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Lecture I: Examples of applications of 

Newton’s Law

(1)Projectile motion

(2)Harmonic Oscillator

(3)Conservation Laws



Examples of Newton’s Second Law:

Projectile motion (throwing a ball 

across space)



Mathematics of Projectile motion

• Trick: solve Newton’s equation in x- and y-

direction separately!

• Fx=max,   Fy=may

• For constant Fx and Fy, we have

y

x



Mathematics of Projectile motion
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Usually Fy=-mg (gravitational force)

Fx=0,vxo (vyo)  0



Mathematics of Projectile motion

2

2

2

1
)45sin(0)(

)0(

2

1
)45cos(0)(

t
m

mg
tvty

t
m

tvtx

o

o








 












Example: throwing a ball with initial velocity 

v at 45o to horizontal.

Exercise: when and where will the ball hit the 

ground?



Example(1) Spring + attachment

0

X-axis

K



Example(1) Spring + attachment

X-axis

0

Hook‟s Law: need force F=-Kx to stretch 
(or compress) the spring.  

K x

Depends on 

material



Example(1) Spring + attachment

0

When the spring is released, the mass 
begins to move!

v

m
X-axis



Example(1) Spring + attachment

0

This is an example of Simple Harmonic 
Motion

X-axis



Mathematics of Simple Harmonic 

Motion of Spring+ load

• Force acting on the mass = -Kx =ma

• - the acceleration of the mass when it is at 

position x is a = -Kx/m!

• Question: can we solve the mathematical 

problem of how the position of the mass 

changes with time (x(t)) with this 

information?



Mathematics of Simple Harmonic 

Motion of Spring+ load

• Answer: Yes! with help of calculus

• The equation a = -Kx/m is called a 

differential equation and can be solved.

• (Notice that although calculus is not 

“required” in IPhO, you will find the 

questions much easier if you know it)



Mathematics of Simple Harmonic 

Motion of Spring+ load

• Anyway, let me try a solution of form 

x(t)=acos(t)

• A,  are numbers to be determined from the 

equation.

• To show that x(t) is a solution, let us 

calculate v(t) and a(t)



Mathematics of Simple Harmonic 

Motion of Spring+ load
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First we calculate v(t)



Mathematics of Simple Harmonic 

Motion of Spring+ load
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Now we calculate a(t)



Mathematics of Simple Harmonic 

Motion of Spring+ load

Compare with equation

a(t) = -Kx(t)/m 

m

K
2

i.e., the frequency of oscillation of the 

load is determined by the spring 

constant K and mass of the load m



Mathematics of Simple Harmonic 

Motion of Spring+ load

Exercise: Show that x(t)=Bsin(t) is also a 

solution of the equation a(t) = -Kx(t)/m .

Questions: Can you find more solutions?

What determines A (or B)?



Example: spring in series

Exercise: What is the oscillation frequency(ies) 

of the following spring configuration?

K
1

M K2 M



Example: spring in series
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Can you determine the frequency of 

oscillation  from these equations?



Another example: swing

http://www.phy.ntnu.edu.tw/~hwang/shm/shm.html


Mathematics of Swing = Harmonic 

Oscillator under gravity

• T=mgcos((t))

• Net force (N)= -mgsin((t))

• Notice: (1)both magnitude 

and direction of force 

changes with time &

• (2)the length of the string l, 

is fixed when  small.
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Mathematics of Swing = Harmonic 

Oscillator under gravity

•  trick to solve the 

problem when  is small!

• Notice:
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Mathematics of Swing = Harmonic 

Oscillator under gravity

• when  is small!

T

-mg



N
0)(

),()(

)(),()(

)sin(,1)cos(









tN

tmgtN

ltytltx

y

x 







Mathematics of Swing = Harmonic 

Oscillator under gravity

•  we have approximately
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Mathematics of Swing = Harmonic 

Oscillator under gravity

•  we have approximately 

in x-direction

T
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which is same as equation 

for spring+load system 

except  K/mg/l



II. Conservation Laws



(1) Conservation of momentum

Consider a group of masses mi with

forces Fij between them and external 

forces Fi acting on each of them, i.e. 

Newton’s Law is
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Notice Fii=0, why?



