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Optics-2 
 

 Reflection and Transmission 

 Diffraction 

 

1 Reflection and Transmission 

 

1A) Introduction 

 

In this part we examine the issues of EM waves at the boundary between two media. When an 

EM wave with given amplitude, frequency, and direction is incident on a plane interface between 

two media, what will happen? We know that some part of the wave will be reflected, and some 

part will be transmitted. But in what direction will the reflected wave propagates? What is the 

amplitude of the reflected wave? What is the frequency of the reflected wave? The same 

questions can be asked for the transmitted wave also. In this part of the lecture, we will answer 

all these questions by simply using the boundary conditions of electric and magnetic fields that 

are presented in the lecture of EM-4. 

 

To get started, let us first look at an interesting mathematics problem. Consider the equation 

 
2 0ax bx c   .  (1a) 

 

Usually what is being implicitly asked is: at what value(s) of x in terms of a, b, c will Eq. 1a 

hold? The answer is, as we all know,  
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Now, if we ask: under what conditions will Eq. 1a hold for all values of x, then what will be the 

answer? The answer is a = b = c = 0. 

 

Similarly, what is the condition for the following equation to be true for all values of x and y? 

 
2 2

2 1 0 2 1 0 0a x a x a b y b y b        (1c) 

 

The answer is 2 1 2 1 0 0 0a a b b a b      . We will meet similar equations when dealing with 

EM waves at a boundary. 

 

1B) Basic Concept 

 

Consider a boundary between medium-1 and medium-2. The refractive indexes of the two media 

are n1 and n2, respectively. The first refractive index is real, as the medium carries the incident 

EM wave. The second refractive index can be complex (recall the cases in lecture EM-4). The 

frequency of the incident wave 1  and the components of its wave vector 1k  are all real. The two 

are related by the dispersion relation 
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Likewise, the EM wave in medium-2 must have 
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   (2b) 

 

As is usually the case, it is assumed that there is no surface charge or surface current at the 

interface. The media are non-magnetic, so 1 2 1   .  

 

The boundary condition for the electric and magnetic fields are 

 
/ / / /

1 2E E  (3a) 

1 2D D   (3b) 

1 2B B   (3c) 

/ / / /

1 2H H  (3d) 

 

The boundary conditions in Eqs. 3 must hold everywhere on the interface and at all time. Eqs. 2 

and 3 are the basic physics concepts from which all wave phenomena at the boundary are 

derived. 

 

 
 

Note that the arrows in the figure are for indication of the propagation directions of the 

respective EM waves only. They are not narrow light rays as in the geometric optics. The plane 

EM waves are infinitely wide. In fact, the incident wave and the reflected wave fill up the entire 

half space occupied by medium-1, and the transmitted wave fills up the whole half space of 

medium-2. 

 

Define the plane formed by the wave vector 1k  of the incident wave and the normal direction of 

the interface as the incidence plane, we choose the coordinate system such that the X-Z plane is 
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the incidence plane, the X-axis and the Y-axis are parallel to the interface, and the Z-axis is 

perpendicular to the interface. The interface is at z = 0. The Y-axis is perpendicular to the 

incidence plane. The incident wave is linearly polarized. 

 

1C) Polarization perpendicular to incidence plane 

 

We first consider the case in which the electric field of the incident wave is along the Y-axis. 

The incident wave is  

 

1 1 1 1 1( ) ( )

0 0 0 0 0( , ) x zi k x k z t i k r tE r t E y e E y e
        (4a). 

 

1k  in Eq. 4a must satisfy the dispersion relation Eq. 2a. The incidence angle, defined as the angle 

between 1k  and the interface normal, is given by 1
1

1

tan x

z

k

k
  . 

 

In order not to make things overly complicated, we assume for the time being that the electric 

fields of the reflected wave and the transmitted wave only have the Y-component. Likewise, we 

assume that the propagation directions of the reflected wave and the transmitted wave are still in 

the incidence plane. After going through the derivation below, one will see that one can easily do 

away with the possible presence of none Y-components, or the off-plane wave vector 

components, and show that they must all vanish. The reflected wave is then 
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 ), since the reflected wave is 

also in medium-1. The reflection angle, defined as the angle between '

1k  and the interface 

normal, is given by
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The transmitted wave is 

 

2 2 2 2 2( ) ( )

0 0( , ) x zi k x k z t i k r t

t t tE r t E y e E y e
        (4c) 

 

If 2k  is real, then the refractive angle can be defined likewise 2
2

2
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z

k

k
  . 

