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Kinetic Theory 
 

Reading: Chapter 19 (except 19-6, 19-7, 19-10) 

 

Ideal Gases 

 

Ideal gas law: 

 
pV nRT ,  

 

where 

p = pressure 

V = volume 

n = number of moles of gas 

R = 8.31 J mol-1K-1 is the gas constant. 

T = absolute temperature 

 

All gases behave like ideal gases at low enough densities. 

 

Work Done by an Ideal Gas at Constant Temperature 

 

Isothermal expansion: During the expansion, the 

temperature is kept constant. 

Isothermal compression: During the compression, the 

temperature is kept constant. 

Using the ideal gas law, an isotherm on a p-V diagram is 

given by 

 

p
nRT

V
 .  
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Work done by an ideal gas during 

an isothermal expansion from Vi 

to Vf: 
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Since T is constant in an 

isothermal expansion, 
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Since ln a  ln b = ln (a/b), 

 

.ln
i

f

V

V
nRTW   

 

For isothermal expansion, Vf > Vi, W is positive. 

For isothermal compression, Vf < Vi, W is negative. 

Other thermodynamic processes: 

 

For constant-volume processes, W = 0. 

For constant-pressure processes, W = p(Vf  Vi) = pV. 
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Examples 

 

19-1 A cylinder contains 12 L of oxygen at 20oC and 15 

atm. The temperature is raised to 35oC, and the volume 

reduced to 8.5 L. What is the final pressure of the gas in 

atmospheres? Assume that the gas is ideal. 

 

Since pV = nRT, 
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19-2 One mole of oxygen (assume it to be an ideal gas) 

expands at a constant temperature T of 310 K from an 

initial volume Vi of 12 L to a final volume Vf of 19 L. 

(a) How much work is done by the expanding gas? 

(b) How much work is done by the gas during an 

isothermal compression from Vi = 19 L to Vf = 12 L? 

 

(a) 
i

f

V

V
nRTW ln  

12

19
ln)310)(31.8)(1(  

J 1184    (ans) 

 

(b)  
f

i

V

V
nRTW ln  

19

12
ln)310)(31.8)(1(  

J 1184    (ans) 

 

Work is done on the gas to compress it. 
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Pressure, Temperature and RMS Speed 

 
Consider n moles of an ideal gas in a cubical box of 

volume V at temperature T.  
 

The gas molecules are moving in the box. 

When they collide with the walls, the collision is elastic 

and momentum is transferred to the walls. 

Using Newton’s second law, this change in momentum 

results in a force acting on the wall. 

This force comtributes to the pressure of the gas. 
 

In the x direction, the velocity of a molecule of mass m 

changes from vx to vx when it collides with the shaded 

wall. 

Change in momentum px = 2mvx. 

The time between collisions t = 2L/vx. 

Hence the rate at which momentum is transferred to the 

shaded wall is: 
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Using Newton’s law, this is the force exerted by the gas 

on the shaded wall. Summing up the forces due to all gas 

molecules, 
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Pressure: 

 

 .22

132 Nxx vv
L
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To simplify this expression, let 

 

 .1 22
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Nxxx vv
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Also, L3 = V. Therefore, 
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Since mN is the total mass of the gas, mN = nM, where 

n = number of moles of gas,  

M = mass of 1 mole of gas (the molar mass of the gas). 

 

.
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Since v2 = vx
2 + vy

2 + vz
2, and vx

2 = vy
2 = vz

2, we have  

 

.
3

1 22 vvx   

 

Hence 
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The root-mean-square speed vrms for N molecules is 

defined by 

 

 .1 22
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This yields 
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This tells us that the (macroscopic) pressure of the gas 

depends on the (microscopic) speed of the molecules. 

 

Using the ideal gas law, pV = nRT, we have 

 

.
3

rms
M

RT
v   

 

Example 19-3 Here are five numbers: 5, 11, 32, 67, 89. 

(a) What is the average value n of these numbers? 

(b) What is the rms value nrms of these numbers? 

 

(a) 8.40
5

896732115



n    (ans) 

(b) 1.52
5

896732115 22222




rmsn    (ans) 
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Translational Kinetic Energy 

 

The translational kinetic energy of the gas: 
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Since MRTv /3rms  , 
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Since M = NAm, where NA is the Avogadro’s number 

(number of molecules in 1 mole = 6.02  1023 mol-1), 
 

.
2

3
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RT
K   

 

This is generally written as 
 

,
2

3
kTK   

 

where k is called the Boltzmann constant, given by 
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Conclusion: 
 

At a given temperature T, all ideal gas molecules – no 

matter what their mass – have the same average 

translational kinetic energy, namely, 3

2
kT.  When we 

measure the temperature of a gas, we are also measuring 

the average translational kinetic energy of its molecules. 
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Internal Energy 

 

Consider a monatomic ideal gas (e.g. helium, neon, 

argon) 

 

Internal energy: 

translational kinetic energy of the atoms 

no rotational kinetic energy (because monatomic) 

no potential energy (because no intermolecular force) 

 

For n moles of the gas, 

number of molecules = nNA 

average kinetic energy of a molecule = kT
2

3
 

total internal energy: 

 

.
2

3
)( Aint 








 kTnNE  

 

Since NAk = R, 

 

nRTE
2

3
int     (monatomic gas). 

 

The internal energy Eint of an ideal gas is a function of 

the gas temperature only; it does not depend on its 

pressure or density. 
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Molar Specific Heat at Constant Volume 

 
Using the first law of thermodynamics, 

 
.int WQE   

 

Since the volume is fixed, W = 0. Furthermore, 

 

.
2

3
int TnRE   

 

Therefore, 

.
2

3
QTnR   

 

Molar specific heat at constant volume: 

 

,
Tn

Q
CV


  

 

RCV
2

3
    (monatomic gas). 

