
Relativity 
 

1 Conceptual relativistic mechanics 

 

1.1 Space-time 

 

Suppose I am moving at constant velocity U relative to you, such as I am riding on a train, 

you have your coordinate system (X, Y, Z) and clock to record time t, and I have my 

coordinate system (X’, Y’, Z’) and my clock t’. Your XYZ axes directions are the same as 

my X’Y’Z’, and the velocity u is along the Z-direction. Neither of us is accelerating so we 

both are inertial reference systems. 

 

An event (anything you can think of, such 

as you open a door, someone next to you 

hits you, etc.,) takes place at a particular 

place with coordinate (x, y, z) and at time 

t, according to you using your coordinate 

system and clock. I see the same event 

happens, and I record its coordinate (x’, y’, 

z’) and time t’. 

 

Let’s now change the notation a little bit for convenience. 

  

The space-time 4-vector that describes the place and time the event takes place is 

),(),,,(~
321 ictxictxxxx


 , according go you, and 

)','()',',','('~
321 ictxictxxxx


 according to me. Here c is the speed of light in vacuum, and 

1i   . 

(Notation is slightly different from different textbooks. The term ict is used here instead of ct) 

 

The relation between what I observe and what you observe of the same event is in classic 

physics (Galileo transformation) 
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Example-1 Speed of a particle as seen by you and me. 

 

Suppose a particle is moving along the z-direction at speed V as seen by you. What is its 

speed seen by me? 

 

Answer: 

 

Let’s consider two events. You see: 

Event-1: the particle is at z = 0 at t = 0. 

Event-2: the particle is at z = VT at t = T. The speed of the particle you see is  

(VT – 0)/T = V 

x

x’(x,y,z,t)

(x’,y’,z’,t’)

x

x’(x,y,z,t)

(x’,y’,z’,t’)



 

I see the two events too. According to me and the Galileo transformation, 

Event-1: the particle is at z’ = 0 at t’ = 0 (this is just for convenience) 

Event-2: the particle is at z’ = z – ut, at t’ = t = T. The speed of the particle I see is 

V’ = (z’ – 0)/t’ = (z – uT)/T = V – u. This is the ‘speed addition rule’ which is consistent with 

common sense. 

The accelerations are 
'

' 0
'

dV dV du dV dV
a a

dt dt dt dt dt
       . So F ma , and ' ' 'F m a , if   

F’ = F and m’ = m, which means Newton’s Laws are true in both reference systems. 

 

But in Einstein’s Special Relativity 
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In matrix form: 
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or in short, xx ~~  , where  is the Lorentz Transformation matrix. 

 

Example-2 Reconsider the case in Example-1 using Relativity transformation. 

 

Using eq. (2) and after some algebra we have
2/1

'
cVu

uV
V




 . The result is the same as in 

Example-1 if both V and u are << c.  

 

Note also that V’ = c if V = c, i. e., speed of light in vacuum is constant, regardless of the 

speed of the light source or observer. 

 

Einstein’s two postulates: 

 

 The principle of relativity. The laws of physics apply in all inertial reference 

systems. 



 The universal speed of light. The speed of light in vacuum is the same for all inertial 

observers, regardless of the motion of the source. 

 

Einstein’s principle of relativity requires that all physics laws be the same in any coordinates 

(frames) that are not accelerating. For example, if in your frame, 0 B


, then  in my frame 

(I am still riding on a train),I should have 0''  B


 

 

If some laws do not follow that rule, such as Newton’s law, then they have to be modified. 

But first, we have to find out how physical quantities other than space-time change 

(transform) from one frame to another. For example, you see a magnetic field B


 at a 

particular place and at a particular time, I see the same field at the same space-time (although 

its coordinates and time must be Lorentz transformed) but its value is 'B


. What is the 

relationship between B


 and 'B


?  

