Rotational Motion

Reading: Chapter 10

Angular Displacement
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FIG. 10-4 The reference line of the
rigid body of Figs. 10-2 and 10-3 is at
angular position 6, at time 1, and at
angular position 6, at a later time ¢,.
The quantity A8 (= 6, — 6,) is the
angular displacement that occurs
during the interval At (= 1, — 1,).
The body itself is not shown.

Average angular velocity
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The magnitude is called the angular speed.



Angular Velocity as a Vector

FIG. 10-6 (a) A record rotating 2
about a vertical axis that coincides Axis Axis
with the axis of the spindle. (b) The
angular velocity of the rotating Spindle
record can be represented by the \
vector o, lying along the axis and
pointing down, as shown. (¢) We es-
tablish the direction of the angular
velocity vector as downward by us-

ing a right-hand rule. When the fin- — Tm

gers of the right hand curl around
the record and point the way it is

moving, the extended thumb points
in the direction of @. (a) (b)

The direction of the vector @ points along the axis of
rotation, according to the right-hand rule.

Angular Acceleration

Average angular acceleration
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Instantaneous angular acceleration
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Rotation with Constant Acceleration
w=w,+a,
1
0 = w,t + Eatz,

o’ = wf +2a0.



Example

10-3 A grindstone rotates at constant angular acceleration «
= 0.35 rad 5% At time t = 0, it has angular velocity ay =
—4.6 rad s and a reference line on it is horizontal, at the
angular position & = 0.

(a) At what time after t = 0 is the reference line at the
angular position =15 rev?

(b) Describe the grindstone’s rotation betweent=0and t =
32 s.

(c) At what time t does the grindstone momentarily stop?

: 1
(a) Since 6=yt + =~ at?,
2 Zerf) angular
position

107 = 4.6t + ( j(0.35)t2

1
2
2 FIG. 10-8 A grindstone. At ¢ = 0 the reference line (which
035t — 92'['_ — 2072' = O we imagine to be marked on the stone) is horizontal.

9.24,/9.2% + (4)(0.35)(207)
0.7

Therefore, t =32s.  (ans)

(b) The wheel is initially rotating in the clockwise

direction. It slows down, stops, and then reverses to rotate

in the anticlockwise direction. The reference line returns to

its initial orientation of @ = 0, and turns an additional 5 rev

by timet=32s. (ans)

(c) Since w=w,+ A,

0=-4.6+0.35t

t= 0-(=4.6) =13s  (ans)
0.35

t =31.90r -5.63




Relating the Linear and Angular Variables

The position

The velocity
V= .
The acceleration

Tangential component:

a=ot.

Radial component:

a =

V2
"o

= w°r.

Circle g
traveled by P

)

FIG. 10-9 The rotating rigid body
of Fig. 10-2, shown in cross section
viewed from above. Every point of
the body (such as P) moves in a cir-
cle around the rotation axis. (a) The
linear velocity V of every point is
tangent to the circle in which the
point mowves. (b) The linear accelera
tion @ of the point has (in general)
two components: tangential a, and
radial a,.



Example

10-5 A roller coaster track is designed as follows.

(1) The passenger leaves the loading point with
acceleration g along the horizontal track.

(2) The first section of the track forms a circular arc, so that
the passenger also experiences a centripetal acceleration.
(3) When the magnitude a of the net acceleration reaches
4g at some point P and angle & along the arc, the
passenger then moves in a straight line along the tangent of
the arc.

(a) What is the angle 6-?

(b) What is the magnitude a of the passenger’s net
acceleration at P and after P?

(a) Tangential acceleration:

P
Centripetal acceleration: a, A

Loading

—_ r 2 point
~ . @ B.10-10 An overhead view of a horizontal track for a rolle:
Since ster. The track begins as a circular arc at the loading point

2 2 F‘then, at point P, continues along a tangent to the arc.
o =y +2a0 =226 and

296
o=2=9 wehave a =r(2a0)= r(i =290
r r r
i ; . 2 2 2 2

Magnitude of acceleration: a=.a  +a’ = Jg +(296)
= g1+ 46°

When a reaches 4g at P, 49 = g+/1+46°

0 = E =1.94rad =111  (ans)

(b) AtP,a=4g. (ans)

After P, a;=gand a, =0. Therefore,a=g. (ans)
Remark: This abrupt change in acceleration can cause
roller-coaster headache.