 

The total electric field in the space of z ≤ 0 is 0( , ) ( , )rE r t E r t , and that in the space z ≥ 0 is 

( , )tE r t . Everything about the incident wave and the media are known. That means E0, 1k , 1, 

n1, and n2 are given. We need to find everything about the reflected and the transmitted waves. 

What we have are the boundary conditions of Eqs. 3 which must be satisfied at the interface z = 
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0, the dispersion relations of Eqs. 2, plus the form of the electric fields in Eqs. 4. You may 

wonder how many equations we must have in order to also the unknowns. But the equations we 

have are not ordinary ones. They must be satisfied everywhere on the interface and at all time.  

 

As the electric fields have no components perpendicular to the interface, Eq. 3b is automatically 

satisfied. Applying Eq. 3a at z = 0, we get 
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    (5a) 

 

Equation 5a must be satisfied at all coordinate values of x and time t. Consider t first. To satisfy 

Eq. 5a at all time, the only possibility is that the frequencies are all equal. That is 

 
'

1 1 2      (5b). 

 

Now we see that the frequency of the wave does not change when it goes through or is reflected 

by the interface. We will simply refer to the frequency of the waves as   from now on. Using 

the dispersion relation in medium-1, we then get 

 
'

1 1k k   (5c) 

 

Likewise, Eq. 5a must be satisfied at all values of x. This leads to the second result 

 
'

1 1 2x x xk k k    (5d). 

 

That is, the components of the wave vectors of the three waves parallel to the interface must be 

the same. Eqs. 5c and 5d then lead to '

1 1z zk k  . '

1 1z zk k  means that the incident wave dose not 

change direction at the boundary, which cannot be true. '

1 1z zk k   means the reflected wave is 

bounced back by the interface, which makes sense. Combining with Eq. 5d, one can verify that 

this is exactly the reflection law: The incidence angle is equal to the reflection angle '

1 1   . So 

this so called reflection law can actually be derived from the general EM wave theory. 

 

If 2k  is real, using Eqs. 2 and Eq. 5d, one can get the Snell’s law 

 

1 1 2 2sin sinn n   (5e). 

 

So Snell’s law can also be derived from general EM wave theory. Note that  

 
2 2

2 2 2z xk k k    (5f). 

 

In the case of real refractive indexes, 
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2 2 2

2 2 1 1sinzk n n
c


    (5g). 

 

It can become imaginary if 2 1 1sinn n  . This is the condition of total reflection. Let 

2 2 2

2 1 1 2sinzk i n n i
c


    . The transmitted wave then takes the form 

 
2 2 2 1 2( ) ( )

0 0( , ) x z xi k x k z t i k x tz

t t tE r t E y e E y e e
      (5h) 

 

It propagates along the interface and its amplitude decays exponentially with the distance to the 

interface. This is the interface mode of the wave propagation. As will be shown later, 0| |rE E  

when this happens. 

 

Finally, Eq. 5a is reduced to 

 

0 r tE E E    (5i). 

 

Equation 5i alone cannot uniquely determine Er and Et. We need another equation to fulfill the 

requirement. We have used only two boundary conditions related to the electric field so far. Now 

we will use the two related to the magnetic field. Using the Faraday’s Law in the Maxwell 

Equations
k E

B



 , we have the magnetic fields of the incident, reflected, and transmitted 

waves as 

 

1 1( ) ( )1 0 0 0
0 1 0 1 0 0 1 0 1 0
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k E r t E E
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       (6a) 
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       (6b) 

2 2( ) ( )2
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( , )
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       (6c) 

 

Note that the frequency in the above equations is the same, and in Eq. 6c 2xk  has been replaced 

by 1xk  according to Eq. 5d. 

 

The total magnetic field in the z ≤ 0 region is 0( , ) ( , )rB r t B r t , while in the z ≥ 0 region it is 

( , )tB r t . The components perpendicular to the interface is along the Z-axis, and the parallel 

components are along the X-axis. One can verify that Eq. 3c is automatically satisfied, and Eq. 