Let us study what happens to the CM 

coordinate
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Newton’s third Law



Let us study what happens to the CM 

coordinate
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In particular, when total external force=0,

we have

Total momentum of the system is a constant of 

motion (Law of conservation of momentum)



Recall for a rigid body

• The center of mass is a special point in a 

rigid body with position defined by
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This point stays at rest or in uniform motion when 

there is no net force acting on the body



An Example of application

• Two cars of same mass M are resting side by side 

on a frictionless surface. A person with mass m 

stands on one car originally. He jump to the other 

car and jump back. Can we tell anything about the 

end velocities of the two cars?
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An Example of application

• Two cars of same mass M are resting side by side 

on a frictionless surface. A person with mass m 

stands on one car originally. He push the other 

car away. Can we tell anything about the end 

velocities of the two cars?
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An Example of application

• Two cars of same mass M are moving side by side

on a frictionless surface with speed v. A person 

with mass m stands on one car originally. He push 

the other car away. Can we tell anything about the 

end velocities of the two cars?
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Conservation of angular momentum
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We shall discuss this when we discuss 

circular motion



Conservation of Energy

First question: what is energy?



After working for a long time, we
start to feel tired.

We said 
that we are 
running out 
of energy. 



The term energy is often used to
describe how long we can sustain our
usage of force (or work).

?



In physics, the terms 
work and energy have 

similar qualitative 
meaning as we use them 
in everyday life, except 

that rigorous 
mathematical definitions 
are given to these terms 
in Newtonian mechanics.



Work 
Done



AB

Imagine you have to move a piece of heavy furniture 
from position A to position B in a room.



AB

Imagine you have to move a piece of heavy furniture 
from position A to position B in a room.



Afterward, when you are chatting with your 
friend, you try to explain to him/her how much 
hard work you have done. Well, suppose your 
friend wants to know whether you are just 

exaggerating or whether you have really done a 
lot of work.

Hi!



So come the question:

Is there a consistent way to
measure how much work one
has done in situation like the
above?



We can start by listing the factors we
believe which determines „work done‟ in the
above example:

AB

1. How big and heavy the furniture is.

2. How long you have spent on moving the
furniture.

3. How far is the distance between A and B.

4. Friction between ground and furniture.



AB

1. How big and heavy the furniture is.

2. How long you have spent on moving the furniture.

3. How far is the distance between A and B.

4. Friction between ground and furniture.

Questions:

Do you think these are reasonable factors
affecting work done? Can you think of other
factors? Can you build up a scientific method
of measuring work done based on the above
factors?





F

d

Fd=Fdcos

In Mechanics the work done by a constant force 
F on an object is equal to Fd. d is the distance 
where the object has moved under the force.



Let‟s try to apply the formula. First
let us assume that  = 0 and the
ground is flat.

W = FdAB

AB
FdAB

= Ffriction

We expect!



The formula looks OK. Agree?

W = FdAB

AB
FdAB

= Ffriction



But there is a problem. Imagine
what happens if the ground is
frictionless, Ffriction=0 (e.g. on top of
ice).

W = FdAB

AB dAB

0

?
= FfrictionF

0



It seems that you don‟t have to do any 
work to move the furniture in this case! 
Can this be right?
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In fact, you are doing more than just that 
if you think about Newton‟s third law.



Do you need to do work to “stand still”?



three different work done:

(1)the work done by you; and 

(2)the work done on the furniture to overcome 
friction, and 

(3)the work done on the furniture to change the 
velocity of the furniture (initial and final 
pushes).

B
A



Question:

If used more appropriately, do you think the
formula W = Fd can still be applied to describe
ALL the work done? And How?



Work done to change the state of motion:

kinetic energy



Question:

where does your energy go? Do they just
vanish?

Physics provide a rather surprising answer:
Energy can never vanish, they can just be
transformed from one form into another.



Therefore, all you have to do is just an initial
push, the object (furniture) slides by itself
from point A to point B and is stopped by
another push.

Let us go back to the furniture problem and ask in
what way our energy are transformed. Let me
assume for simplicity that the surface between
furniture and ground is frictionless, but there is
enough friction between you and the ground so
that you can stand still.

v

A

B



In this case, we have done work at two instances:
(1)At the beginning, when we do work on the
object to start it moving with velocity v. Using his
equations, Newton found that in this case, we have
transferred our energy to the object in forms of
so called kinetic energy, K = mv2/2.

v

A

B



This result can be understood roughly as follows:

Assume that the force is constant and has act on
the object for a period of (short) time tD. During
this time, the distance traveled by the object is
D.