 

Its value is CV = 12.5 Jmol1K1. 
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General Kinds of Gases 

 

Polyatomic molecules possess 

both translational and rotational 

kinetic energy. 

 

Hence their internal energy and 

specific heat are greater than those 

of monatomic gases. In general, if 

the molar specific heat at constant 

volume is CV, then 

 
,int TnCE V  

 

and 

 

.int TnCE V  

 

A change in the internal energy 

Eint of an ideal gas at constant 

volume depends on the change 

in the gas temperature only; it 

does not depend on what type of 

process produces the change in 

temperature. 

 

path 1: constant volume 

path 2: constant pressure 

path 3: adiabatic compression 
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Molar Specific Heat at Constant Pressure 

 
Using the first law of thermodynamics, 

 
.int WQE   

 

For ideal gases, pV = nRT. Thus for work done at 

constant pressure, 

 
W p V nR T   . 

 

Furthermore, 

 
.int TnCE V  

 

Therefore, 

 

,TnRQTnCV        .TnRTnCQ V   

 

Molar specific heat at constant pressure: 

 

,
Tn

Q
CP


       .RCC VP   
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Equipartition of Energy (Maxwell) 

 

If a kind of molecule has f independent ways to store 

energy, then it has f degrees of freedom. Each degree of 

freedom has an average energy of 
1

2
kT  per molecule (or 

1

2
RT  per mole) associated with it. 

e.g. helium: 3 translational + 0 rotational 

 E nR T
int

,
3

2

 and C R
V


3

2

. 

e.g. oxygen: 3 translational + 2 rotational 

 E nR T
int

,
5

2

 and C R
V


5

2

. 

e.g. methane: 3 translational + 3 rotational 

 E nR T
int

,3  and C R
V
3 . 

In general, 

 E nR T
f
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 and C R
V

f


2
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Example 

 

19-7 A bubble of 5 mol of helium is submerged at a 

certain depth in liquid water when the water (and thus the 

helium) undergoes a temperature increase T of 20oC at 

constant pressure. As a result, the bubble expands. 

(a) How much energy is added to the helium as heat 

during the increase and expansion? 

(b) What is the change Eint in the internal energy of the 

helium during the temperature increase? 

(c) How much work W is done by the helium as it 

expands against the pressure of the surrounding water 

during the temperature increase? 

 

(a) RRRRCC VP
2

5

2

3
  

)20)(31.8)(5.2)(5(

2

5











 TCRnTnCQ VP

 

J 2080    (ans) 

(b) TCRnTnCE VV 









2

3
int  

)20)(31.8)(5.1)(5(  

J 1250    (ans) 

(c)  Using the first law of thermodynamics, 

5.12465.2077

int



 EQW
 

J 831    (ans) 
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19-8 We transfer 1000 J to a diatomic gas, allowing it to 

expand with the pressure held constant. The gas 

molecules rotate but do not oscillate. How much of the 

1000 J goes into the increase of the gas’s internal 

energy? Of that amount, how much goes into Ktran (the 

kinetic energy of the translational motion of the 

molecules) and Krot (the kinetic energy of their 

rotational motion)? 

 

Q = 1000 J 

A diatomic gas has 5 degrees of freedom. 

Therefore, CV = 5R/2 and CP = 7R/2. 

At constant pressure, 

2/7nR

Q
T   

Q
nR

Q
RnTnCE V

7

5

2/72

5
int 








  

J 3.7141000
7

5









    (ans) 

There are 3 translational degrees of freedom and 2 

rotational degrees of freedom. Thus, 

Q
nR

Q
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7

3

2/72

3

2

3
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



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

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
  

J 6.4281000
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

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Q
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Q
nRTRnK
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2
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2
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






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J 7.2851000
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2









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The Adiabatic Expansion of an Ideal Gas 

 

 
For adiabatic processes, Q = 0. 

Using the first law of thermodynamics, 

adiabatic compression causes heating, 

adiabatic expansion causes cooling. 

 

We can prove: 

constant,pV  
 

where  = CP/CV, the ratio of the molar specific heats. Or, 
 

.2211

 VpVp   
 

Using the ideal gas equation, pV = nRT, 
 

constant,






 V
V

nRT
 

constant.1 TV  
 

or 

.1

22

1

11

   VTVT  
 

Example: Fog formation when a cold can of soft drink is 

opened.
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Proof: 

 

First law of thermodynamics for a small expansion: 

 

,int dWdQdE   

 

where 

dEint = nCVdT, 

dQ = 0 for adiabatic processes, 

dW = pdV. 

 

From the ideal gas equation, pV = nRT, so that 

 

dW
nRT

V
dV . 

 

Substituting, 

 

,0 dV
V

nRT
dTnCV   

 

we arrive at the differential equation 

 

.
T

V

R

C

dT

dV V








  

 

Solution (verify by substitution): 

 

,constant
/ RCVTV


       constant.

/
VCR

TV  

 

Since R/CV = (CP  CV)/CV =   1, we get the adiabatic 

laws.
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Free Expansion 
 

 

 

 

 

No work is done: W = 0 

No heat is transferred: Q = 0 

Hence no change in internal energy: Eint = Q  W = 0. 

 

For ideal gases, this implies no change in temperature: 

 

Ti = Tf or piVi = pfVf. 
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Example 

 

19-10 1 mol of oxygen expands adiabatically from an 

initial volume of 12 L at 310 K to a final volume of 19 L. 

(a) What would be the final temperature of the gas? 

Oxygen is diatomic and here has rotation but not 

oscillation. 

(b) What is the initial and final pressure of the gas? 

(c) If, instead, the gas had expanded freely from the 

initial volume to the final volume, what would be the 

final temperature and pressure? 

 


