Kinetic Theory
Reading: Chapter 19 (except 19-6, 19-7, 19-10)
Ideal Gases

Ideal gas law:

pV =nRT,

where

p = pressure

V =volume

n = number of moles of gas

R = 8.31 J mol*K™ is the gas constant.
T = absolute temperature

All gases behave like ideal gases at low enough densities.
Work Done by an Ideal Gas at Constant Temperature

Isothermal expansion: During the expansion, the
temperature is kept constant.

Isothermal compression: During the compression, the
temperature is kept constant.

Using the ideal gas law, an isotherm on a p-V diagram is
given by



Work done by an ideal gas during
an isothermal expansion from V;

to Vs: :
T=320K
\/ J
f T=310K
W = p dv. T=300K
”
Vf n RT FIG.19-2 Three isotherms on a
W - dV p-V diagram. The path shown along
the middle isotherm represents an

isothermal expansion of a gas from
an initial state i to a final state f.
The path from fto i along the

Since T is constant in an sothermwouldrepresent the re-

verse process—that is, an isothermal

isothermal expansion, compression.

Vi
W =nRT ‘1/—\/ =nRT[InV]'.

V.

Since Ina—Inb =In (a/b),

Vf
W =nRT In—.
V

For isothermal expansion, Vi > V;, W is positive.
For isothermal compression, V; < V;, W is negative.
Other thermodynamic processes:

For constant-volume processes, W = 0.
For constant-pressure processes, W = p(V; —V;) = pAV.



Examples

19-1 A cylinder contains 12 L of oxygen at 20°C and 15
atm. The temperature is raised to 35°C, and the volume
reduced to 8.5 L. What is the final pressure of the gas in
atmospheres? Assume that the gas is ideal.

Since pV = nRT,
AV2 V
pVi _ PeVe o
Ti Tf
P =P Ll
f in Ti
15 atm( 12 j( 273+ 35)
8.5\ 273+ 20

=22.3 atm (ans)




19-2 One mole of oxygen (assume it to be an ideal gas)
expands at a constant temperature T of 310 K from an
initial volume V; of 12 L to a final volume V; of 19 L.

(a) How much work is done by the expanding gas?

(b) How much work is done by the gas during an
iIsothermal compression fromV; =19 L to V; =12 L?

Vf
(@ W=nRTIh—

Vi
— (1)(8.31)(310) In g
~1184J (ans)

(b) W = nRT In _I 0 l()\I 20 30
V 2 :

f Volume (L)

FIG. 19-3 The shaded area represents the work done by 1
12 mol of oxygen in expanding from V; to V;at a constant temper-

— (]_)(83]_)(310) In E ature T of 310 K.
=-1184J (ans)

Work is done on the gas to compress it.




Pressure, Temperature and RMS Speed

Normal to
shaded wall

FIG. 19-4 A cubical box of edge
length L, containing # moles of an
ideal gas. A molecule of mass m and
velocity V is about to collide with the
shaded wall of area L2 A normal to
that wall is shown.

Consider n moles of an ideal gas in a cubical box of
volume V at temperature T.

The gas molecules are moving in the box.

When they collide with the walls, the collision is elastic
and momentum is transferred to the walls.

Using Newton’s second law, this change in momentum
results in a force acting on the wall.

This force comtributes to the pressure of the gas.

In the x direction, the velocity of a molecule of mass m
changes from v, to —v, when it collides with the shaded
wall.

Change in momentum Apy = 2mv,.

The time between collisions At = 2L/v,.

Hence the rate at which momentum is transferred to the
shaded wall is:

Ap, 2mv, mv:

X X __ X

At 2L/v, L

Using Newton’s law, this is the force exerted by the gas
on the shaded wall. Summing up the forces due to all gas
molecules,



2 2
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X

Pressure:

STV IR

To simplify this expression, let

<VX2> = %(vfx +---+v,ix)
Also, L® = V. Therefore,

mN(v?)

X

Vv

p:

Since mN is the total mass of the gas, mN = nM, where
n = number of moles of gas,
M = mass of 1 mole of gas (the molar mass of the gas).

nM (v7)

Hence



nM<v2>.
3V

p:

The root-mean-square speed v.ns for N molecules is
defined by

vrmsz\/@:\/%(vﬁr---wﬁ).

This yields

nMv?2

T

This tells us that the (macroscopic) pressure of the gas
depends on the (microscopic) speed of the molecules.

Using the ideal gas law, pV = nRT, we have

I3RT
Vims = wa
M

Example 19-3 Here are five numbers: 5, 11, 32, 67, 89.
(a) What is the average value (n) of these numbers?
(b) What is the rms value n,ys of these numbers?

(a) <n>=5+1l+32+67+89:40.8 (ans)
2 2 2 2 2
0) n - \/5 +11 +325+67 +89° 551 (ans)




Translational Kinetic Energy

The translational kinetic energy of the gas:

(K) =<%mv2> =}m<v2>=%mv2 .

