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Rotational Motion 
 

Reading: Chapter 10 

 

Angular Displacement 
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The magnitude is called the angular speed. 
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Angular Velocity as a Vector 

 
The direction of the vector 


  points along the axis of 

rotation, according to the right-hand rule. 

 

Angular Acceleration 
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Rotation with Constant Acceleration 
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Example 

 

10-3 A grindstone rotates at constant angular acceleration  

= 0.35 rad s2. At time t = 0, it has angular velocity 0 = 

4.6 rad s1 and a reference line on it is horizontal, at the 

angular position 0 = 0. 

(a) At what time after t = 0 is the reference line at the 

angular position  = 5 rev? 

(b) Describe the grindstone’s rotation between t = 0 and t = 

32 s. 

(c) At what time t does the grindstone momentarily stop? 

(a) Since ,
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Therefore, t = 32 s.   (ans) 

(b) The wheel is initially rotating in the clockwise 

direction. It slows down, stops, and then reverses to rotate 

in the anticlockwise direction. The reference line returns to 

its initial orientation of  = 0, and turns an additional 5 rev 

by time t = 32 s.   (ans) 
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t35.06.40   

s 13
35.0

)6.4(0



t    (ans)



 4 

Relating the Linear and Angular Variables 
 

The position 

 

s r .  
 

The velocity 

 

v r .  
 

The acceleration 

 

Tangential component: 
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Example 

 

10-5 A roller coaster track is designed as follows. 

(1) The passenger leaves the loading point with 

acceleration g along the horizontal track. 

(2) The first section of the track forms a circular arc, so that 

the passenger also experiences a centripetal acceleration. 

(3) When the magnitude a of the net acceleration reaches 

4g at some point P and angle P along the arc, the 

passenger then moves in a straight line along the tangent of 

the arc. 

(a) What is the angle P? 

(b) What is the magnitude a of the passenger’s net 

acceleration at P and after P? 

(a) Tangential acceleration: 

at = g 

Centripetal acceleration: ar 

= r2 

Since 
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When a reaches 4g at P, 2414  gg  
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15
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(b) At P, a = 4g.   (ans) 

After P, at = g and ar = 0. Therefore, a = g.   (ans) 

Remark: This abrupt change in acceleration can cause 

roller-coaster headache. 
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Kinetic Energy of Rotation 

 

Consider the kinetic energy of a rotating rigid body: 
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Since v = r, and  is the same for all particles, we have 
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
i

iirm 2  is called the rotational inertia. It tells us how the 

mass of the rotating body is distributed about its axis of 

rotation. In summary, 
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For continuous bodies, 
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Parallel Axis Theorem 
 

.2
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The rotational inertia of a body about any axis is equal to 

the rotational inertia (= Mh2) it would have about that axis 

if all its mass were concentrated at its centre of mass, plus 

its rotational inertia (= Icm) about a parallel axis through its 

centre of mass. 
 

Proof 
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In the first term, x2 + y2 = R2. Hence the first term becomes 
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In the second and third terms, the position of the centre of 

mass gives 
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Hence these terms vanish. 

 

In the last term, a2 + b2 = h2. Hence the last term becomes 
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Examples 

 

10-6 A rigid body consists of two particles of mass m 

connected by a rod of length L and negligible mass. 

(a) What is the rotational inertia Icm about an axis through 

the center of mass perpendicular to the rod? 

(b) What is the rotational inertia I of the body about an axis 

through the left end of the rod and parallel to the first axis? 
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10-7 Consider a thin, uniform rod of mass M and length L. 

(a) What is the rotational inertia about an axis 

perpendicular to the rod, through its center of mass? 

(b) What is the rotational inertia of the rod about an axis 

perpendicular to the rod through one end? 
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(b) Using the parallel axis theorem, 
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Torque 
 

The ability of 

F  to rotate the body 

depends on: 

(1) the magnitude of the tangential 

component Ft = Fsin, 

(2) the distance between the point 

of application and the axis of 

rotation. 

Define the torque as 

 
  rFsin . 

 

It can be considered as either rF or 

rF. Terms: 

 

line of action 

moment arm 

 

 is positive if it tends to rotate the 

body counterclockwise. 

It is negative if it tends to rotate the 

body clockwise. 

 

Considering the vector direction, 

 
  
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Newton’s Second Law for Rotation 

 
Newton’s second law: 

 
.tt maF   

 

Torque: 

 
.rmarF tt   

 

Since at = r, we obtain 
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Conclusion: 
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If there are more than one forces, 
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Examples 

 

10-9 A uniform disk of mass M = 2.5 kg and radius R = 20 

cm is mounted on a fixed horizontal axle. A block whose 

mass m is 1.2 kg hangs from a massless cord that is 

wrapped around the rim of the disk. Find the acceleration 

of the falling block, the angular acceleration of the disk, 

and the tension in the cord. The cord does not slip, and 

there is no friction at the axle. 

Newton’s law for the hanging block 

(upward is positive): 

mamgT      (1) 

Newton’s law for the rotating disk 

(anticlockwise is positive): 
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10-10 (Physics of judo) To throw an 80-kg opponent with a 

basic judo hip throw, you intend to pull his uniform with a 

force 

F  and a moment arm d1 = 0.30 m from a pivot point 

(rotation axis) on your right hip, about which you wish to 

rotate him with an angular acceleration of 6.0 rad s2, that 

is, with a clockwise acceleration. Assume that his rotational 

inertia I is 15 kg m2. 

(a) What must the magnitude of 

F  be if you initially bend 

your opponent forward to bring his centre of mass to 

your hip? 

(b) What must the magnitude of 

F  be if he remains 

upright and his weight mg


 has a moment arm d2 = 

0.12 m from the pivot point? 

See Youtube “Judo hip throw”. 

(a) Newton’s law for the 

rotating opponent 

(anticlockwise is 

positive): 
 IFd  1  
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(b) 
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Remark: In the correct execution of the hip throw, you 

should bend your opponent to bring his center of mass to 

your hip. 
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Work and Rotational Kinetic Energy 
 

Work done by the force: 
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Integrating over the angular displacement, 
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Example 

 

10-11 As in Example 10-9, a uniform disk of mass M = 2.5 

kg and radius R = 20 cm is mounted on a fixed horizontal 

axle. A block whose mass m is 1.2 kg hangs from a 

massless cord that is wrapped around the rim of the disk. 

What is the rotational kinetic energy K at t = 2.5 s? 
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10-12 A tall, cylindrical chimney will fall over when its 

base is ruptured. Treat the chimney as a thin rod of length L 

= 55 m. At the instant it makes an angle of  = 35o with the 

vertical, what is its angular speed f? 

 

 

 

 

 

 

 


