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Newtonian Gravitation 
 

Reading: Chapter 13 (13-1 to 13-8) 

 

Newton’s Law of Gravitation 

 

F G
m m

r
 1 2

2
,  

 

where G is the gravitational constant 

 

G  667 10 11. .Nm kg2 - 2  

 

A uniform spherical shell of matter attracts a particle that 

is outside the shell as if all the shell’s mass were 

concentrated at its centre. 
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Gravitational Potential Energy 
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  .  

 

If there are more than two particles, the total 

gravitational potential energy is equal to the sum of the 

gravitational potential energy for each pair. 
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Proof 
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Work done by the gravitational force in moving the ball 

from infinity to a distance R from Earth: 
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Work done by the applied force: 
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This becomes the increase in gravitational potential 

energy: 
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Since 
2r

GMm
F   (minus sign due to the inward 

direction), 
 

.
2 R

GMm

r

GMm
dr

r

GMm
U

RR
























 

 

Potential Energy and Force 
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Thus we recover the Newton’s law of gravitation. 
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Escape Speed 

 
Consider a projectile fired from distance R. 

 

If E < 0, the projectile is bounded. 

 

If E > 0, the projectile is unbounded. 

 

If E = 0, the projectile just have sufficient energy to 

escape from the gravitational attraction of Earth. 

 

The initial speed just sufficient to escape from Earth is 

called the escape speed. 

 

It can be obtained from the conservation of energy: 
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This yields the escape speed 

 

v
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Example 

 

13-5 An asteroid, headed directly toward Earth, has a 

speed of 12 km s1 relative to the planet when it is at a 

distance of 10 Earth radii from Earth’s center. Ignoring 

the effects of the terrestrial atmosphere on the asteroid, 

find the asteroid’s speed when it reaches Earth’s surface. 

(ME = 5.98  1024 kg, RE = 6,370 km) 

 

Using the conservation of energy, 
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228 sm 10567.2   
114 s km 0.16ms 10602.1  fv    (ans) 

Remark: Even if the comet were only 5 m across, the 

energy released matched the Hiroshima nuclear 

explosion. 

See Youtube “Comet Shoemaker Levy Colliding with 

Jupiter”. 
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Planets and Satellites: Kepler’s Laws 

 

1. The Law of Orbits: All planets move in elliptical 

orbits, with the Sun at one focus. 

 

 

 

 

 

 

 

 

 

 

 

 a = semimajor axis 

 e = eccentricity 

 e = 0 for a circle. 
 

At the point nearest to the sun, 
 

).1(min ear   
 

At the point furthest from the sun, 
 

).1(max ear   
 

Eliminating a, we have 
 

.
minmax

minmax

rr

rr
e




  



 7 

P 

Polar equation of an ellipse: 
 

An ellipse is the set of points such that whose sum of 

distances from the two foci is a constant. 

 

In the figure, 
 

constant.' PFPF  
 

Furthermore, when P is nearest 

the Sun, 
 

 .2)1()1(' aeaeaPFPF   
 

Using the cosine law, 
 

 .cos)2(2)2(' 22 aerearPF   
 

Hence, the polar equation of the ellipse is 
 

.2cos)2(2)2( 22 aaerearr    
 

Collecting terms and squaring both sides,  
 

.)2(cos)2(2)2( 222 raaerear    
 

Simplifying, 
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r




  

 

This equation can be derived from the conservation of 

energy (see Appendix A). 
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2. The Law of Areas: A line that connects a planet to the 

Sun sweeps out equal areas in equal times. 

 
This is equivalent to the conservation of angular 

momentum. 

Area A of the triangle swept out in time t 

  2

2

1
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rrr  

The rate at which the area is swept: 
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Conservation of angular momentum: 

 

.2mrL   
 

Therefore 
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2
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3. The Law of Periods: The square of the period of any 

planet is proportional to the cube of the semimajor axis 

of its orbit. 

 
e.g. for circular orbit: 

Using Newton’s second law, 
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For elliptical orbits, r is replaced 

by a, the semimajor axis of the 

ellipse. (See Appendix B.) 
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Examples 

 

13-6 Comet Halley orbits about the Sun with a period of 

76 years and, in 1986, had a distance of closest approach 

to the Sun, its perihelion distance Rp, of 0.59 AU 

(between the orbits of Mercury and Venus). 

(a) What is the comet’s farthest distance from the Sun, its 

aphelion distance Ra (in AU)? 

(b) What is the eccentricity of the orbit of comet Halley? 

