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Center of Mass and Momentum 

 

Reading: Chapter 9 

 

The Center of Mass 

 
See animation “An Object Tossed Along a Parabolic Path”. 

 

The center of mass of a body or a system of bodies is the 

point that moves as though all of the mass were 

concentrated there and all external forces were applied 

there. 
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For 2 particles, 
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In vector form, 
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Solid Bodies 
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If the object has uniform density, 
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dV

M

V
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Rewriting dm = dV and m = V, we obtain 
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Note: 

 

[1] If the object has a point of symmetry, then the center of 

mass lies at that point. 

If the object has a line of symmetry, then the center of 

mass lies on that line. 
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If the object has a plane of symmetry, then the center of 

mass lies in that plane. 

  

[2] The center of mass of an object need not lie within the 

object e.g. a doughnut. 

 

Examples 

 

9-1 Three particles of masses m1 = 1.2 kg, m2 = 2.5 kg, m3 

= 3.4 kg are located at the corners of an equilateral triangle 

of edge a = 140 cm. Where is the center of mass? 

 
m1 = 1.2  x1 = 0   y1 = 0 

m2 = 2.5  x2 = 140   y2 = 0 

m3 = 3.4  x3 = 140cos60o  y3 = 140sin60o 
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  = 58 cm (ans) 
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9-2 A uniform circular metal plate P of radius 2R has a disk 

of radius R removed from it. Locate its centre of mass lying 

on the x axis. 

 

Let  = density, 

t = thickness 

Mass: 

Object P: mS  

= (2R)2t  R2t 

 = 3R2t 

Object S: mP = R2t 

Object C: mC  

= (2R)2t = 4R2t 

 

Center of mass: 

Object P: xP = ? 

Object S: xS = R 

Object C: xC = 0 

 

Since 
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Newton’s Second Law for a System of Particles 
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In terms of components, 
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See Youtube “Zoe Ballet Grand Jeté”.
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Linear Momentum 
 

For a single particle, the linear momentum is 
  

p mv . 
 

Newton’s law: 
 

.net
dt

pd
F


  

 

For a system of particles, the total linear momentum is 
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Differentiating the position of the center of mass, 
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The linear momentum of a system of particles is equal to 

the product of the total mass M of the system and the 

velocity of the center of mass. 

 

Newton’s law for a system of particles: 
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Hence 
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Collision and Impulse 

 
Newton’s law: 
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Integrating from just before the collision to just afterwards, 
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Change in linear momentum during the collision: 
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The integral is a measure of both the strength and the 

duration of the collision force. It is called the impulse J of 

the collision: 
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Impulse-linear momentum theorem: 
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In terms of components, 
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Average force: 

 

J F t  , 

 

where t is the duration of the 

collision. 
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Series of Collisions 

 
n particles collide with R in time interval t. 

Total change in momentum = np.  

 

According to Newton’s law, 

average force acting on the particles 

= rate of change of momentum 

 
n

t
p

n

t
m v





 . 

 

Hence the average force acting on body R is: 

 

F
n

t
m v


 . 

 

If the colliding particles stop upon impact, v = v. 

If the colliding particles bounds elastically upon impact, v 

= 2v. 
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Examples 

 

9-4 Fig. 9-11 shows the typical acceleration of a male 

bighorn sheep when he runs head-first into another male. 

Assume that the sheep’s mass is 90.0 kg. What are the 

magnitudes of the impulse and average force due to the 

collision? 

 

Since 
dt

dv
a  , 







t

dttatv
0

')'()( . 

Hence the change in velocity is given by the area enclosed 

by the a-t curve. 

1ms 59.4)34)(27.0(
2

1 v  

Using the impulse-momentum theorem, 
1ms kg 413)59.4)(90(  vmpJ  

The magnitude of the impulse is 413 kg ms1.   (ans) 

The magnitude of the average force is 

N 1530
27.0

413||
av 




t

J
F    (ans) 

Remark: The collision time is prolonged by the flexibility 

of the horns. If the sheep were to hit skull-to-skull or skull-

to-horn, the collision duration would be 1/10 of what we 

used, and the average force would be 10 times of what we 

calculated! 
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9-5 Race-car wall collision. A race car collides with a 

racetrack wall at speeds vi = 70 ms1 and vf = 50 ms1 

before and after collision respectively (Fig. 9-12a).  His 

mass m is 80 kg. 

(a) What is the impulse J


 on the driver due to the 

collision? 

(b) The collision lasts for 14 ms. What is the magnitude of 

the average force on the driver during the collision? 