Using Newton‟s Law, we find that

(1)between tD > t > 0, the velocity of the
object is

v(t) = at = (F/m)t,

and displacement is

x(t) = at2/2.
A



(2)for t > tD, the velocity is

v = atD.

This result can be understood roughly as follows:

Assume that the force is constant and has act on
the object for a period of (short) time tD. During
this time, the distance traveled by the object is
D.

Using Newton‟s Law, we find that

v

ttD



Using the displacement equation, we obtain

D = atD
2/2  => v = atD = (2Da)1/2

and mv2/2 = m(2Da)/2 = DF = work done!

This result can be understood roughly as follows:

Assume that the force is constant and has act on
the object for a period of (short) time tD. During
this time, the distance traveled by the object is
D.

Using Newton‟s Law, we find that

i.e. Kinetic energy is equal to the work we have 
done on the object to make it move with velocity v.



Question: Is this just a mathematical 
trick?

If kinetic energy is a form of “energy”.
Can it be used to do work?



Let‟s see what happens when the object 
is stopped at position B

Unless there exists a large friction
between G and the ground, otherwise G
itself will be set into motion by the
object, i.e. the furniture has acquired
the ability to do work!

B



Potential 
Energy



imagine releasing a 
small ball at the top 
of a building outside 
the window. 

The concept of potential energy can be 
understood by a simple question: 

What is going to 
happen to the ball?

What is 
going to 

happen on 
me?



Of course we all know that the ball will fall down
with increasing speed because of gravitational
force F = mg. The fact that the ball‟s speed is
increasing means that it‟s kinetic energy is
increasing.

So we have the 
question: where is 
the energy coming 

from?



Newton found that…

according to his equations, the source of
this energy can be assigned to the
gravitational force, in the form…

X#@
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 U=mgh



 U=mgh

where U is the change in
gravitational energy when the object
goes through a change in height h.
Notice that U and h are negative if
the object‟s final height is less than
the initial height.

h

m

g



 U=mgh

Exercise: Prove that the total energy

E=mv2/2 + U(h) is a constant of

motion (conserved) for an object

moving under gravitational force.

h

m

g



Another example of potential energy:

spring (or Harmonic oscillator)

0

X-axis

Potential energy = Kx2/2 = energy stored in spring

K



Another example of potential energy:

spring (or Harmonic oscillator)

X-axis

0

Potential energy = Kx2/2 = energy stored in spring

K x



Another example of potential energy:

spring (or Harmonic oscillator)

0

Potential energy = Kx2/2 = energy stored in spring

Kinetic energy = mv2/2 = kinetic energy of mass m.

v

m
X-axis



Another example of potential energy:

spring (or Harmonic oscillator)

0

Potential energy = Kx2/2 = energy stored in spring

Kinetic energy = mv2/2 = kinetic energy of small ball.

Ball oscillate => Potential energy  Kinetic energy

X-axis



Another example of potential energy:

spring (or Harmonic oscillator)

0

Potential energy = Kx2/2 = energy stored in spring

Kinetic energy = mv2/2 = kinetic energy of small ball.

Ball oscillate => Potential energy  Kinetic energy

X-axis



Another example of potential energy:

spring (or Harmonic oscillator)

0

X-axis

Exercise: Using the solution of Newton’s equation, 

show that P.E.+ K.E. is a constant of motion for 

Harmonic oscillator

K



Mathematics of the Conservation Energy

Consider a particle of mass m moving 

under a conservative force
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Mathematics of the Conservation Energy

Consider a particle of mass m moving 

under a conservative force

)(
2

1

);(..

);(

2 xU
dt

d
vm

dt

d

xU
dt

xd

dt

vd
vm

xU
dt

vd
m



























Mathematics of the Conservation Energy

Consider a particle of mass m moving 

under a conservative force
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Example of Application

• Consider the 

figure.

• What is the 

minimum value 

of v needed for 

the block to travel 

to point D? 

h1

h2

A B C D

v



Example of Application

• Ans:

• mg(h2-h1)= ½ 

mv2

• (assuming no 

friction)

h1

h2

A B C D

v



Friction

• In previous examples mechanical energy of 

a system is conserved.

• This is not true in presence of frictional 

force.

• In this case energy is converted into heat, 

sound, etc.

• But total energy is still conserved.



End of lecture II