3d leads to, after eliminating some common factors on both sides of the equation, 

 

0 1 1 2z r z t zE k E k E k    (6d) 
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Solving Eqs. 5i and 6d, we finally get the reflection and transmission of the EM waves. 
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  (6f) 

2 1/z zk k     (6g) 

 

The   sign indicates that what we have obtained are for the cases where the polarization of the 

incident wave is perpendicular to the incidence plane. When all wave vector components are 

real, which means total reflection cases and cases with complex n2 are excluded, Eq. 6g becomes 

 

2 2
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   (6h) 

 

r  and t  in Eqs. 6e and 6f can then be expressed in terms of incident and refraction angles. Such 

formulae are commonly seen in many textbooks. One should remember, however, that 

expressing r  and t  in such angles is only valid when all wave vector components are real. 

The r  and t  expressed in terms of 2 1/z zk k  , on the other hand, is valid for ALL situations. 

This is because complex wave vectors have well defined physical meanings. Complex wave 

vectors mean exponential decay or decrease of the amplitude of the wave with distance. 

Complex angles, on the other hand, have no physical meanings. When all wave vector 

components are real, the propagation direction of the wave can be specified by the angle. If any 

one of the components is complex, no such direction can be specified and the description of the 

wave propagation mode has to be modified accordingly. 

In the case of total reflection 2 1 1sinn n  , 2 2 2 2 2 2

2 2 1 1 1 1 2sin sinzk n n i n n i
c c

 
        is 

purely imaginary and so is  . Expressing   as iA   where A is a real number, one then see 

that 
1

1

iA
r

iA






, and | | 1r  , i. e., total reflection occurs. 

 

1D) Polarization in the incidence plane 

 

In the case the electric field of the incident wave is in the incidence plane, the magnetic field is 

then perpendicular to the incidence plane. From Faraday’s law, the amplitude of the magnetic 

field and that of the electric field is related by
n

B E
c

 . The magnetic fields of the incident, 

reflected, and transmitted waves are 

1 1 1
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 (7a) 



7 

The total magnetic field in the space of z ≤ 0 is 0( , ) ( , )rB r t B r t , and that in the space z ≥ 0 is 

( , )tB r t . One can see that since there is no magnetic field component perpendicular to the 

interface, boundary condition Eq. 3c is automatically satisfied. Equation 3d leads to the same 

results as stated in Eqs. 5b and 5d, and the reflection law that the reflection angle is equal to the 

incidence angle. The remaining equation becomes 

 

0 r tB B B    (7b). 

 

From Faraday’s law, the amplitude of the magnetic field and that of the electric field is related 

by
n

B E
c

 . Replacing magnetic fields by electric fields in Eq. 7b, we get 

1 0 2( )r tn E E n E    (7b’). 

 

Using Ampere’s Law 
2

2

n
k B E

c
   , we get 
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One can verify that Eq. 3b leads to the same equation 7b, and Eq. 3a leads to 
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Solving Eqs. 7b and 7d, we get 
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  (7e), 

1 2
/ / 2 2

2 1 2 1

1 2

22 n n
t

n n n n

n n



 




  (7f). 

The definition of   is still the same as Eq. 6g. Equations 6e, 6f, 7e, 7f are called Fresnel’s 

equations. 
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2 Diffraction 

2A) Introduction 

 

So far we have studied the propagation of EM waves in infinitely large 

space, and at the boundary between two media. The diffraction of EM 

waves deals with the problem of EM waves encountering an obstacle, 

such as a small hole or slit. As shown in the figure, an opening (aperture) 

is illuminated by a plane wave from below, and one is to find the EM 

wave above the aperture. The rest of the infinitely large screen is opaque. 

The exact solutions to such problems require solving the Maxwell 

equations with the given boundary conditions, and usually there are no 

analytical solutions so numerical ones are sought instead. A good 

approximation, however, exists and that is the theory of diffraction of EM waves. According to 

such theory, each point on the aperture is a source of EM wave. The EM waves above the 

aperture is the combined contributions of all these sources. The problem of diffraction is then 

converted to the relatively simple calculation of these contributions at every point in space 

behind the screen. 

 

For simplicity, we ignore the factor 0

1

2
c  from now on and set the intensity of light equal to the 

amplitude square of the electric field, 2| |I E . The opening is on a flat plane. In part-2B through 

part-2E we take the approximation that the observation screen is far away from the aperture. 

