

      

      

  
  

  
 

2 sin( )
tan( )

2cos( )

L R
R L

L R

i
i

 
 

 


  


  (19c). 

 

Since /y xE E  is real, the phase difference is zero. So the wave is still linearly polarized. 

However, its direction is now at an angle of
1

( ) ( )
2

R L R Ln n kd     to the X-axis. In other 

words, the direction of the polarization has rotated by an angle of 
1

( )
2

R Ln n kd  relative to 

the incident wave. 