 

(a) Using the impulse-

momentum theorem, 

)( if

ifif

vvm

vmvmppJ







 

x component: 
)( ixfxx vvmJ   

)30cos7010cos50)(80( oo   

= 910 kg ms1 

y component: 

)( iyfyy vvmJ  )30sin7010sin50)(80( oo   

= 3495 kg ms1 

The impulse is then 1ms kg )ˆ3500ˆ910(  jiJ


   (ans) 

Magnitude: 1122 ms kg 3600ms kg 3616   yx JJJ  

Direction: ooo1 1051804.75tan  

x

y

J

J
    (ans) 

(b) N 102.6N 10583.2
014.0

3616 55

av 



t

J
F    (ans) 

Remark: The driver’s average acceleration is 2.583  

105/80  3220 ms2 = 329g – fatal collision! 
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Conservation of Linear Momentum 
 

If the system of particles is isolated (i.e. there are no 

external forces) and closed (i.e. no particles leave or enter 

the system), then 

 
Pconstant.  

 

Law of conservation of linear momentum: 

  
P P

i f
 . 

 

Examples 

 

9-7 Imagine a spaceship and cargo module, of total mass 

M, travelling in deep space with velocity vi = 2100 km/h 

relative to the Sun. With a small explosion, the ship ejects 

the cargo module, of mass 0.20M. The ship then travels 500 

km/h faster than the module; that is, the relative speed  vrel 

between the module and the ship is 500 km/h. What then is 

the velocity vf of the ship relative to the Sun? 

Using the conservation of 

linear momentum, 

fi PP   

ffi MvvvMMv 8.0)(2.0 rel   

rel2.0 vvv fi   

rel2.0 vvv if   

= 2100 + (0.2)(500) 

= 2200 km/h   (ans) 
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9-8 A firecracker placed inside a coconut of mass M, 

initially at rest on a frictionless floor, blows the fruit into 

three pieces and sends them sliding across the floor. An 

overhead view is shown in the figure. Piece C, with mass 

0.30M, has final speed vfc=5.0ms-1. 

(a) What is the speed of piece B, with mass 0.20M? 

(b) What is the speed of piece A? 

 
(a) Using the conservation of linear momentum, 

fxix PP   

fyiy PP   

050cos80cos oo  fAAfBBfCC vmvmvm    (1) 

050sin80sin oo  fBBfCC vmvm      (2) 

mA = 0.5M, mB = 0.2M, mC = 0.3M. 

(2): 050sin2.080sin3.0 oo  fBfC MvMv  

11

o

o

ms 6.9ms 64.95
50sin2.0

80sin3.0  







fBv  (ans) 

(b) (1): fAfBfC MvMvMv 5.050cos2.080cos3.0 oo   

1
oo

ms 0.3
5.0

50cos)64.9)(2.0(80cos)5)(3.0( 


fAv  (ans) 
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Inelastic Collisions in One Dimension 
 

In an inelastic collision, the kinetic energy of the system of 

colliding bodies is not conserved. 

 

In a completely inelastic collision, the colliding bodies 

stick together after the collision. 

 

However, the conservation of linear momentum still holds. 

 

m v m m V
1 1 2
 ( ) ,  or V

m

m m
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Example 

 

9-9 The ballistic pendulum was used to measure the speeds 

of bullets before electronic timing devices were developed. 

Here it consists of a large block of wood of mass M = 5.4 

kg, hanging from two long cords. A bullet of mass m = 9.5 

g is fired into the block, coming quickly to rest. The block 

+ bullet then swing upward, their center of mass rising a 

vertical distance h = 6.3 cm before the pendulum comes 

momentarily to rest at the end of its arc. What was the 

speed v of the bullet just prior to the collision? 

 
Using the conservation of momentum during collision, 

VmMmv )(          (1) 

Using the conservation of energy after collision, 

ghmMVmM )()(
2

1 2        (2) 

ghV 2  

(1): gh
m

mM
V

m

mM
v 2





  

1ms 630)063.0)(8.9)(2(
0095.0

0095.04.5 


  (ans) 
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9-10 Consider the collision of cars 1 and 2 with initial 

velocities v1i = +25 ms1 and v2i = 25 ms1 respectively. 

Let each car carry one driver. The total mass of cars 1 and 2 

are m1 = 1400 kg and m2 = 1400 kg respectively. 

(a) What are the changes v1 and v2 during their head-on 

and completely inelastic collision? 

(b) Repeat the calculation with an 80 kg passenger in car 1. 

