Simple Harmonic Motion
Reading: Chapter 15

Simple Harmonic Motion
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FIG. 15-1 (a) A sequence of “snapshots™ (taken at
equal time intervals) showing the position of a particle
as it oscillates back and forth about the origin of an x
axis, between the limits +x,, and —x,,. The vector ar-
rows are scaled to indicate the speed of the particle.
The speed is maximum when the particle is at the ori-
gin and zero when it is at *x,,. If the time ¢ is chosen to
be zero when the particle is at +x,,, then the particle
returns to +x,, at t = 7, where T'is the period of the
motion. The motion is then repeated. (b) A graph of x
as a function of time for the motion of (a).
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Simple harmonic motion

X(t) = x, cos(at + ¢@).
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FIG. 15-3 Inall three cases, the blue curve is obtained from Eq. 15-3 with
¢ = 0.(a) The red curve differs from the blue curve only in that the red-
curve amplitude x/, is greater (the red-curve extremes of displacement are
higher and lower). (b) The red curve differs from the blue curve only in
that the red-curve period is 7" = T/2 (the red curve is compressed horizon-
tally). (¢) The red curve differs from the blue curve only in that for the

red curve ¢ = —m/4 rad rather than zero (the negative value of ¢ shifts the
red curve to the right).
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Since the motion returns to its initial value after one
period T,

X COS(ak + @) = X cos[aw(t+T) + ¢@)],
wt+P+2r=0(t+T)+ g,
ol =27

Thus




Velocity

v(t) = % = %[xm cos(at + ¢@)],

V(t) = —x, Sin(awt + @).
Velocity amplitude v_=ax .

Acceleration

a(t) = % = %[—a)xm sin(at + @)],
a(t) = —w’x_ cos(at + @).

I I — /2
Acceleration amplitude a_=w*X_.

Note that 0\ s A‘
a(t) =—w2x<t>, PN
i (a) |
d*x o | ]
dt* N ,
o,
This equation of motion will be 5 .} /\
very useful in identifying : o i \ l
simple harmonic motion and its <w/ s

frequency.

FIG. 15-4 (a) The displacement x(¢)
of a particle oscillating in SHM

with phase angle ¢ equal to zero.

The period T marks one complete
oscillation. (b) The velocity v(¢) of the
particle. (¢) The acceleration a(t) of
the particle.



The Force Law for Simple Harmonic Motion
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—X x=0 +x,,

FIG. 15-5 A linear simple harmonic
oscillator. The surface is frictionless.
Like the particle of Fig. 15-1, the
block moves in simple harmonic mo-
tion once it has been either pulled or
pushed away from the x = 0 position
and released. Its displacement is then
given by Eq. 15-3.

Consider the simple harmonic motion of a block of mass
M subject to the elastic force of a spring. Newton’s law:

F =—kx=ma.

2
m—Z(+kx:O.
dt

d’x Kk

—+—x=0.

dt* m
Comparing with the equation of motion for simple
harmonic motion,

Simple harmonic motion is the motion executed by a
particle of mass m subject to a force that is proportional
to the displacement of the particle but opposite in sign.

Angular frequency:

Period: Since T :2—7[,
[0




Examples

15-1 A block whose mass m is 680 g is fastened to a

spring whose spring constant k is 65 Nm™. The block is

pulled a distance x = 11 cm from its equilibrium position

at x = 0 on a frictionless surface and released from rest at

t=0.

(a) What are the angular frequency, the frequency, and
the period of the resulting oscillation?

(b) What is the amplitude of the oscillation?

(c) What is the maximum speed of the oscillating block?

(d) What is the magnitude of the maximum acceleration
of the block?

(e) What is the phase constant ¢ for the motion?

(f) What is the displacement function x(t)?

