
Astrophysics 
 

1 Rotational reference frame 

A) An inertia force is acting on any stationary object in a rotational frame 
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where r is the distance of the object to the rotation axis. Potential energy of the force is 
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In spherical coordinate,  
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(Note that any force that is always pointing to a fixed axis or point can be expressed in the 

form of Eq. (3), i. e., one can always find a corresponding potential and the force is 

conservative.) 

 

Equal-potential surface = stationary liquid surface, because the 

net force on any point mass on a liquid surface along the 

tangential direction of the surface must be zero. 

The shape of a rotating liquid drop (could be a neutron star) is 
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The difference in r, r, at  = 0 and 90° is then 
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What is the shape of the surface of a glass of water in an accelerating bus? 

 

B) Additional inertia force on moving objects in a rotational frame. 

 

Consider an object moving radially at speed vr in a rotating frame. From a truly inertial frame, 

after t the angular momentum of the object increases by trvmrrmL r 22  , which 

must be brought by a tangential force F to provide the torque. So rrvm
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Likewise, an object in circular motion (speed v) in the spinning frame is viewed in a truly 

inertial frame as being in circular motion with orbital speed (v + r). The acceleration is then 
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 . The first term is the normal circular motion acceleration seen 

in the spinning frame, the second term is the inertia force, and the third term is due to motion 

of the object in the spinning frame.  

In general, the Coriolis force is  
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 2 Binary system 

The center of mass C is fixed, and both stars revolve around C. Note that 

although Star-A is rotating around C at a distance rA, the G-force that 

keeps the motion is pointing toward C but its strength is 
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homework, show that 
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3 Tides (Q3, IPhO-1996, http://www.jyu.fi/tdk/kastdk/olympiads/) 

Solution Problem 3 

a)  With the centre of the earth as origin, let the centre of mass C be located at l


. The 

distance l is determined by 

M l = Mm ( )L l , 

which gives 
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less than R, and thus inside  the earth. 

The centrifugal force must balance the gravitational attraction between the moon and the 

earth: 
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 (This corresponds to a period  2/ = 27.2 days.) We have used (1) to eliminate l. 

 

b)  The potential energy of the mass point m consists of three contributions: 

(1) Potential energy because of rotation (in the rotating frame of reference, see the problem 

text), 
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where 

r1 is the distance from C. This corresponds to the centrifugal force m r 2

1 , directed 

outwards from C. 

 

 (2) Gravitational attraction to the earth, 
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 (3) Gravitational attraction to the moon, 
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where 

rm  is the distance from the moon.  



Describing the position of m by polar coordinates r,  in the plane orthogonal to the axis of 

rotation (see figure), we have 

  
r (r l ) r 2rl l2 2 2

1

2     cos .  

 

 
 

Adding the three potential energy contributions, we obtain 
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Here l is given by (1) and 
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c)  Since the ratio r/L = a is very small, we may use the expansion 
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Insertion into the expression (3) for the potential energy gives 
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apart from a constant. We have used that  
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when the value of  2 , equation (2), is inserted. 

 



The form of the liquid surface is such that  a mass point has the same energy V everywhere on 

the surface. (This is equivalent to requiring no net force tangential to the surface.) Putting 

 

r = R + h, 

 

where the tide h is much smaller than R, we have approximately 
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as well as  
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Inserting this, and the value (2) of  into (4), we have  
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again apart from a constant. 

 

The magnitude of the first term on the right-hand side of (5) is a factor 
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smaller than the second term, thus negligible. If the remaining two terms in equation (5) 

compensate each other, i.e. 
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then the mass point m has the same energy everywhere on the surface. Here r 2  can safely be 

approximated by R2 , giving the tidal bulge 
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The largest value h M R MLmmax 
4 3 occurs for   = 0 or , in the direction of the moon or in 

the opposite direction, while the smallest value h M R MLmmin  
4 32  corresponds to  = /2 

or 3/2. The difference between high tide and low tide is therefore 
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(The values for high and low tide are determined up to an additive constant, but the 

difference is of course independent of this.) 

 



4 Fly-by 

 

Recall that for a spacecraft in a G-field the trajectory is elliptical when total energy E is 

negative, parabolic when E = 0, and hyperbolic when E > 0. The fly-by cases are E > 0. 

  See the file Scattering.pdf 

 

For G-field, replace 
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For larger scattering angle, one needs small impact parameter b. The speed of the spacecraft 

before and after encounter remains the same, due to energy conservation. 

 

 

5 Circular motion with mass distribution in galaxies 

Mass enclosed by the orbit of a star can be considered as 

concentrated at the center. Mass outside the orbit has no 

net G-force on the star. 

 

6 Gravitational red shift, G-lens (bending of light by a star) 

 

A photon can be regarded as having an effective gravitational mass such that  

 

Photon energy = 2cmh p   (10), 

 

where   is the frequency of the photon and h the Planck constant. At distance r from a star of 

mass M its gravitation potential energy is  
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Likewise, the star also exerts G-force on the photon as if it has mass mp, and the light path 

becomes curved. There is a problem in the homework to calculate the red shift and bending 

of light path. 

 



7 Stars 

 

(A) Blackbody radiation 

 

A blackbody reflects no light. When it is kept at temperature T, it emits EM-waves from each 

unit area of the surface with a spectrum given below. 
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Here  is the wavelength, h is the Planck constant, kB is the 

Boltzmann constant. (Recall thermodynamics). 

Total power/(unit area) = 4
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The wavelength at which I() reaches maximum is 

max = (3.0 x 10
6
)/T (nm)  (14) 

For a grey body  
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Where R() is its reflectivity, and () is called emissivity. 

 

(B) Luminosity of a star (L) 

Stars can be regarded as blackbody as far as their light emission is concerned. The total 

energy per second emitted by a star is called its luminosity L. According to Eq. (13), 
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where R is the star radius and T its surface temperature. 

The light intensity S (Poynting’s vector) at a distance r from a 

star of luminosity L satisfies 
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So light intensity decreases with 1/r
2

. If L can somehow be 

determined, then the distance r of the star can be too, since S 

can always be measured. 

 

(C) Determine distance of stars 

 

Some basic units (for convenience): 

• 1 astronomical unit (AU) = Sun-Earth distance = 1.5 x 10
11

 m. 

• 1 light year = 365 x 24 x 60 x 60 x C = 9.46 x 10
15

 m = 63,000 AU 

• 1 arc second =  /(60*60*180) = 4.85 x 10
-6

 radian 

 

 
 

The small angle formula 

d=L  (18) 
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Parallax: The apparent position change of nearby 

stars in the sky relative to far away background 

stars due to orbital motion of Earth. If the angular 

displacement is p, then the distance to the star d 

can be determined because the orbital size of 

Earth is known. 

 

Using Eq. (17) the luminosity of these stars can 

be obtained. They serve as luminosity standards 

for others. The light spectrum of a far away star 

is compared with that of the standard ones, and if 

a match is found, its luminosity L is taken as the 

same as the matching standard star. Its distance 

can then be determined, again using Eq. (17). 

 

(D) Resolution of telescopes 
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For all wavelength from X-ray to infrared, a is the radius of 

the primary mirror/lens. For micro and radio waves, a is the 

diameter of the telescope disk for a single telescope, and is 

the distance between two telescopes if they are connected 

in phase. For a telescope array, a is the length of the entire 

array.  

 

 

 