Kinetic Energy of Rotation

Consider the Kkinetic energy of a rotating rigid body:
1 1 1
K == Emlvlz +§m2V22 +ee= iZEmiViz.
Since v = ar, and w is the same for all particles, we have
K= Z%mi (e ) = %(Zmirf]wz-

> mr? is called the rotational inertia. It tells us how the

mass of the rotating body is distributed about its axis of
rotation. In summary,

| => mr?| and Kzélwz.
For continuous bodies,
I :Jrzdm.
Ring  |=MR? (axis) I=%MR2 (diameter)
Cylinder | =1 MmR?
2
Rod I =112ML2 (centre) I =%ML2 (end)

Sphere | :EMR2



iome Rotational Inertias

; N Hoop about Annular cylinder Solid cylinder
R central axis (or ring) about (or disk) about
central axis central axis |
Nk !
. I=MR? (a) I=$M(R,2 + Ry?) (&) (e) |
" Axis Axis :
o Solid cylinder Thin rod about Solid sphere |
£ g (or disk) about 0 axis through center about any
central diameter perpendicular to diameter
g length
L
R \/
1= MR? + ML D gmr? ) n
| Axis Axis Axis
P — Thin T\‘ G Hoop about any Slab about
N T spherical shell S é diameter perpendicular
¢ s | about any axis through
( 7 2R diameter | center
(h) (1)

1= 3MR? ® - MR 1= EM(a? +5?)

Parallel Axis Theorem

| =1, +Mh?.

The rotational inertia of a body about any axis is equal to
the rotational inertia (= Mh?) it would have about that axis
if all its mass were concentrated at its centre of mass, plus
its rotational inertia (= l.y,) about a parallel axis through its
centre of mass.

Proof
I :Jrzdm :J[(x—a)2 +(y—b)2]dm,

which can be written as

I :J(x2 +y?)dm —Zadem —ZbJ ydm +J(a2 +b?)dm.
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FIG. 10-12 A rigid body in cross
section, with its center of mass at O.
The parallel-axis theorem (Eq. 10-
36) relates the rotational inertia of
the body about an axis through O to
that about a parallel axis through a
point such as P, a distance / from
the body’s center of mass. Both axes
are perpendicular to the plane of the
figure.

In the first term, x* + y* = R%. Hence the first term becomes
J(x2 +y?)dm = J R?dm =1_.

In the second and third terms, the position of the centre of
mass gives

1 1
X =—]xdm =0 and =— | ydm =0.
cm I\/IJ Yem ijm

Hence these terms vanish.

In the last term, a + b? = h?. Hence the last term becomes

J(a2+b2)dm :thdm = Mh®.



Examples

10-6 A rigid body consists of two particles of mass m
connected by a rod of length L and negligible mass.

(a) What is the rotational inertia I, about an axis through
the center of mass perpendicular to the rod?

(b) What is the rotational inertia | of the body about an axis
through the left end of the rod and parallel to the first axis?




10-7 Consider a thin, uniform rod of mass M and length L.
(@) What 1is the rotational inertia about an axis
perpendicular to the rod, through its center of mass?

(b) What is the rotational inertia of the rod about an axis
perpendicular to the rod through one end?

Rotation

I — x,__|-\_ —x

dm
m | L L
dm=—dx | 2 2
L

FG. 10-14 A uniform rod of length L and mass M. An
1

glement of mass dm and length dx is represented.

I_Ji (dej al TZ g{(gjg_(_%jg}l\g

(b) Using the parallel axis theorem,

2
|=|Cm+Mh2=iML2+M(Ej v ns)
12 2) 3

10




Torque

The ability of F to rotate the body

depends on:

(1) the magnitude of the tangential
component F; = Fsing,

(2) the distance between the point
of application and the axis of
rotation.

Define the torque as

T=rFsing.

It can be considered as either rF, or
r F. Terms:

line of action
moment arm

7 IS positive if it tends to rotate the
body counterclockwise.

It is negative if it tends to rotate the
body clockwise.

Considering the vector direction,

T=r xF.

11

4-Line of -
i action of F

()
FIG. 10-16 (a) A force F acts at
point P on a rigid body that is free
to rotate about an axis through O;
the axis is perpendicular to the
plane of the cross section shown
here. (b) The torque due to
this force is (r)(F sin ¢). We can also
write it as rF,, where F, is the tan-
gential component of F. (c) The
torque can also be written as r | F,
where 7, is the moment arm of F.