(@) o= \F ,/ 65 =9.78rads™ (ans)

- % _156Hz (ans)

27
T —%—O 643s (ans)

(b) x, =11cm (ans)
(c) v. =ax_=(9.78)(0.11) =1.08 ms™ (ans)
(d) a, = w°x =(9.78)°(0.11) =10.5ms™ (ans)

(e) Att=0,
X(0) =x_ cos¢g =0.11 (1)
V(0) =—wX sing =0 (2)

(2):sing=0 = ¢=0 (ans)
(f) x(t) = x, cos(at + @) =0.11cos(9.78t) (ans)




15-2 At t = 0, the displacement of x(0) of the block in a
linear oscillator is —8.50 cm. Its velocity v(0) then is
—0.920 ms™*, and its acceleration a(0) is +47.0 ms>.

(a) What are the angular frequency ?

(b) What is the phase constant ¢ and amplitude x,?

(@) x(t) = x_, cos(at + @)
V(t) = —wx, sin(wt + @)
a(t) = —w’x_ cos(at + @)

Att=0,
X(0) = x, cos¢ =—0.085 (1)
v(0) = —ax_, Sin ¢ =—0.920 (2)
a(0) = —w’x_cos¢ = +47.0 (3)
a0 _
(3) = (1): OB @
= \/— % = \/— - 32.2(3)50 =23.5rads™ (ans)
v __ sné__
(c) (2) = (2): (0) a)cos¢ =—otang
tang=— "0 ~090 _ 4 6503

ox(0)  (23.51)(—0.085)
¢=-247° or ¢=180°—24.7°=155°

(1): x, = X
COS ¢
If p=-24.7° X ﬂ =-0.094m=-9.4cm
c0s24.7°
If ¢=155° x —0.085 =0.094m=9.4cm
" c0s155°

Since x,, is positive, ¢ = 155° and x,, = 9.4 cm. (ans)




Energy in Simple Harmonic Motion
Potential energy:

Since x(t) = x., cos(at + @),
1 2 1 2 2
U(t) = Ekx = 5kxm cos” (at + @).

Kinetic energy:

Since v(t) = —awx, sin(at + @),
_1 2 _E 22 ain 2
K(t) = 2mv = 2ma) X5, sin“ (ot + @).
Since " = k/m,
1, 2.2
K(t) :Ekxm sin“(awt + @).
Mechanical energy:

E=U+K =%kxﬁ] Cosz(a)t+¢)+%kxésin2(a)t+¢)

:%kx;[cosz(a)t +¢) +sin? (et + §)].

Since cos*(at + @) + sin(at + ¢) =1,

E:U+K:%w;
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FIG. 15-6 (a) Potential energy U(t),
kinetic energy K(r),and mechanical
energy E as functions of time ¢ for a
linear harmonic oscillator. Note that
all energies are positive and that the
potential energy and the kinetic en-
ergy peak twice during every period.
(b) Potential energy U(x), kinetic en-
ergy K(x),and mechanical energy £
as functions of position x for a linear
harmonic oscillator with amplitude
x,,. For x = 0 the energy is all kinetic,
and for x = *x,, it is all potential.

The mechanical energy is conserved.



15-3 Suppose the damper of a tall building has mass m =
2.72 x 10° kg and is designed to oscillate at frequency f =
10 Hz and with amplitude x,, = 20 cm.

(a) What is the total mechanical energy E of the damper?
(b) What is the speed of the damper when it passes
through the equilibrium point?

See Youtube “Discovery Channel Taipei 101 (3/5)” and
“Taipei 101 Damper”

(a) k =ma® =m(24f )*
= (2.72x10°)(207)* =1.073x10° N
The energy:

E=K+U=1mw+1w2
2T
_ 0+%(1.073><109)(o.2)2

=2.147x10" J=215MJ (ans)
(b) Using the conservation of energy,

E—K+U=1m?+1ke
2 2

2.147 x10" = %(2.72 x10°)v* +0

v=12.6ms™ (ans)




An Angular Simple Harmonic Oscillator

l;*JFixed end

Suspension wire

Reference line

FIG.15-7 A torsion pendulumis an
angular version of a linear simple
harmonic oscillator. The disk oscil-
lates in a horizontal plane; the refer-
ence line oscillates with angular
amplitude 6,,. The twist in the sus-
pension wire stores potential energy
as a spring does and provides the
restoring torque.

