
Electrostatics  
 

 

1 Introduction to electric charge 

 

The crucial point is that some physical quantity which we call “charges” is discovered. 

The charges are associated with a special force we called electric force. 

 

 

1.1 Coulomb’s Law  

 

This is the first Law of Physics on electromagnetism discovered by human beings. It says 

that the electrostatic force between two charges q1 and q2 separated by distance r is given by 
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where k is a constant, and r


 is a unit vector pointing in the direction from charge 1 to charge 2. 

12F


 is the force acting on charge 2 from charge 1. 

 

SI Unit of charge: Coulomb(C) 

 

    One coulomb is the amount of charge that is transferred through the cross section of a wire in 

1 second when there is a current of 1 ampere in the wire. 

 

Notice that the relationship between electric current and electric charges is already assumed in 

this definition. In SI Unit k is given by   229
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For many charges, the forces satisfy the law of superposition, 
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Notice the similarity of Coulomb‟s Law with Law of Gravitation, r
r
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12  . The main 

difference is that charges can be both positive and negative, whereas masses are always positive. 

 

The Coulomb‟s Law summarizes many experimental observations that were usually not 

discussed today. However, it is still interesting and useful to ask the question: 
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  Can you design experiments that can verify Coulomb’s Law? 

 

Notice that in secondary schools (and here) you are often asked to perform experiments that can 

verify the inverse square dependence of force, i.e. 2
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   The similarity between Coulomb Law and Law of Gravitation also enable us to draw some 

conclusion about Coulomb forces easily. For example,  

 

A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all 

the shell’s charge were concentrated at its center. 

 

If a charged particle is located inside a shell of uniform charge, there is no net electrostatic 

force on the particle from the shell. 

 

Do you know how to prove these statements? We shall come back to them after we learn Gauss 

Law. 

 

Example:  

  

 

 

    

 

 

   

 

The figure shows two particles fixed in place: a particle of charge q1 = 8q at the origin and a 

particle of charge q2 = -2q at x = L. At what point (other than infinitely far away) can a proton be 

placed so that it is in equilibrium? Is that equilibrium stable or unstable? (-q = charge of electron) 

 

1.2 Spherical Conductors 

 

   If excess charges Q are placed on a piece of metal, the charge will move under each other‟s 

repulsion to stay as far away from each other as possible. That means they prefer to stay at the 



surface of metal. For spherical conductors with radius R the final distribution of charges is 

simple. Because of symmetry, the charges Q will be spread uniformly on the surface of the 

spherical conductor, the surface charge density being 
24 R
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1.3 Charge is Quantized  

 

   We now know that like other materials in nature electric charges have a smallest unit, 

Ce 191060.1  , and all charges are multiple of the smallest unit, i.e. q=ne, ,....2,1,0 n etc. 

When a physical quantity such as charge can have only discrete values, we say that the quantity 

is quantized. It is in fact not obvious at all why matters in our universe all seem to be “quantized” 

somehow.  

 

1.4 Charge is Conserved 

 

    We now know also that charges cannot be created or destroyed singly. When we “create” 

charges (by rubbing a glass rod with a piece of cloth, for example) we are separating positive and 

negative charges that are originally bound together. We can destroy pair of opposite charges if 

they are so-call particle and anti-particle pair, for example, 2 ee , where e  called 

positron is the anti-particle of electron (e),  represents photons (~ EM waves).  

 
1) We show below your arrangements of charged particles. Rank the arrangements 

according to the magnitude of the net electrostatic force on the particle with charge +Q, 

greatest first. 

     
                             
 
 



2) Identical isolated conducting 

spheres 1 and 2 have equal charges 

and are separated by a distance that 

is large compared with their 

diameters (fig.(a)). The electrostatic 

force acting on sphere 2 due to 

sphere 1 is F


. Suppose now that a 

third identical sphere 3, having an 

insulating handle and initially 

neutral, is touched first to sphere 1 

(fig.(b)), then to sphere 2 (fig.(c)), 

and finally removed (fig.(d)). In 

terms of magnitude F, what is the 

magnitude of the electrostatic force 

'F


 that now acts on sphere 2? 

(1/2,1/4,3/4,3/8) 

 
2 Electric Fields  

 

 

2.1 Introducing electric field 

 

The concept of “Field” was initially introduced to describe forces between 2 objects that 

are separated by a distance (action at a distance). It is convenient to have a way of viewing how 

the force coming from object 1 felt by another object is “distributed” around object 1. This is 

particularly easy for charges obeying Coulomb‟s Law, since the force felt by charge 2 coming 

from object 1 is proportional to charge of object 2, i.e. we can write 2122
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 is the force per unit charge acting on 2q  due to charge 1. Because of linearity of force, this 

concept can be generalized to the force felt by a test charge q at position r
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 due to a distribution 

of other charges. In that case, we may write 
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where )(rE
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 is the force per unit charge of a charge q felt at position r


. qrFrE /)()(
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  was 

given a name called electric field. The SI unit for electric field is obviously Newton per coulomb 

(N/C).  