Since v, =~3RT/M,

K) = (E mj?fﬂ,
2 M
Since M = Nam, where N is the Avogadro’s number
(number of molecules in 1 mole = 6.02 x 10* mol™),

3RT
K)= :
K=o,

This is generally written as

(K) = 2K,

where K is called the Boltzmann constant, given by

R 8.31Jmol'K™

= 5 =1.38x107JK™.
N, 6.02x10°° mol

Conclusion:

At a given temperature T, all ideal gas molecules — no
matter what their mass — have the same average

translational kinetic energy, namely, ng. When we

measure the temperature of a gas, we are also measuring
the average translational kinetic energy of its molecules.
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Internal Energy

Consider a monatomic ideal gas (e.g. helium, neon,
argon)

Internal energy:

translational kinetic energy of the atoms

no rotational kinetic energy (because monatomic)

no potential energy (because no intermolecular force)

For n moles of the gas,
number of molecules = NN

average kinetic energy of a molecule = ng

total internal energy:
3
E...=(nN A)(E KT j

Since Nak = R,

E = g NRT (monatomic gas).

Int

The internal energy Ei of an ideal gas is a function of
the gas temperature only; it does not depend on its
pressure or density.




Molar Specific Heat at Constant Volume

Pressure

|
|

:
WV
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I

Volume

i ()

S SN FIG.19-9 (a) The temperature of an
7 T PR ‘ ideal gas is raised from T'to T + AT

3 Tare in a constant-volume process. Heat is

i ) added, but no work is done. (b) The

process on a p-V diagram.

Thermal reservoir

Using the first law of thermodynamics,
AE, , =Q-W.

Since the volume is fixed, W = 0. Furthermore,

AE, ., = § NRAT.
2
Therefore,
gnRAT =Q.

Molar specific heat at constant volume:

_Q
Y nAT]

C, = g R (monatomic gas).

Its value is Cy = 12.5 Jmol K™,
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General Kinds of Gases

Polyatomic molecules possess
both translational and rotational
Kinetic energy.

Hence their internal energy and
specific heat are greater than those
of monatomic gases. In general, if
the molar specific heat at constant
volume is Cy, then

E..=nC,T,
and
AE, . =nC, AT.

A change in the internal energy
Ei« of an ideal gas at constant
volume depends on the change
in the gas temperature only; it
does not depend on what type of
process produces the change in
temperature.

path 1: constant volume

path 2: constant pressure
path 3: adiabatic compression

11

(¢) CH,

FIG. 19-13 Models of molecules as
used in kinetic theory: (@) helium, a
typical monatomic molecule; (b) oxy-
gen, a typical diatomic molecule; and
(¢) methane, a typical polyatomic
molecule. The spheres represent
atoms, and the lines between them
represent bonds. Two rotation axes
are shown for the oxygen molecule.

Pressure

Volume

FIG. 19-10 'Three paths represent-
ing three different processes that
take an ideal gas from an initial state
i at temperature 7 to some final state
fattemperature T + AT. The change
AE;, in the internal energy of the gas
is the same for these three processes
and for any others that result in the
same change of temperature.



Molar Specific Heat at Constant Pressure

Pressure

I

|
pAVI ey
{373 ! \1 V‘ + AV
() Volume

FIG. 19-11  (a) The temperature of
an ideal gas is raised from T'to T+

LRIRPTE @;\ Lo AT in a constant-pressure process.
Q / Heat is added and work is done in
Thermal reservonr 8 lifting the loaded piston. (b) The

process on a p-V diagram. The work
p AV is given by the shaded areca.
Using the first law of thermodynamics,
AE, =Q-W.

For ideal gases, pV = nRT. Thus for work done at
constant pressure,

W = pAV =nRAT.
Furthermore,
AE, . =nC,AT.
Therefore,
nC,AT =Q—-nRAT, = Q=nC,AT +nRAT.

Molar specific heat at constant pressure:

—_—2 , - (: = -I—R.
P AT P CV

12



Equipartition of Energy (Maxwell)

If a kind of molecule has f independent ways to store
energy, then it has f degrees of freedom. Each degree of

freedom has an average energy of %kT per molecule (or

%RT per mole) associated with it.

e.g. helium: 3 translational + O rotational

3 3
AE, :;nRAT, and C, :;R.
e.g. oxygen: 3 translational + 2 rotational
5 5
AE. :;nRAT, and C, :;R.
e.g. methane: 3 translational + 3 rotational

AE =3nRAT, and C\/ =3R.

In general,
AE, =—nRAT, and G, =—R
2 2
Degrees of Freedom for Various Molecules
Degrees of Freedom Predicted Molar Specific Heats
Molecule Example Translational Rotational Total (f) Cy(Eq.19-51) C,=Cy+R
Monatomic He 3 0 3 iR 3R
Diatomic 0, 3 2 5 R IR
Polyatomic CH, 3 3 6 3R 4R
Molar Specific Heats at
Constant Volume
Cy
Molecule  Example (J/mol - K)
. Ideal JR=125
Monatomic & 207789
Real He 12.5
Ar 12.6
Ideal SR=1208
Diatomic RS . EETERS
Real N, 20.7
0, 20.8
. ldeal 3R =249
Polyatomic _
Real NH, 29.0
CO, 29.7
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Example

19-7 A bubble of 5 mol of helium is submerged at a
certain depth in liquid water when the water (and thus the
helium) undergoes a temperature increase AT of 20°C at
constant pressure. As a result, the bubble expands.