(1 AU = 1 Astronomical Unit = distance between Earth 

and Sun = 1.50  1011 m) 
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13-7 The star S2 moves around a mysterious and 

unobserved object called Sagittarius A*, which is at the 

center of the Milky Way galaxy. S2 orbits Sagittarius A* 

with a period of T = 15.2 y and a semimajor axis of a = 

5.50 light days (=1.42  1014 m). What is the mass M of 

Sagittarius A* (in solar masses)? 

(MSun = 1.99  1030 kg) 

 
Using Kepler’s law of periods, 

3
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Sun

636 107.3kg 1035.7 M    (ans) 

Remark: It is believed that Sagittarius A* is a 

supermassive black hole, and most galaxies have 

supermassive black holes at their centers. See Youtube 

“Chandra X-ray Observatory images of Sagittarius A”. 

 

http://hk.youtube.com/watch?v=BPMtt76yQCs
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Satellites: Orbits and Energy 

 

Potential energy: 

 

r

GMm
U   

 

Kinetic energy for a circular 

orbit: 

Using Newton’s second law, 

 

.
2

2 r

v
m

r

GMm
  

.
22

1 2

r

GMm
mvK   

 

Therefore, for circular orbits, 

 

.
2

U
K   

 

Total mechanical energy: 
 

.
2r

GMm
UKE   

 

For an elliptical orbit with a 

semimajor axis a, analysis shows 

that 
 

,
2a

GMm
E   

 

independent of the eccentricity e. (See Appendix C.) 
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Example 

 

To launch a spacecraft from Earth to Mars, physicists 

suggested that the best way is to put it in a transfer orbit 

around the sun as shown in the figure, which is an 

elliptical orbit whose nearest point is tangent to Earth’s 

orbit, and whose furthest point is tangent to Mars’s orbit. 

(a) Given that the period of Mars is 1.88 y, calculate the 

time it takes to arrive at Mars. 

(b) What is the eccentricity of the transfer orbit? 

(c) What is the fractional increase in the kinetic energy of 

the spacecraft when it transfers from Earth’s orbit into 

the transfer orbit? 
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r 

Veff(r) 

Appendix A: Deriving the Orbital Equation 

 

Using the conservation of energy, 
 

   .
2

1 22

r

GMm
vvmE r    

 

Using the conservation of angular momentum, 
 

 .mrvL   
 

Eliminating v in the energy expression, 
 

 .
22

1
2

2
2

r
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L
mvE r   

 

This is equivalent to the motion of a single particle 

moving in an effective potential energy 
 

 .
2
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2

2
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r

GMm
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L
rV   

 

The term L2/2mr2 is sometimes called the centrifugal 

energy in the literature. 
 

Properties of Veff(r): The first term dominates at small 

distance, and the second term dominates at large distance. 

There is a minimum at an intermediate distance. 

Position of the minimum: 
 

 0
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Minimum energy: .
2 0
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r
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E   

There are several cases: 

F 

 

r 
vr 

v 

v 
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Case 1) E = Emin: circular orbit 

Case 2) 0 < E < Emin: elliptical orbit 

Case 3) E = 0: parabolic orbit 

Case 4) E > 0: hyperbolic orbit 
 

To derive the orbital equation in Case 2, we note that 






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





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
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dt
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d
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
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, and the energy equation becomes 
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
 

 

Change of variable: Let u = 1/r. Then, 
 

.
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2
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L

d
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m
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
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
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Differentiating with respect to , 
 

 .0
2

2

2
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
L

GMm
u

d
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The solution to this differential equation is 
 

.cos
2

2

C
L

GMm
u   

 

Substituting into the energy expression, 
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22 2
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2

2

L
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C

m

L
E   

 

After some algebra, we have 
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where 
 

 ,
2

1
322

2
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e   

 .
2E

GMm
a   

 

The orbital equation for Case 3 is the same, except that E 

= 0, implying that e = 1 (parabola). 

The orbital equation for Case 4 is the same, except that 

E > 0, implying that e > 1 (hyperbola). 
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Appendix B: Deriving Kepler’s Third Law for 

Elliptical Orbits 
 

From Kepler’s second law, we have ,
2 T

ab

dt

dA

m

L 
  

where ab is the area of an ellipse, b is the semiminor 

axis. Using Pythagorean theorem, 
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Using the conservation of angular 

momentum, 
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Using the conservation of energy, 
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Hence, .maxminmaxmin rr
a
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 e) and rmax = a(1 + e), we have .)1( 2eGMamL   
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Appendix C: Deriving the Orbital Energy for 

Elliptical Orbits 
 

Using the conservation of angular momentum, 
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Using the conservation of energy, 
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Hence, 
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Since 2a  rmax = rmin, we have 
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