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Reading: Chapter 15 

 

Simple Harmonic Motion 
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Simple harmonic motion 

 

).cos()(   txtx m  



 

 
Amplitude xm 

Phase  

Angular frequency  

 

Since the motion returns to its initial value after one 

period T, 
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Velocity 

 

)],cos([)(   tx
dt

d

dt

dx
tv m  

).sin()(   txtv m  

Velocity amplitude v x
m m
 . 

 

Acceleration 

)],sin([)(   tx
dt

d

dt

dv
ta m  

).cos()( 2   txta m  

Acceleration amplitude a x
m m
2 . 

 

Note that 

),()( 2 txta   

.02

2

2

 x
dt

xd
  

 

This equation of motion will be 

very useful in identifying 

simple harmonic motion and its 

frequency. 



The Force Law for Simple Harmonic Motion 

 
Consider the simple harmonic motion of a block of mass 

m subject to the elastic force of a spring. Newton’s law: 
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Comparing with the equation of motion for simple 

harmonic motion, 
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Simple harmonic motion is the motion executed by a 

particle of mass m subject to a force that is proportional 

to the displacement of the particle but opposite in sign. 
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Examples 

 

15-1 A block whose mass m is 680 g is fastened to a 

spring whose spring constant k is 65 Nm-1. The block is 

pulled a distance x = 11 cm from its equilibrium position 

at x = 0 on a frictionless surface and released from rest at 

t = 0. 

(a)  What are the angular frequency, the frequency, and 

the period of the resulting oscillation? 

(b)  What is the amplitude of the oscillation? 

(c)  What is the maximum speed of the oscillating block? 

(d)  What is the magnitude of the maximum acceleration 

of the block? 

(e)  What is the phase constant  for the motion? 

(f)  What is the displacement function x(t)? 

(a) 1rads 78.9
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(b) cm 11mx    (ans) 

(c) 1ms 08.1)11.0)(78.9(  mm xv     (ans) 

(d) 
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(e) At t = 0, 
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15-2 At t = 0, the displacement of x(0) of the block in a 

linear oscillator is 8.50 cm. Its velocity v(0) then is 

0.920 ms1, and its acceleration a(0) is +47.0 ms2. 

(a)  What are the angular frequency ? 

(b)  What is the phase constant  and amplitude xm? 
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Energy in Simple Harmonic Motion 

 

Potential energy: 
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Kinetic energy: 
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Since 2 = k/m,  
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Mechanical energy: 
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Since cos2(t + ) + sin2(t + )  = 1, 
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The mechanical energy is conserved. 



15-3 Suppose the damper of a tall building has mass m = 

2.72  105 kg and is designed to oscillate at frequency f = 

10 Hz and with amplitude xm = 20 cm. 

(a) What is the total mechanical energy E of the damper? 

(b) What is the speed of the damper when it passes 

through the equilibrium point? 

See Youtube “Discovery Channel Taipei 101 (3/5)” and 

“Taipei 101 Damper” 

(a) 22 )2( fmmk    
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(b) Using the conservation of energy, 
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An Angular Simple Harmonic Oscillator 

 
When the suspension wire is twisted through an angle , 

the torsional pendulum produces a restoring torque 

given by 

  . 
 

 is called the torsion constant. 

Using Newton’s law for angular motion,   I ,  
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Comparing with the equation of motion for simple 

harmonic motion, 
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Example 
 

15-4 A thin rod whose length L is 12.4 cm and whose 

mass m is 135 g is suspended at its midpoint from a long 

wire. Its period Ta of angular SHM is measured to be 

2.53 s. An irregularly shaped object, which we call X, is 

then hung from the same wire, and its period Tb is found 

to be 4.76 s. What is the rotational inertia of object X 

about its suspension axis? 
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The Simple Pendulum 
 

The restoring torque about the 

point of suspension is  = mg 

sin L.  

Using Newton’s law for angular 

motion,  = I, 
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When the pendulum swings 

through a small angle, sin  . 

Therefore 
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Comparing with the equation of 

motion for simple harmonic 

motion, 
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The Physical Pendulum 

 
The restoring torque about the point of suspension is  = 

mg sin h. 

Using Newton’s law for angular motion,  = I, 
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When the pendulum swings through a small angle, sin  

. Therefore 
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Comparing with the equation of motion for simple 

harmonic motion, 

.2

I

mgh
  

Period: Since T 
2


,  

 

T
I

mgh
 2 . 



If the mass is concentrated at the center of mass C, such 

as in the simple pendulum, then 
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We recover the result for the simple pendulum. 

 

Examples 

 

15-5 A meter stick, suspended from one end, swings as a 

physical pendulum. 

(a) What is its period of oscillation T? 

(b) A simple pendulum oscillates with the same period as 

the stick. What is the length L0 of the simple pendulum? 

Rotational inertia of a 

rod about one end 

2

3

1
ML  

Period 
mgh

I
T 2  

2/

3/
2

2

mgL
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  
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3
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2    (ans) 

(b) For a simple pendulum of length L0, 

g

L
T 02  

g

L

g

L
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2
22 0     cm 7.66

3

2
0  LL    (ans) 



15-6 A diver steps on the diving board and makes it 

move downwards. As the board rebounds back through 

the horizontal, she leaps upward and lands on the free 

end just as the board has completed 2.5 oscillations 

during the leap. (With such timing, the diver lands when 

the free end is moving downward with greatest speed. 

The landing then drives the free end down substantially, 

and the rebound catapults the diver high into the air.) 

Modeling the spring board as the rod-spring system (Fig. 

15-12(d)), what is the required spring constant k? Given 

m = 20 kg, diver’s leaping time tfl = 0.62 s. 

See Youtube “Guo Jingjing”. 

 

 

 

 

 

 

 

 

 



Damped Simple Harmonic Motion 

 

The liquid exerts a damping force 

proportional to the velocity. Then, 
 

,bvFd   
 

b = damping constant. 

Using Newton’s second law, 
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Solution: 
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If b = 0, ’ reduces to mk /  of the undamped 

oscillator. If kmb  , then ’  . 

The amplitude, mbt

mextx 2/)(  , gradually decreases with 

time. 

The mechanical energy decreases exponentially with 

time. 
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Example 

 

15-7 For the damped oscillator with m = 250 g, k = 85 

Nm1, and b = 70 gs1. 

(a) What is the period of the motion? 

(b) How long does it take for the amplitude of the 

damped oscillations to drop to half its initial value? 

(c) How long foes it take for the mechanical energy to 

drop to half its initial value? 

(a) s 34.0
85

25.0
22  

k

m
T    (ans) 

(b) When the amplitude drops by half, 

m

mbt

m xex
2

12/   

2

12/  mbte  

Taking logarithm, 2ln
2

1
ln

2
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m
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s 95.4
07.0

)2)(ln25.0)(2(2ln2


b

m
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(c) When the energy drops by half, 









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2
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
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Forced Oscillations and Resonance 

 

When a simple harmonic oscillator is driven by a 

periodic external force, we have forced oscillations or 

driven oscillations. 

Its behavior is determined by two angular frequencies: 

(1) the natural angular frequency  

(2) the angular frequency d of the external driving 

force. 

 

The motion of the forced oscillator is given by 

 
x t x t
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(1) It oscillates at the angular frequency d of the 

external driving force. 

(2) Its amplitude xm is greatest when 
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d
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This is called resonance. 

See Youtube “Tacoma Bridge Disaster”. 

 


