Newtonian Gravitation
Reading: Chapter 13 (13-1 to 13-8)

Newton’s Law of Gravitation

(0)

FIG.13-2 (a) The gravitational
force F on particle 1 due to particle 2
is an attractive force because particle
11is attracted to particle 2. (b) Force
F is directed along a radial
coordinate axis r extending from
particle 1 through particle 2. (¢) F is
in the direction of a unit vector t
along the r axis.
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FIG. 13-1 The Andromeda Galaxy.
Located 2.3 X 10° light-years from us,
and faintly visible to the naked eye,
itis very similar to our home galaxy,
the Milky Way. (Courtesy NASA)

F=G

where G is the gravitational constant

G =6.67x10"11 Nm?kg-2.

A uniform spherical shell of matter attracts a particle that
IS outside the shell as if all the shell’s mass were
concentrated at its centre.




Gravitational Potential Energy

U:_va

If there are more than two particles, the total
gravitational potential energy is equal to the sum of the
gravitational potential energy for each pair.
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FIG. 13-9 A system consisting of
three particles. The gravitational po-
tential energy of the system is the
sum of the gravitational potential en-
ergies of all three pairs of particles.

e.q. U=— Gmm, N Gmm, N Gm,m, |
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FIG. 13-10 A baseball is shot di-
rectly away from Earth, through
point P at radial distance R from
Earth’s center. The gravitational
force F on the ball and a differential
displacement vector d7 are shown,
both directed along a radial r axis.

/ Earth

FIG. 13-11 Near Earth, a baseball is
moved from point A to point G along
a path consisting of radial lengths
and circular arcs.



Work done by the gravitational force in moving the ball
from infinity to a distance R from Earth:

R
W, =J F(r)-dr.
Work done by the applied force:

R
W, =W, :—J F(r)-dr.

a

This becomes the increase in gravitational potential
energy:

U =—J E(r)-dr.

Since F:—Gwm

I

(minus sign due to the inward

direction),

R R
U :J (Gh/zlmjdr:[_ GMm} :_GMm.
O r r |, R

Potential Energy and Force

|::_dU _d [_GMm]:_GMm

dr  dr r r?

Thus we recover the Newton’s law of gravitation.



Escape Speed

Consider a projectile fired from distance R.
If E <0, the projectile is bounded.
If E > 0, the projectile is unbounded.

If E = 0, the projectile just have sufficient energy to
escape from the gravitational attraction of Earth.

The initial speed just sufficient to escape from Earth is
called the escape speed.

It can be obtained from the conservation of energy:

E=mv? +£__GMm] =0.
2 R

This yields the escape speed

\ R



Example

13-5 An asteroid, headed directly toward Earth, has a
speed of 12 km s relative to the planet when it is at a
distance of 10 Earth radii from Earth’s center. Ignoring
the effects of the terrestrial atmosphere on the asteroid,
find the asteroid’s speed when it reaches Earth’s surface.

(Mg = 5.98 x 10** kg, Re = 6,370 km)

Using the conservation of energy,
K +U, =K +U.,
1, GMm 1 , GM:m

~mv; — ==mv’ —
2 R. 2 10R.

V? :Vi2 + ZGME (1—3)
R, 10
2(6.67 x107)(5.98 x10*)
6.37 x10°

0.9

— (12x10%)2 +

= 2.567 x10°® m?s™

v, =1.602x10" ms™ =16.0kms™ (ans)

Remark: Even if the comet were only 5 m across, the
energy released matched the Hiroshima nuclear

explosion.
See Youtube “Comet Shoemaker Levy Colliding with

Jupiter”.




Planets and Satellites: Kepler’s Laws

1. The Law of Orbits: All planets move in elliptical

orbits, with the Sun at one focus.
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FIG. 13-12 The path seen from
Earth for the planet Mars as it
moved against a background of the

constellation Capricorn during 1971.

The planet’s position on four days is
marked. Both Mars and Earth are
moving in orbits around the Sun so

that we see the position of Mars rela-

tive to us; this relative motion some-
times results in an apparent loop in
the path of Mars.

semimajor axis
eccentricity
0 for a circle.

FIG. 13-13 A planet of mass m mov-
ing in an elliptical orbit around the
Sun. The Sun, of mass M, is at one fo-
cus F of the ellipse. The other focus is
F’, which is located in empty space.
Each focus is a distance ea from the
ellipse’s center, with e being the ec-
centricity of the ellipse. The semima-
jor axis a of the ellipse, the perihelion
(nearest the Sun) distance R, and
the aphelion (farthest from the Sun)
distance R, are also shown.

At the point nearest to the sun,
r..=a(l—e).

At the point furthest from the sun,
r..=a(+e).

Eliminating a, we have

e— rmax B rmin
rmax + rmin




Polar equation of an ellipse:

An ellipse is the set of points such that whose sum of
distances from the two foci is a constant.