When the suspension wire is twisted through an angle 6,
the torsional pendulum produces a restoring torque
given by

T=—K0.

x is called the torsion constant.
Using Newton’s law for angular motion, 7= l«,

2
-x0=la, d—(29+519=0.
o |

Comparing with the equation of motion for simple
harmonic motion,

Period: Since T =2—7T,



Example

15-4 A thin rod whose length L is 12.4 cm and whose
mass m is 135 g is suspended at its midpoint from a long
wire. Its period T, of angular SHM is measured to be
2.53 s. An irregularly shaped object, which we call X, is
then hung from the same wire, and its period Ty is found
to be 4.76 s. What is the rotational inertia of object X
about its suspension axis?

Rotational inertia of
the rod about the

Suspension
center pension
= 1 ML? > >
— I3 o~ 1G.15-8 Two torsion . Rod
1 2 endulums, consisting of - &
8)a wire and a rod and L—
?)) the same wire and an G
hregularly shaped ob- w
rbcl. (a) (b) Object X
i
1 2

=1.7298 x10™* kgm?

Since T, = 27z\/E and T, = Zz\/g, we have
K K

_ |l

Tb Ib

Therefore,

(g ;6) (1.73x10™%) =6.12x10"* kgm? (ans)




The Simple Pendulum

The restoring torque about the ... ..
point of suspension is 7 = —mg  rw

) point :l L
sindL. |
Using Newton’s law for angular |
motion, 7= lg, —r "

i
!
'

—mgsin &L = mle,
2
CciiT? + %sin 6 =0.

When the pendulum swings
through a small angle, sing = 6.
Therefore

(b)

2
d 9 g FIG. 159 (a) A simple pendulum.
2 + 6 — O . (b) The forces acting on the bob are
dt L the gravitational force F, and the

force T from the string. The tangen-
tial component F, sin 6 of the
gravitational force is a restoring

Comparlng Wlth the equatlon Of [orcethattepdslobringt}{e.pcndu-
motion for S|mp|e harmonlc Jlum back to its central position.
motion,

Period: Since T =2—”,
)

T=27Z’\/E.
g



The Physical Pendulum

FIG. 15-10 A physical pendulum.
The restoring torque is hF, sin 6.
When 6 = 0, center of mass C hangs
directly below pivot point O.

The restoring torque about the point of suspension is 7 =
—mg sinéh.
Using Newton’s law for angular motion, 7= |,

2
—mgsinéh=lg«, d*o + mlghsin 6 =0.

dt?

When the pendulum swings through a small angle, sind~
6. Therefore

2
d f+ mghQ:O.
dt I
Comparing with the equation of motion for simple
harmonic motion,

o =T

T=2r L
\/ mgh

Period: Since T :2—”,
[0



If the mass is concentrated at the center of mass C, such
as in the simple pendulum, then

2
T=2r L:27r mL =27z\/£.
\ mgh \' mgL g

We recover the result for the simple pendulum.

Examples

15-5 A meter stick, suspended from one end, swings as a
physical pendulum.

(a) What is its period of oscillation T?

(b) A simple pendulum oscillates with the same period as
the stick. What is the length L, of the simple pendulum?

Rotational inertia of a

rod about one end .
1
- — M L2 ;z : :.
3 | E Iy
Period T =2rx o - ot
mg .
2
mL° /3 i
= (@) ()
mg L / 2 FIG. 15-11 (a) A meter stick suspended from one end as a
physical pendulum. (b) A simple pendulum whose length L;is
2 I_ chosen so that the periods of the two pendulums are equal.
= 272' —_— (anS) Point P on the pendulum of (a) marks the center of oscillation
39

(b) For a simple pendulum of length L,,

T:27z\/E

g

2r 5:27z 2L = LO=EL=66.7cm (ans)
g 39 3




15-6 A diver steps on the diving board and makes it
move downwards. As the board rebounds back through
the horizontal, she leaps upward and lands on the free
end just as the board has completed 2.5 oscillations
during the leap. (With such timing, the diver lands when
the free end is moving downward with greatest speed.
The landing then drives the free end down substantially,
and the rebound catapults the diver high into the air.)
Modeling the spring board as the rod-spring system (Fig.
15-12(d)), what is the required spring constant k? Given
m = 20 kg, diver’s leaping time t; = 0.62 s.

