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Conservation of Energy 

 

Reading: Chapter 8 

 

Potential Energy 
 

The energy associated with the configuration (or arrange-

ment) of a system of objects that exert a force on one 

another. 

e.g. Gravitational potential energy – associated with the 

state of separation between objects, which attract one 

another via the gravitational force. 

e.g. elastic potential energy – associated with the state of 

compression or extension of an elastic object. 

 
The change U in the gravitational potential energy  

= the work done by the applied force 

= the negative of the work done by the gravitational force. 

 

U W . 
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Conservative and Nonconservative Forces 
 

The net work done by a conservative force on a particle 

moving around any closed path is zero. 

 

e.g. of conservative force: gravitational force, spring force 

e.g. of nonconservative force: frictional force 

 
Since 

 
W W

ab ba, ,2
,

1
0   

 

we have 

 
W W W

ab ba ab, , ,
.

1 2 2
   

 

The work done by a conservative force on a particle 

moving between two points does not depend on the path 

taken by the particle. 
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Determining Potential Energy 

 

Work done by the force: 
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Hence the change in potential energy is: 
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Gravitational Potential Energy 
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which yields 

 
 U mg y y mg y

f i
  ( ) . 

 

Choosing the gravitational potential energy to be Ui = 0 at 

the reference point yi, we obtain 

 
U mgy . 
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Elastic Potential Energy 
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which yields 
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2. 

Choosing the spring potential energy to be Ui = 0 at the 

reference point xi = 0, which is the equilibrium position of 

the system, we obtain 

 

U x kx( ) .
1

2

2  

 

Conservation of Mechanical Energy 

 

Mechanical energy 

 
.mec UKE   

 

When a conservative force does work W on an object, it 

transfers kinetic energy to the object: 

 

.WK   
 

The change in potential energy is: 

 

U W . 
 

Combining, 
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 K U , 

 

or 

 

  E K U  0. 
 

Principle of conservation of mechanical energy – When 

only conservative forces act within a system, the kinetic 

energy and potential energy can change. However, their 

sum, the mechanical energy E of the system, does not 

change. 

 
See demonstration “The Interrupted Pendulum”. 

See Youtube “Conceptual Physics Conservation of Energy”
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Application – When the mechanical energy of a system is 

conserved, we can relate the total of kinetic energy and 

potential energy at one instant to that at another instant 

without considering the intermediate motion and without 

finding the work done by the forces involved. 

 

Example 

 

8-3 A child of mass m is released from rest at the top of a 

water slide, at height h = 8.5 m above the bottom of the 

slide. Assuming that the slide is frictionless because of the 

water on it, find the child’s speed at the bottom of the slide. 

 

 

Since the normal force does 

not do work on the child, 

energy is conserved. 

ttbb UKUK   

ttbb mgymvmgymv  22

2
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)(222

bttb yygvv   

Since vt = 0, yt  yb = h, we have 

ghvb 22   
1ms 13)5.8)(8.9(22  ghvb  (ans) 
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L 

d 
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A 61.0 kg bungee-cord jumper is on a bridge 45.0 m above 

a river. In its relaxed state, the elastic bungee cord has 

length L = 25.0 m. Assume that the cord obeys Hooke’s 

law, with a spring constant of 160 Nm-1. 

(a) If the jumper stops before reaching the water, what is 

the height h of his feet above the water at his lowest point? 

(b) What is the net force on him at his lowest point (in 

particular, is it zero)? 

(a) Using the conservation of energy, 
0 ge UUK  
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4.10or  9.17)7363.3)(25(27363.37363.3 2 d  

m 9.17d  (ans) 

 

(b) Force = k(d)  mg = (160)(17.9)  (61)(9.8)  

= 2270 N  (ans) 
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Reading a Potential Energy Curve 
 

From force to potential energy: 




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From potential energy to force: F x
dU x
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( )

( )
.   

e.g. spring: 2

2

1
)( kxxU   yields F x kx( ) .  

e.g. gravitation: U x mgx( )  yields F x mg( ) .  
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Turning Points 
 

In the potential energy curve, since U(x) + K(x) = E, 

 
K x E U x( ) ( ).   

 

Since K x mv( )
1 2

2
, it can never be negative. Hence the 

particle can never move to the left of x1. 

At x1, dU/dx is negative, hence the force on the particle is 

positive, and the particle will turn back and move to the 

right. x1 is called a turning point. 

 

Equilibrium Points – Positions where no forces act on the 

particle, i.e. U(x) has zero slope. 

 

Types of Equilibrium: 

 

Stable equilibrium – If slightly displaced, a restoring force 

appears and the particle returns to the original position. 

They correspond to the minima in U(x). 

e.g. when E = 1 J and x = x4. 

Unstable equilibrium – If slightly displaced, a force 

pushes it further away from the original position. They 

correspond to the maxima in U(x). 

e.g. when E = 3 J and x = x3. 

Neutral equilibrium – If slightly displaced, no forces act 

on the particle and it remains there. 

e.g. when E = 4 J and x is beyond x5. 
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Types of Motion: 

 

Equilibrium e.g. when E = 0 J. 