In the figure,

PF + PF'= constant.

Furthermore, when P is nearest | N
the Sun, |

PF +PF'=a(l-e)+a(l+e)=2a.

Using the cosine law,

PF'=./r? + (2ea)? — 2r(2ae)cos 6.

Hence, the polar equation of the ellipse is

r++/r2 + (2ea)? — 2r(2ae) cosd = 2a.
Collecting terms and squaring both sides,

r* +(2ea)” —2r(2ae)cosd = (2a—r)°.
Simplifying,

_a(l-e?)
1—ecosé’

This equation can be derived from the conservation of
energy (see Appendix A).



2. The Law of Areas: A line that connects a planet to the
Sun sweeps out equal areas in equal times.
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'FIG.13-14 (a) In time At, the line r connecting the planet to the Sun moves through an
“ angle A6, sweeping out an area AA (shaded). (b) The linear momentum p of the planet
and the components of p'.

This is equivalent to the conservation of angular
momentum.

Area AA of the triangle swept out in time At
= 1(rA@)r BTN
2 2

The rate at which the area is swept:

dA 1 ,d6¢ 1,
—=r'—="r‘w.
d 2 dt 2

Conservation of angular momentum:
L=mrw.
Therefore

dﬁ = L = constant.

dt 2m



3. The Law of Periods: The square of the period of any

planet is proportional to the cube of the semimajor axis
of its orbit.

FIG. 13-15 A planet of mass m mov-
ing around the Sun in a circular orbit
of radius r.

e.g. for circular orbit:
Using Newton’s second law,

GMm 5
,— =Mma=ma"r.
r
, GM
a = |’3 .
SinceT:Z—”,
[0
2:(4”2}.3
GM

Kepler's Law of Periods for the
Solar System

For elliptical orbits, r is replaced S —_

1 1 1 Axis  Period (107%
by a, the semimajor axis of the & 7O G
ellipse. (See Appendix B.)

Mercury 5.79 0241 299

Venus 10.8 0.615 3.00
Earth 15.0 1.00 296
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99
Pluto 590 248 2.99




Examples

13-6 Comet Halley orbits about the Sun with a period of
76 years and, in 1986, had a distance of closest approach
to the Sun, its perihelion distance R, of 0.59 AU
(between the orbits of Mercury and Venus).

(a) What is the comet’s farthest distance from the Sun, its
aphelion distance R, (in AU)?

(b) What is the eccentricity of the orbit of comet Halley?

(1 AU = 1 Astronomical Unit = distance between Earth

and Sun = 1.50 x 10" m)
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13-7 The star S2 moves around a mysterious and
unobserved object called Sagittarius A*, which is at the
center of the Milky Way galaxy. S2 orbits Sagittarius A*
with a period of T = 15.2 y and a semimajor axis of a =
5.50 light days (=1.42 x 10** m). What is the mass M of
Sagittarius A* (in solar masses)?

(Msun = 1.99 x 10%° kg)

o

6 light months

FIG.13-16  The orbit of star S2 about Sagittarius A* (Sgr A*).
The elliptical orbit appears skewed because we do not see it from
directly above the orbital plane. Uncertainties in the location of
S2 are indicated by the crossbars. (Courtesy Reinhard Genzel)

Using Kepler’s law of periods,

T?= (éﬁ ja"*

2~3
M:47z621
GT

- 47 (1.42x10")°
(6.67 x107)[(15.2)(365)(24)(60)(60)]°
=7.35x10* kg =3.7x10°Mg,, (ans)

Remark: It is believed that Sagittarius A* is a
supermassive black hole, and most galaxies have
supermassive black holes at their centers. See Youtube
“Chandra X-ray Observatory images of Sagittarius A”.
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http://hk.youtube.com/watch?v=BPMtt76yQCs

Satellites: Orbits and Energy

Potential energy:

Mm
U __C
;
Kinetic energy for a circular =0

orbit:
Using Newton’s second law,

05
03
/ § M 0.9

GMm  V°
;7  —Mm—. N———
r r FIG. 13-17 . l:“@norbltsvmh dnffer-
ent eccentricities ¢ about an object of
1 5 GMm mass M. All four orbits have the
K =—MNV = . same semimajor axis @ and thus cor-
2r respond 1o the same total mechani-
cal energy E.
Therefore, for circular orbits,
Energy
U
K=-——. |
2 Ky
0 "
Total mechanical energy: Yy
,/ Uimy
GMm /f E=K+U
E=K+U=- or ) FIG. 13-18 The variation of kinetic

For an elliptical orbit with a

energy K, potential energy U, and to-
tal energy E with radius r for a satel-
lite in a circular orbit. For any value
of r, the values of U and E are nega-

- - - 1 tive, the value of K & ative, and E
semimajor axis a, analysis shows =greghepopte kit

tha‘t curves approach a value of zero.