See Youtube “Guo Jingjing”.

o~
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Fulcrum Free end Diver— ¢
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I/ , \ ) , —\l L
——'1'7 -_‘_Q_L’ 1
(@) )
Divcr—/A\
\ fje———1L, >
{3 R
__FL\_{ f
(c) (d)

FIG. 15-12 (a) A diving board. (b) The diver leaps upward
and forward as the board moves through the horizontal. (¢)
The diver lands 2.5 oscillations later. (d) A spring-oscillator
model of the oscillating board.




Damped Simple Harmonic Motion

B8 Rigid support

The liquid exerts a damping force
proportional to the velocity. Then,

Springiness, k&

(Tage)

b = damping constant.
Using Newton’s second law,

+— Vane

*“|Damping, b

ol
Il
I
o
=

—bv —kx =ma.
d 2 X dx FIG. 1515 An idealized damped
m 4 b + kX — 0 simple harmonic oscillator. A vane
2 ' immersed in a liquid exerts a damp-
ing force on the block as the block
oscillates parallel to the x axis.
Solution:
—bt/2m 1
X(t)=x_e cos(w't + @), where
k b’
= —-
= 5
m 4m

If b =0, @ reduces to @ =~k/m of the undamped
oscillator. If b <<~+/km, then &’ ~ .
The amplitude, x(t) = x_e™"*", gradually decreases with

time.
The mechanical energy decreases exponentially with
time.

E(t) = %kxfne—b“m.

FIG. 15-16 The displacement func-
tion x(¢) for the damped oscillator of
Fig. 15-15, with values given in
Sample Problem 15-7.The ampli-
tude, which is x,, e /2" decreases
exponentially with time.




Example

15-7 For the damped oscillator with m = 250 g, k = 85

Nm™ andb=70gs™.
(a) What is the period of the motion?

(b) How long does it take for the amplitude of the
damped oscillations to drop to half its initial value?
(c) How long foes it take for the mechanical energy to

drop to half its initial value?

@T-= 2”\/% =21, /% =0.34s (ans)

(b) When the amplitude drops by half,

X e—bt/2m — EX
m 2 m

e—bt/2m — l

2
Taking logarithm, — bt =In 1 =—In2

2m 2
f 2min 2 _ (2)(0.25)(In 2) _ 4955 (ans)
b 0.07

(c) When the energy drops by half,

1kxée‘b” "= }(1 kxéj
2 2\ 2

_ 1
e bt/m i

2
Taking logarithm, — bt =1In 1 =—In2
m 2
- min2 _(0.25)(In2)
b 0.07

t =2.48s (ans)




Forced Oscillations and Resonance

When a simple harmonic oscillator is driven by a
periodic external force, we have forced oscillations or
driven oscillations.

Its behavior is determined by two angular frequencies:

(1) the natural angular frequency w

(2) the angular frequency ay of the external driving
force.

The motion of the forced oscillator is given by

X(t) =X _cos(a t+¢).

(1) It oscillates at the angular frequency ay of the
external driving force.
(2) Its amplitude x,, is greatest when

d :a)-

This is called resonance.
See Youtube “Tacoma Bridge Disaster”.

b=50g/s
(least.
damping)

b="70g/s
b=140 g/s

Amplitude

0.6 0.8 1.0 1.2 1.4
W,/®

FIG. 15-17 The displacement ampli-
tude x,, of a forced oscillator varies
as the angular frequency w, of the
driving force is varied. The curves
here correspond to three values of
the damping constant b.