 

Equation 3 brings some interesting relativistic effects, one of which is the dependence of t’ on 

x3, i. e., time spends on space. Let us look at a specific case. Suppose two events took place at 

(x1, ict1) and (x2, ict2) according to S. Event-2 took place after event-1 so t2 > t1. To S’, the 

time interval between the two events is ))(( 12212

'
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Note that if )( 12212 xx
c

u
tt  , then '
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'

2 tt   becomes negative, i. e., to S’, event-1 took place 

after event-2. 

 

Let us now see how large x2 – x1 must be in order to reverse the time sequence in S’. Since 

the maximum u is c, we see that when x2 – x1 > c(t2 – t1) then this can happen. However, the 

two events that satisfy such condition cannot be logically correlated, i. e., event-2 happens 

because event-1 happens. This is because the distance between the two events is too large 

even for light to travel from event-1 to event-2 in time before event-2 takes place. 

 

1.2 Proper time 

 
2222~~~ tcxxxx 


 is an invariant, that means '~'~~~ xxxx   (Give a 2-D example) 

(Exercise: Verify '~'~~~ xxxx   using the Lorentz Transformation) 

 

Consider a particle moving at speed u according to you. According to the coordinate system 

on the particle (and therefore moving with the particle) the space-time of the particle is X = 

(0, ic), and according to you it is ),(),,,(~
321 ictxictxxxx


 . X and x~  are related by Lorentz 

Transformation. Furthermore, xxXX ~~   

 

Now consider a small increment of time, then dX = (0, icd), and 
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321 icdtxdicdtdxdxdxxd


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xdxddXdX ~~    (5) 

Proper time is defined as dXdX
c

i
d 


  . Using Eq. (5), we have 
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Here the ordinary velocity is 
dt

xd
u



  , in your coordinate (often called the laboratory 

coordinate). Proper time d is an invariant, i. e., I see the same d as you do. 

 

 

1.3 Other 4-vectors 

 

The way to go is to construct 4-vectors, because 4-vectors transform from one frame to 

another just like the space-time 4-vector ),,,( 321 ictxxx . 
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U
~

 is a 4-vector because xd~  is a 4-vector and d is an invariant. 

 

Momentum 4-vector )/,(
~~

ciWpUmP


 , where m is the mass of the particle. Mass m is an 

invariant. W is (assigned as) the total energy of the particle, = mc
2
. This is the famous 

Energy = Mc
2

 formula, where M is the ‘moving mass’ = m. ump


 is now the momentum. 

Compared with the classic momentum, this relativistic momentum has an extra factor , or 

one could say it still maintains the form of uM


 with the moving mass M = m. 

 

In particle’s frame, the particle is always at rest so its 4-vector momentum is 

)/,0(),0(
~

00 ciWimcP


 , so the rest energy W0 = mc
2
. 