Diffraction under such condition is called Fraunhofer diffraction. In part-2F we deal with the 

problems that such approximation no longer holds. These are called Fresnel diffraction. 

 

2B) Single long slit 

 

(i) Normal incidence 

 

Consider the simplest case, the long slit of width a. The figure below shows the side view of the 

diffraction configuration. A plane wave of amplitude E0 and wave vector k is normally incident 

onto the slit from the left side. A focusing lens is placed behind the aperture, and a viewing 

screen is placed on the focal plane of the lens. 

 

 

 

 

 

 

 

 

 

 

 

Taking the point source at x = 0 as the reference point, the phase difference between the source at 

x = 0 and any point at position x is 

AA

Lens

Screen

Focal length f

Aperture
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Screen

Focal length f
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sin
X

kx kx
f

     (8a), 

 

where X is the coordinate on the screen in the vertical direction. Each 

element dx at position x contributes sin

0 /ikxE e dx f  to the total field on 

the screen. The total electric field due to the contributions from all the 

point sources on the opening is the sum of each field,   

 
sin sin/2

sin0 0 02 2

/2

2 sin
( )

sin

ka kaa i i
ikx

a

E E aE
E e dx e e

f ikf f

 
 


 





   
       

  
  (8b), 

 

where 
1

sin
2

ka    (8c) 

 

Using  

 

sin
X

f
      (8d), 

 

we can convert the angular distribution ( )E   to the spatial distribution on the screen ( )E X . The 

intensity distribution is simply  

 

 
2 22 2

2 0
02

21 sin sin
| |

2

a E
I E I

f

 


 

   
     

   
  (8e) 

 

In the case where the lens is absent, and the distance from the screen to the aperture is D, then 

according to Eq. 6a in the lecture notes Optics-1 where we are dealing with the double-slit 

interference, the phase difference is 

 

sin
X

kx kx
D

     (8f). 

 

We should simply do a replacement using sin
X

D
    in Eq. 8e to obtain the spatial 

distribution of intensity on the screen. 
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The major maximum of intensity occurs at 0  , or at X = 0. The minor maxima occur 

at tan  . The roots of this equation have to be found numerically. The minima occur 

at m   , m = 1, 2,…, as shown above. For an infinitely large slit, only the forward 

propagation ( 0  ) remains. This is consistent with the fact that in infinite space the plane 

waves propagate in a straight direction. On the other hand, when the slit is very 

small,
sin

0,  1





  ,   0I I  . The slit then behaves like a point source. 

 

(ii) Oblique incidence 

 

So far the point sources on the opening are all in phase. In the case 

of oblique incidence with angle , there is a phase difference which 

depends on the position of the point source ( ) sinx kx   among the 

sources. A point source at position x emits wave ( sin ( ))

0

i kx xE e dx  . As 

an exercise, show that the intensity distribution maintains the form 

given by Eq. 8e but with 

 

1
(sin sin )

2
ka      (8g). 

 

Maximum intensity occurs at  . 

 

(iii) Reflective ‘slit’. 

 

Diffraction also occurs when an EM wave is incident on a long 

strip of reflective surface instead of a slit. Each point on the 

reflective surface is a source of EM wave. The situation is much 

the same as in (ii). As an exercise, show that show that the 

intensity distribution maintains the form given by Eq. 8e but with 

 

1
(sin sin )

2
ka      (8h). 
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Maximum intensity occurs at   , i. e., following the reflection law off an infinitely large 

surface. This is also true when a . The only maximum occurs at 0   and   . 

 

2C) Double slits and many slits 

 

(i) Double slits 

 

Consider two identical slits of width a and separate by a distance b (> a) measured from the 

centers of the slits. The wave is normally incident on the aperture. All others are the same as in 

the single slit case. Put the centers of the slits at
2

b
x   , respectively, the electric field on the 

screen is then (keep in mind that sin
X

f
  ) 

/2 /2 /2 /2
sin sin0 0

/2 /2 /2 /2

4 sin 1
( ) cos( sin )

2

b a b a
ikx ikx

b a b a

E aE
E e dx e dx kb

f f

  
 



  

  

 
    

 
  (9a) 

 

The intensity is 

 

 
2

2 2

0

1 sin
| | cos

2
I E I


 



 
   

 
  (9b) 

 

The definition of   follows Eq. 8c, and 
1

sin
2

kb  . Comparing with the double-slit 

interference result presented in Optics-1, we find that there is an extra factor 

2
sin



 
 
 

 in Eq. 9b, 

which is due to the diffraction effect. The factor 2cos   is due to the interference effect between 

the two slits. 