E:_GMm,
2a

independent of the eccentricity e. (See Appendix C.)
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Example

To launch a spacecraft from Earth to Mars, physicists
suggested that the best way is to put it in a transfer orbit
around the sun as shown in the figure, which is an
elliptical orbit whose nearest point is tangent to Earth’s
orbit, and whose furthest point is tangent to Mars’s orbit.
(a) Given that the period of Mars is 1.88 y, calculate the
time it takes to arrive at Mars.

(b) What is the eccentricity of the transfer orbit?

(c) What is the fractional increase in the kinetic energy of
the spacecraft when it transfers from Earth’s orbit into
the transfer orbit?

13




Appendix A: Deriving the Orbital Equation

Using the conservation of energy,

E = %m(vr2 +v§)— Gl\r/lm

Using the conservation of angular momentum,
L =mrv,.
Eliminating v, in the energy expression,

2
E=%mﬁ+ L _GMm.

2mr? r

This is equivalent to the motion of a single particle
moving in an effective potential energy

L2 ~ GMm
> .

Veff(r) = omr r

The term L%2mr® is sometimes called the centrifugal
energy in the literature.

Properties of Vegi(r): The first term dominates at small
distance, and the second term dominates at large distance.
There is a minimum at an intermediate distance.

Position of the minimum:

2 2
dveff(r):_LSJFGI\/ZIm:O = 1= L N
dr mr r GMm
Minimum energy: E, . = _GZI\/Im. Vefr(r)“\
rO

There are several cases: \ﬁ r

14



Case 1) E = Enin: circular orbit
Case 2) 0 < E < Eyn: elliptical orbit
Case 3) E = 0: parabolic orbit

Case 4) E > 0: hyperbolic orbit

To derive the orbital equation in Case 2, we note that

dr _(dr ) do ,déd
vV, =— . Since L =mr?—", we have
dt ~ \do )\ dt dt
L= —2( ar ) and the energy equation becomes
mr-\dé

2

2 (m)f+lf GMm
2mr r o

“omr*ldo -
Change of variable: Let u = 1/r. Then,
2 2 2
:L(d_uj +Lu — GMmu.
m\ dé 2m

Differentiating with respect to 6,

d?u GMm?
VT

=0.

The solution to this differential equation is

GM 2

+ C coséo.

Substituting into the energy expression,

c_ B(y G°M*m’

2m 2L°
After some algebra, we have

15



_a(l-¢é)

1-ecos@’
where
21°E
VIR
_ GMm
2E

The orbital equation for Case 3 is the same, except that E
= 0, implying that e = 1 (parabola).

The orbital equation for Case 4 is the same, except that
E > 0, implying that e > 1 (hyperbola).
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Appendix B: Deriving Kepler’s Third Law for
Elliptical Orbits

L dA b
2m dt T
where zab is the area of an ellipse, b is the semiminor
axis. Using Pythagorean theorem,

a a

b:a«xl—ez. ﬂ“
F e€a F

Using the conservation of angular /

momentum,

From Kepler’s second law, we have

L=mr_.v__=mr.V — _Mmin _ “min

min ‘" max max "' min?

< | <
—

Using the conservation of energy,

1 ., GMm 1 , GMm
=-mv

E :_mvmax_ min |
2 rmin 2 rmax
2
EmVZ 1_Vmin _ GMm(l_ r-minj
2 max 2 - )
Vmin rmin Irmax
-1
2 _26GM [ r, ) _ 2GM [rmaxj _GM (rmaxj
max ~ - - .
r-min rmax rmax + rmin rmin a rmin

IGM :
Hence, L = MEiVimax = My | —— \/ Foninfmax- Since Fmin = a(l
d

—e) and rp = a(l + e), we have L:mJGMa(l—ez).
Finally,

T2 = (Z_mjz(ﬂab)z _drad-e) (4”2 ja"’.

L - GMa(l-¢?) (GM
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Appendix C: Deriving the Orbital Energy for
Elliptical Orbits

Using the conservation of angular momentum,

V.. .
L=mr_.v__=mr__V — Mmin _ _mn

min ¥ max max " min?

Using the conservation of energy,

1 ., GMm_ 1 , GMm

E=— meax min ]
2 rmin 2 rmax

1 Vil GMm -

Sy, 1Yo |- S0 g o |

2 Vmin rmin Irmax

-1
2 _2GM(, n, ) _ 2GM (rmaxj _GM (rmaxj
max ~ - - .
r-min rmax rmax + rmin rmin a r-min

Hence,

2a—r

max )

_ GMm{ r,, _GMm__GMm(
2a \r r. 2ar...

min min

Since 2a — INnyax = Min, W have

E:_GMm.
2a
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