Newton’s Second Law for Rotation

0

Rotation axis

FIG. 10-17 A simple rigid body,
free to rotate about an axis through
O, consists of a particle of mass m
fastened to the end of a rod of
length r and negligible mass. An
applied force F causes the body to
rotate.

Newton’s second law:

T
Il

ma,.

Torque:
r=Fkr=mar.
Since a; = ar, we obtain
r =m(ar)r =(mr?)e.
Conclusion:

=l

If there are more than one forces,

dYr=la.

12



Examples

10-9 A uniform disk of mass M = 2.5 kg and radius R = 20
cm is mounted on a fixed horizontal axle. A block whose
mass m is 1.2 kg hangs from a massless cord that is
wrapped around the rim of the disk. Find the acceleration
of the falling block, the angular acceleration of the disk,
and the tension in the cord. The cord does not slip, and
there is no friction at the axle.

Newton’s law for the hanging block
(upward is positive):
T —mg=ma (1)
Newton’s law for the rotating disk
(anticlockwise is positive):

1

—TR:EMR%x (2)
Since a = Rq,
1
2): T=——Ma
@: T=—
(1): —%I\/Ia—mg =ma
—mg = (m + Mja
2
_ 2mg _ (2)(1.2)(9.8) __48ms?  (ans)
M+2m  25+(2)(1.2) '
a=2 - %8 o4rads? (ans)
R 02

T:_%Ma:{%y2®@4®:6N (ans)
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10-10 (Physics of judo) To throw an 80-kg opponent with a
basic judo hip throw, you intend to pull his uniform with a
force F and a moment arm d; = 0.30 m from a pivot point
(rotation axis) on your right hip, about which you wish to
rotate him with an angular acceleration of —6.0 rad s2, that

IS, with a clockwise acceleration. Assume that his rotational

inertia | is 15 kg m®.

(a) What must the magnitude of F be if you initially bend
your opponent forward to bring his centre of mass to
your hip?

(b) What must the magnitude of F be if he remains
upright and his weight mg has a moment arm d, =

0.12 m from the pivot point?

See Youtube “Judo hip throw”.

(a) Newton’s law for the VR e ‘,
rotating opponent Opponens I .
(anticlockwise is Q AN Q
positive): \ .
r=-d,F =la ! 7 ./ X
F__la__(15(6) L] ) et

d, 0.3 "y ’
=300N (ans)
(b) o TP Aol oreeaiessesysi 05

Z = _le + dzmg — |  icorrectly excouted

o N d,mg _ (15)(-6) N (0.12)(80)(9.8)
d, d, 0.3 0.3

(ans)

Remark: In the correct execution of the hip throw, you

should bend your opponent to bring his center of mass to
your hip.

~614 N
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Work and Rotational Kinetic Energy

Work done by the force:
dW =F.ds = Fds=Frdgd = .

0
W= j 0.
0,

Work-kinetic energy theorem:

r=lg=190_ d0dd_ do_d il ;
dt  do dt do do\2 )

Total work done:

Integrating over the angular displacement,

04 0
“d (1 1 1
W=| o =| —|Zlo*|df==10°-=1w’=
J Jde[za)j za)f 2a)I AK

6, 6

W =AK.

Power

P

_dw_ do_
dt - dt

Some Corresponding Relations for Translational and Rotational Motion

7.

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)
Position X Angular position 0
Velocity v = dx/dy | Angular velocity o = deldt
Acceleration a = dvldt Angular acceleration a = dwldt
Mass m Rotational inertia 1
Newton’s second law F. = ma Newton’s second law Toet =
Work W = [ Fdx| Work W= [r1db
Kinetic energy K = imv? | Kinetic energy K =ilo?
Power (constant force) P=Fv Power (constant torque) P=10
Work -kinetic energy theorem W = AK Work —kinetic energy theorem W = AK

15



Example

10-11 As in Example 10-9, a uniform disk of mass M = 2.5
kg and radius R = 20 cm is mounted on a fixed horizontal
axle. A block whose mass m is 1.2 kg hangs from a
massless cord that is wrapped around the rim of the disk.
What is the rotational kinetic energy K att =2.5s?

16



10-12 A tall, cylindrical chimney will fall over when its
base is ruptured. Treat the chimney as a thin rod of length L
= 55 m. At the instant it makes an angle of = 35° with the
vertical, what is its angular speed @?

FIG. 10-20 (a) A
cylindrical chimney.
(b) The height of its
center of mass is deter-
mined with the right
triangle. (a) (b)

17