 

(ii) N slits 

 

Consider N identical slits of width a under normal incidence. The central positions of the slits are 

at x = mb, m = 0, 1, … N – 1. The electric field due to the m-th slit is 

 

/2 ( ) sin ( ) sin
sin0 0 2 2

1
/2

( ) ( )
a amb a i mb k i mb k

ikx imkb

m
mb a

E E
E e dx e e E e

f f

 
 

  



 
     

 
 (10a) 

 

Here 1( )E   is the electric field due to a single slit given by Eq. 8c. It is then straightforward to 

show that the total electric field due to all slits is 
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  (10b). 

 

The intensity is 

 

 
22

0

sin sin( )

sin

N
I I

 


 

  
   

   
  (10c). 

 

(iii) Gratings 

 

Gratings can be viewed as multiple slits in reflection geometry. Instead of N slits in transmission 

mode, we have N reflecting stripes. Considering the simplest case of normal incidence, the 

diffraction intensity is then given by Eq. 10c also. The resolution of the gratings follows the 

same Eq. 10d as in the transmission geometry. 

 

2D) Rectangular apertures 

 

(i) Single aperture 

 

Take a coordinate system as shown in the left figure below. The planer aperture is in the x-y 

plane. The emission direction is given by n , as shown in the right figure. 

 

   
 

According to the above figure, 

 

0 0 0sin sin sin cos cosn x y z         (11a) 

 

If a focusing lens of focal length f is placed behind the aperture, the wave emitted in such a 

direction will fall onto the position of 

 

sin sinX f     (11b) 
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sin cosY f     (11c) 

 

of the screen on the focal plane of the lens. If there is no lens and the screen is at a (far) distance 

of D from the aperture, replace f in the above equations by D. 

 

Suppose the aperture is uniformly illuminated. What is the phase 

difference between the wave A emitted from the point source at the 

origin and wave B emitted by the point at the position (x, y) as 

marked by the position vector 0 0r xx yy  ? Let us take the plane 

made by r  and n , as shown in the figure. It is obvious that the path 

difference is 

 

sin cos( )
2

d r r r n


         (11d). 

 

Therefore each point source of area dxdy at 0 0r xx yy   emits wave  

 

( )
( sin sin sin cos )0 0 0

2 2 2

xX yY
ik

ikr n ik x y f fE E E
dE e dxdy e dxdy e dxdy

f f f

   


      (11e). 

 
/2 /2 /2 /2

( sin sin sin cos ) sin sin sin cos0 0
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/2 /2 /2 /2

0

sin sin
4

a b a b
ik x y ikx iky

a b a b

E E
E e dxdy e dx e dy

f f

E

       

 

 



   

  
      

  

  
   

  

 (11f) 

 

Here 

1 1
sin sin

2 2

X
ka ka

f
       (11g) 

1 1
sin cos

2 2

Y
kb kb

f
       (11h) 

 

Finally, the intensity distribution is given by 

 
22

0

sin sin
I I

 

 

  
   

   
   (11i). 

 

A typical diffraction pattern is shown in the figure. 

 

Note that for an aperture of arbitrary shape the total electric field is 

 

( sin sin sin cos )0

2

ik x y

S

E
E e dxdy

f

       (12). 
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Only when S is rectangular can the surface integral be carried out as in Eq. 11f. Some shapes can 

be considered as combination of multiple rectangles. So they can be dealt with using multiple-

aperture diffraction approach. 

  

(ii) Multiple apertures 

 

Before considering multiple apertures, let us first consider an aperture which is centered at (x0, y0) 

instead of (0, 0). Still taking (0, 0) as the reference point for phase difference, the total electric 

field then becomes 

 

0 0

0 0

0 0

/2 /2
sin sin sin cos0

2
/2 /2

( sin cos )sin

0

sin sin
4

x a y b
ikx iky

x a y b

ik x y

E
E e dx e dy

f

E e

   

   

 

 

 



  
    

  

  
   

  

  (13a). 