Bounded motion e.g. when E = 1 J. 

e.g. when E = 2 J, the motion may be bounded in the left or 

the right valley, depending on the initial condition. 

Unbounded motion e.g. when E = 5 J. 

 

~~~~~~~~~~~~~~ 

 

Work Done by an External Force 
 

Case 1: No Friction Involved 
 

Consider the work done in pushing a ball vertically upward. 

 
W W K

a g
  .  

 

Since  W U
g
  , we have 

 
W K U

a
   . 

 

Hence the work-energy theorem 

becomes 
 

.mecEWa   
 

The work done on a system is equal to the change in the 

mechanical energy. 
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Case 2: Friction Involved 
 

Consider the sliding motion of the 

block pulled by an external force. 

Using Newton’s law of motion, 
 

.mafF k   
 

Since a is constant, 
 

.22

0

2 advv   
 

Eliminating a, we have 
 

.
2

1

2

1 2

0

2 dfmvmvFd k  

.mec dfEFd k  
 

The work done against friction is fkd. Usually it is 

converted to the thermal energy of the object and its 

environment. The change in the thermal energy is 
 

.th dfE k  
 

Then we can write 
 

.thmec EEFd   

.thmec EEW   
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Example 
 

8-6 Statues of Easter Island were most likely moved by 

cradling them in a wooden sled and pulling them over a 

“runway” of roller logs. In a modern reenactment of this 

technique, 25 men were able to move a 9000 kg statue 45 

m over level ground in 2 min. Suppose each men pulled 

with a force of 1400 N. 

(a) Estimate the work done by the men. 

(b) What is the increase Eth in the thermal energy of the 

system during the 45 m displacement? 

(a) cosFdW   
o0cos)45)(1400)(25(  

MJ 6.1J 10575.1 6   (ans) 

(b) thmec EEW   

Since Emec = 0, 

MJ 1.6J 10575.1 6

th  WE  (ans) 
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Conservation of Energy 
 

Isolated System 

 

The total energy E of an isolated system cannot change. 

 

.0intthmectot  EEEE  

 

Here, Emec = K + U is any change in the mechanical 

energy of the system, 

Eth is any change in the thermal energy of the system, 

Eint is any change in any other type of the internal energy 

of the system. 

 

Summary: In an isolated system, energy can be transferred 

from one type to another, but the total energy of the system 

remains constant. 

 

Empowerment: In an isolated system, we can relate the 

total energy at one instant to the total energy at another 

instant, without considering the energies at intermediate 

times.  

 

If the system is not isolated, external forces are present to 

transfer energy to or from the system, then 

 

.intthmectot EEEEW   
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Examples 

 

8-7 A 2.0 kg package of tamales slides along a floor with 

speed v1 = 4.0 ms1. It then runs into and compresses a 

spring, until the package momentarily stops. Its path to the 

initially relaxed spring is frictionless, but as it compresses 

the spring, a kinetic frictional force from the floor, of 

magnitude 15 N, acts on the package. If k = 10,000 Nm1, 

by what distance d is the spring compressed when the 

package stops? 

Using the conservation of energy, 
0thmec  EE  

UKE  mec  

2

2

1
0 mvK   

0
2

1 2  kdU  

Since the change in the thermal energy comes from the 

work done by the moving package against friction, 
dfE k th  

Therefore, 

0
2

1

2

1 22  dfmvkd k  
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1
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




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






dd  

016155000 2  dd  

058.0or  055.0
000,10

000,3201515 2




d  

cm 5.5 m 055.0 d  (ans) 
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8-8 During a rock avalanche on a mountain slope, the 

rocks, of total mass m, fall from a height y = H, move a 

distance d1 along a slope of angle  = 45o, and then move a 

distance d2 along a flat valley. What is the ratio d2/H of the 

runout to the fall height if the coefficient of kinetic friction 

has the reasonable value of 0.60? 

Using the conservation of energy, 

0thmec  EE  

UKE  mec  

0K  
mgHU  0  

Since the change in 

the thermal energy 

comes from the work 

done by the rocks 

against friction, 

2211th dfdfE kk   

where  cos1 mgf kk  , mgf kk 2 , and sin/1 Hd  . 

Therefore, 

0
sin

cos 2  mgd
H

mgmgH kk 


  




sin
cos2

H
Hd kk   

 tan

112 
kH

d
 

67.0
45tan

1

6.0

1
o
  (ans) 

Remark: For a large avalanche, d2/H may be as large as 20, 

corresponding to k = 0.05! This remains an open question. 
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8-9 A 20 kg block is about to collide with a spring at its 

relaxed length. As the block compresses the spring, a 

kinetic frictional force between the block and the floor acts 

on the block. Using Fig. 8-20b, find the coefficient of 

kinetic friction k between the block and the floor. 

Using the conservation 

of energy, 

0thmec  EE  

From Fig. 8-20b, 
J 163014mec E  

J 16mecth  EE  

Since the change in the 

thermal energy comes 

from the work done by 

the moving block 

against friction, 

mgdNddfE kkk   th  

From Fig. 8-20b, d = 0.215 m. Therefore, 
)215.0)(8.9)(20(16 k  

38.0
)215.0)(8.9)(20(

16
k   (ans) 

 