 
(a) Using the conservation of momentum, 

ffii vmvmvmvm 22112211   

Since the collision is completely inelastic, v1f = v2f = V. 
Vmmvmvm ii )( 212211   

21

2211

mm

vmvm
V ii




  

0
14001400

)25)(1400()25)(1400(





  

1

111 ms 25)25(0  if vvv  (ans) 
1

222 ms 25)25(0  if vvv  (ans) 

(b) In this case, m1 is replaced by 1480 kg. 

1ms 694.0
14001480

)25)(1400()25)(1480( 



V  

1

111 ms 3.24)25(694.0  if vvv  (ans) 
1

222 ms 7.25)25(694.0  if vvv  (ans) 

Remark: The risk of fatality to a driver is less if that driver 

has a passenger in the car!
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Elastic Collisions in One Dimension 
 

Stationary Target 
 

In an elastic collision, the kinetic energy of each colliding 

body can change, but the total kinetic energy of the system 

does not change. 

 

In a closed, isolated system, the linear momentum of each 

colliding body can change, but the net linear momentum 

cannot change, regardless of whether the collision is elastic. 

 
Conservation of linear momentum: 
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Conservation of kinetic energy: 
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Rewriting these equations as 
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,)( 22111 ffi vmvvm   
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Dividing, 
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We have two linear equations for v1f and v2f. Solution: 
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Special situations: 

 

1. Equal masses: If m1 = m2, then v1f = 0 and v2f = v1i (pool 

player’s result). 

 

2. A massive target:If m2 >> m1, then 
 

if vv 11   and iif vv
m

m
v 11

2

1
2
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 . 

 

The light incident particle bounces back and the heavy 

target barely moves. 

 

3. A projectile:If m1 >> m2, then 
 

if vv 11   and if vv 12 2 . 
 

The incident particle is scarcely slowed by the collision. 
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Example 

 

9-11 Two metal spheres, suspended by vertical cords, 

initially just touch. Sphere 1, with mass m1 = 3 g, is pulled 

to the left to height h1 = 8.0 cm, and then released. After 

swinging down, it undergoes an elastic collision with 

sphere 2, whose mass m2 = 75 g. What is the velocity v1f of 

sphere 1 just after the collision? 

 

Using the conservation 

of energy, 
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Using the conservation of momentum, 

ffi vmvmvm 221111   

For elastic collisions, 
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)()( 112111 fifi vvmvvm   

252.1
075.003.0

075.003.0
1

21

21
1 

















 if v

mm

mm
v  

= 0.537 ms1  0.54 ms1 (ans) 
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Collisions in Two Dimensions 

 
Conservation of linear momentum: 

 

 x component:  ,coscos 22211111  ffi vmvmvm   

 y component:  .sinsin0 222111  ff vmvm   

 

Conservation of kinetic energy: 
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Typically, we know m1, m2, v1i and 1. Then we can solve 

for v1f, v2f and 2. 



 22 

Systems with Varying Mass: A Rocket 

 

Assume no gravity. Conservation of 

linear momentum: 

 

.fi PP   

 

Initial momentum = Mv 

Final momentum of the exhaust  

= (dM)U 

Final momentum of the rocket  

= (M + dM)(v + dv) 

 
).)(()( dvvdMMUdMMv   

 

Suppose the rocket ejects the 

exhaust at a velocity vrel. 

 
.relvdvvU   

 

Substituting and dividing by dt, 

 
,rel MdvdMv   

.rel
dt

dv
Mv

dt

dM
  

 

Since the rate of fuel consumption is 
dt

dM
R  , we have 

the first rocket equation: 
.rel MaRv   
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T  Rvrel is called the thrust of the rocket engine. Newton’s 

second law emerges. To find the velocity, 

 

,rel
M

dM
vdv   

 

Integrating, 

 

,rel





 f

i

f

i

M

M

v

v
M

dM
vdv  

.lnrel

f

i
if

M

M
vvv   (second rocket equation) 

 

Remark: Multistage rockets are used to reduce Mf in stages. 

 

Example 

 

A rocket with initial mass Mi = 850 kg consumes fuel at the 

rate R = 2.3 kgs1. The speed vrel of the exhaust gases 

relative to the rocket engine is 2800 ms1. What thrust does 

the rocket engine provide? What is the initial acceleration 

of the rocket? 

 

T = Rvrel = (2.3)(2800) = 6440 N  6400 N   (ans) 

2ms 6.7
850

6440 
M

T
a    (ans) 

Remark: Since a < g, the rocket cannot be launched from 

Earth’s surface. 