 

The intensity distribution is still the same as Eq. 11i. 

 

Now, for two identical apertures centered at (x1, y1) and (x2, y2), respectively, the total field is 

then 

1 1 2 2( sin cos )sin ( sin cos )sin

0

sin sin
4 ( )ik x y ik x yE E e e      

 

   
   

  
 (13b) 

The extra factor 1 1 2 2( sin cos )sin ( sin cos )sin( )ik x y ik x ye e        leads to the interference effect between the 

two apertures. Using the same approach, multiple apertures can be dealt with accordingly. 

 

2E) Circular aperture 

 

For a circular aperture of radius a one should simply use Eq. 12 to carry out the integral. Due to 

cylindrical symmetry of the geometry, the diffraction pattern depends only on . The pattern on 

the screen is a series of concentric circular bands, as shown in the figure. The angular width of 

the central peak (spot) is  
2

1
0

2 ( sin )

sin

J ka
I I

ka






 
  

 
. ( )nJ x  is a special function called the Bessel 

Function of the first kind. They can be calculated numerically. The first root of 1( ) 0J x   is x = 

3.83. Let sin 3.83ka   , we get the angular width of the first maximum 

max 0.61
a


    (14c) 

 



15 

 
 

The light spot on the screen on the focal plane of the lens then has the radius of 

 

max max 0.61
f

r f
a


   (14d) 

 

If two light beams with the incidence angles differing 

only by max  , then the two spots on the screen will 

overlap on top of one another and cannot be resolved. 

This sets the limit to distinguish two nearly parallel 

beams, or the resolution, of the lens. The smaller the max  

is, the better the resolution will be. Therefore, one should 

use lenses as large as possible to achieve high resolution. 

The same is true for mirrors. That is one of the two major 

reasons that the primary lenses or mirrors of astronomy 

telescopes are always very large. The other reason is to 

collect as much light from distant objects as possible. The 

collecting power is obviously proportional to the area of 

the primary mirror.  

 

2F) Fresnel Diffraction 

 

The problems we have studied so far are under the condition that the observation distance is 

much larger than the aperture size, i. e., far field diffraction. When such condition no longer 

holds, the diffraction theory has to be implemented with its exact form. Rather than giving a 

general formula, we study an example to illustrate how it works. Consider a circular aperture 

illuminated by a plane wave at normal incidence, as shown in the figure. We want to find the 

electric field at a position on the central axis of the aperture at distance d from the aperture. Each 
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point on the aperture is still a new point source of EM waves. 

The contribution of a concentric ring of radius r and width dr 

on the aperture is, according to Fraunhofer diffraction,  

 

2 2

2 2

2
= cos( )

rdr
dE k d r

d r





  (15a). 

 

Here 2 rdr  is the area of the ring, 2 2d r  is the distance 

from the source to the observation point, 2 2cos( )k d r  is 

the phase, and we take the real form for convenience. In the 

exact form of diffraction theory, however, there should also be a direction factor cos , where   

is the angle between the normal direction of the aperture and the source-to-point distance vector. 

In the present case, 

 

2 2
cos

d

d r
 


  (15b). 

 

So the total field is 

 

2 2

0 2 20

2
2 cos( )d

R d
E E r d r r

d r





 

   (15c). 

 

The integration in Eq. 15c cannot be carried out analytically. We therefore examine the equation 

numerically instead. The integrant function in Eq. 15c is 

 

2 2

2 2

2
( ) 2 cos( )

d
f r r d r

d r





 


 (15d). 

 

Assuming 100R   and 10d  , the integrant 

function is plotted in the right figure. One can see 

that the function turns to positive and negative 

alternatively as r increases. If the aperture is not a 

clear circular hole, but is decorated with a series of 

concentric opaque rings. The radii and widths of the 

rings are such that they correspond to the regions of 

r when f(r) is positive (or negative). The positive regions of f(r) then become zero in value and 

only the negative ones are left. This will lead to the integration to become very large because the 

negative ones are no longer canceled by the positive ones. The effect is like the plane wave is 

focused by the aperture. Such a device is called zone plate. It can focus a plane wave without 

curved surface like lenses. This brings certain advantages in opto-electronics in 

telecommunications. The disadvantage is that it only works for a particular wavelength, while 

lenses work for a broad range of wavelengths.  
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