Now 0

~
P  is the 4-vector momentum of the particle seen in particle’s frame, and P

~
is its 

momentum seen in the laboratory frame, so PPPP
~~~~

00  . This leads to another famous 

formula 
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Here p is the momentum of the particle.  

 

The kinetic energy of a particle is defined as the difference of KE = W(p) – W(p=0). Using 

Eq. (8)  

 

KE = 2422)( mccmpc    (9). 

 

When pc << mc
2
, Eq. (9) becomes KE = 0.5p

2
/m, which is the same as in classic mechanics. 

 

For photon which is massless, W = pc, according to Eq. (8). Since a photon has energy W = 

hf, where h is the Planck constant and f the frequency, the momentum of a photon is hf/c. 

 

Lorentz Transformation 
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In fact all four-vectors follow Lorentz transformation. 

 



Conservation laws: The relativistic momentum and energy are conserved in an isolated 

system. 

 

Example-3 A number of particles with momentums {pj} and energies {Ej} as measured in 

the laboratory reference frame, all along z-axis. Find the speed of the center of mass of the 

particles. 

 

Answer: The 4-vector momentum of the particle system is )/,(
~

cEipP jj  . In the 

center of mass frame S’, the total momentum of the particles is zero. 

i. e., )/',0('
~

ciWP  . We need to find the Lorentz transformation that make PP
~

'
~

 . Using 

Eq. (4) with x and ct replaced by  jp  and cE j / , we get 




j

j

E

pc
 , which is the 

speed of the center of mass divided by c. 

 

 

Example-4 Two particles of rest mass m are moving at speed 0.6c in opposite directions 

towards each other in a collision course. After collision they form a lump at rest. Find the 

mass of the lump M. 

 

Answers: The total momentum of the two particle system is zero before and after. So it is 

trivial. 

 

The energy of each particle before collision is 2mc , with 6.0 . 

By energy conservation, the total energy of the system after collision is 22 2 mcMc  . This 

results in M = 2.5 m, i. e., the mass of the lump is increased by 0.5 m which comes from the 

kinetic energy before the collision. 

 

Example 5 As seen in the figure, a photon of energy E0 collides 

with a particle (an electron) of mass m at rest. After the collision 

the photon is moving at angle  relative to its original motion 

direction and its energy has changed to E. Find E. 

 

Answer: Let the momentum of the electron after collision to be pe, that of the photon pp. Now 

apply momentum (two-dimensional) and energy conservation. 

 

In Y-direction,  sinsin0 pe pp   (i) 

pcpE    (ii) 

In X-direction,  coscos/0 ep ppcE   (iii) 

Energy before collision = E0 + mc
2
. 

Energy after collision = 4222 cmcpE e  . So 

4222 cmcpE e  = E0 + mc
2
.  (iv) 

In the above four equations there are four unknowns: E, , pp, and pe. Using (ii) to replace pp 

by E in (i) and (iii), and combine (i) and (iii) to eliminate . Then eliminate pe to get the final 

answer 
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


(before) (after)



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/(1
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2 Emc
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
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
. 

In terms of wavelength E = hc/, we get )cos1(0  
mc

h
.  

This is the Compton Scattering experiment. The wavelength is ~ Å (X-ray).  Ans. 

 

Dynamics  
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2  Doppler Effect 

 

Consider a plane wave 
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The phase must be an invariant, that is, at the place and time E


 reaches maximum, 'E


 must 

do too. 

 

So   xktrktrk ~~
'  
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Where ),(~ ictrx


  is the normal space-time 4-vector and )/,(
~

cikk 


  is a new four-vector 

describing the wave propagation. 
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Here we take the relative velocity v


to be along the Z direction. 

 

From Eq. (12),  )(),/(,, 3332211 ckckkkkkk   '                
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i) Doppler Effect    
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ii) Moving Medium (How does refractive index n change with speed?) 

 

Note      2 2 2 2 2 2/ ' /k k k c k c       
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and 
'


 is given by Doppler Effect (Eq. 13), and depends on v k . 

 

In vacuum, n = 1, thus n’ = 1 => speed of light is always c in vacuum. 

 

 

3 Relativistic Electrodynamics 

 

Current density 4-vector 

 

 0 0( ,  ) ( , )J J ic U u i c         (15) 

0  is the charge density in the reference frame where the charge is stationary. 

0   due to Lorentz contraction and total charge conservation. 
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Example 6 A straight neutral wire with electric current I following through, as seen in frame 

S. Find the current and charge density in frame S’ which is moving at speed u along the wire. 

 

Answer: Take the wire direction as z and positive z is in the motion direction of S’, we can 

roughly write the 4-vector current density ( ,  0)J I . 

' ( ,  )J J I i I     . So in S’ there is a net line charge cI / , which will produce an 

electric field as well. 

 

Some more examples 

 

Example 7 Uniform line charge in motion. 
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Notice that 0  , or moving charge is denser. 

 

Example 8 A point charge in uniform motion. 
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 same as what we get before but much easier to get. 
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 both the format and the variables have to change. 
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