(@) How much energy is added to the helium as heat
during the increase and expansion?

(b) What is the change AE; in the internal energy of the
helium during the temperature increase?

(c) How much work W is done by the helium as it
expands against the pressure of the surrounding water
during the temperature increase?

(@) C,=C, +R:gR+R:§R

Q =nC AT = n@ R)CV AT
= (5)(2.5)(8.31)(20)
=2080J (ans)

3

(b) AE,, =nC,AT = n(5 chv AT

= (5)(1.5)(8.31)(20)
=1250J (ans)

(c) Using the first law of thermodynamics,
W=Q- AEint

=2077.5-1246.5
=831J (ans)
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19-8 We transfer 1000 J to a diatomic gas, allowing it to
expand with the pressure held constant. The gas
molecules rotate but do not oscillate. How much of the
1000 J goes into the increase of the gas’s internal
energy? Of that amount, how much goes into AKy., (the
Kinetic energy of the translational motion of the
molecules) and AK,: (the Kinetic energy of their
rotational motion)?

Q =10001

A diatomic gas has 5 degrees of freedom.
Therefore, Cy = 5R/2 and Cp = 7R/2.

At constant pressure,

T-_9%

nR/2
AEmtzchATzn(?Rj Q =§Q
2 )J7nR/2 7

= (gleOO =714.3J) (ans)

There are 3 translational degrees of freedom and 2
rotational degrees of freedom. Thus,

AKtran:nFRjAT:n(%Rj Q =§Q
2 2 )InR/2 7

= @jlooo =428.6] (ans)

AK. . = n(g R)AT =nR Q = gQ
2 mR/2 7
2

= (;)1000 =285.7J (ans)

15




The Adiabatic Expansion of an Ideal Gas

~Adiabat (Q=0)

5 44
\\
Y
2 g Isotherms:
. ¢ :
e 700 K
/ 500 K
500 K
Volume
()

~Insulation  prGURE 20-13 (@) The volume of an ideal gas is increased by

removing weight from the piston. The process is adiabatic
(O = 0). (b) The process proceeds from i to falong an adiabat on
(a) a p-V diagram.

For adiabatic processes, Q = 0.

Using the first law of thermodynamics,

adiabatic compression causes heating,

adiabatic expansion causes cooling.

We can prove:

pV’ = constant,

where y= Cp/Cy, the ratio of the molar specific heats. Or,

Vo — e
pll _p2 2"

Using the ideal gas equation, pV = nRT,

(ﬂ)\/ ’ = constant,
V

TV 7™ = constant.

or
TV =TV ™

Example: Fog formation when a cold can of soft drink is
opened.
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Proof:

First law of thermodynamics for a small expansion:

dE,, =dQ—dw,
where
dEint - nCVdT,
dQ = 0 for adiabatic processes,
dW = pdV.

From the ideal gas equation, pV = nRT, so that

aw ="RT v
v

Substituting,

chdeo—”\;ﬂdv,

we arrive at the differential equation

dv __(C_vj\i
dT R )T’

Solution (verify by substitution):
V =constant-T *'?, = TV®'“ =constant.

Since R/Cy = (Cp — Cy)/Cy = y— 1, we get the adiabatic
laws.
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Free Expansion

System Stopcock closed

No work is done: W =10
No heat is transferred: Q =0
Hence no change in internal energy: AE;x=Q —W = 0.

For ideal gases, this implies no change in temperature:

Ti=T¢  or piVi=piVs

Pressure

gef 700 K
500 K
300 K

Volume
FIGURE 20-14 A p-V diagram representing four special pro-
cesses for an ideal gas. See Table 20-5.

TABLE 20-5 FOUR SPECIAL PROCESSES

SOME SPECIAL RESULTS

PATH IN CONSTANT PROCESS (AL, = Q— Wand
FIG. 20-14 QUANTITY TYPE AE;,, = nCy AT for all paths)
1 p Isobaric Q =nC, AT; W= pAV
2 T Isothermal Q= W=nRTIn(V/V,); AE,, =0
3 pvy, TV Adiabatic 0=0; W= —AE,,
4 % Isochoric Q= AE;,, =nC, AT, W=0
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Example

19-10 1 mol of oxygen expands adiabatically from an
initial volume of 12 L at 310 K to a final volume of 19 L.
(a) What would be the final temperature of the gas?
Oxygen is diatomic and here has rotation but not
oscillation.

(b) What is the initial and final pressure of the gas?

(c) If, instead, the gas had expanded freely from the
initial volume to the final volume, what would be the
final temperature and pressure?
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