 

 

2.2 Electric Field Lines 

  

  To make it easier to visualize, Michael Faraday introduced the idea of lines of force, or electric 

field lines. Electric field lines are diagrams that represent electric fields. They are drawn with the 



following rules: (1) At any point, the direction of a straight field line or the direction of the 

tangent to a curved field line gives the direction of E


 at that point, and (2) the field lines are 

drawn so that the number of lines per unit area, measured in a plane that is perpendicular to the 

lines, is proportional to the magnitude of E


. 

 

Some examples: 

 

a) field lines from a (-) spherical charge distribution   

 

b) Field lines from 2 point charges of equal magnitude (i) charges are same (ii) charges are 

opposite. 

 

                     
 

 

2.3  Electric field due to different charge distributions 

 

1) Point charge at origin ( 0r


) 
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Exercise: what is the electric field at position ),,( zyxr 


 from 2 point charges with 

magnitude q , and 'q , respectively located at zzr


0 ? 

 

  We use the formula 
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The last equality is valid for our 2-charges problem. 

 

Therefore 
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2) Electric dipole 

 

This is the electric field due to 2 point charges with magnitude q , and q , respectively 

located at zr d


2'  , and at distances dr ||


 from the origin. 

 

  Using the above result, we obtain for the dipole electric field; 
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   The electric field lines coming from a pair of opposite charges are shown in previous 

section (b). Notice that at distances far away from origin, the electric field is only 

proportional to the product qd. The quantity zqdp


)(  is called an electric dipole moment. 

The direction of the dipole is taken to be along the direction from the negative to the positive 

charge of a dipole. To derive the last result, we have used Taylor expansion,  
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  The mathematics will be explained in the tutorials. 

 



   You probably feel that it‟s not very easy to calculate the electric field when there is more than 

one charge in the system. We shall now make the situation worse but more realistic by 

considering electric field coming from a continuous charge distribution. 

 

 

3) Electric field from a line of charge. 

 

   Imagine a very narrow rod which is charged. The rod may not be straight. The rod is so narrow 

that we can neglect the cross section of the rod and describe the charge distribution on the rod as 
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The electric field produced by this rod is, by generalizing the sum over charges into integral, 
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   This integral is often impossible to evaluate exactly except in some simple situations. We shall 

consider one example here, the electric field coming from a straight line of charge at a symmetric 

point P at distance r from the line. The charge density  is uniform along the line.  

 

   To calculate the electric field we employ a coordinate system 

where the origin o is placed at the mid-point of the straight line. By 

symmetry, we expect that the electric field at point P will be 

pointing at x-direction, with magnitude 
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   This integral can be evaluated easily if we introduce tanry  . We obtain 2222 secryr   

and drdy 2sec . Inserting these into the integral, we obtain  
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    We have use 
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   Another example: electric field from a circular ring of charge. Notice that in these examples 
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we are calculating electric field at special points of symmetry only. The integrals at other points 

are often too complicated to be evaluated exactly.  

 

 

4) Electric field from a surface of charge 

 

     It is obvious that we have physical situations where charges ),( yx  are distributed over a 

surface of very small thickness instead of along a line. The formula for the electric field becomes 
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    Now let us apply it to calculate the electric field at a symmetry 

point P, at a distance z above a plastic circular disc with uniform 

charge density  ),( yx . 

  

From symmetry, we expect that the electric field be pointing 

towards z-direction. The formula for electric field is, in 

cylindrical coordinate  
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5) Electric field from a volume of charge 

 

   It is natural also to generalize to consider electric field from charge distributions ),,( zyx  in a 

volume. In this case, we have 
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    We expect that we can perform the integral for some simple cases like electric field from a 

sphere with uniform charge density. In fact, we know that the electric field outside the sphere 

should be r
r

Q
E

o


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 , where r  is the distance from the center of the sphere. Q = total charge 

carried by the sphere. However, if you try to do the integral, you will find that it is rather difficult 

even for this simple case. We shall introduce in next chapter a new angle of looking at 

Coulomb‟s Law called the Gauss Law. One advantage of this new angle is that many of the 



difficult integrals in evaluating electric fields can be avoided and can be replaced by much 

simpler mathematical expressions in situations with high symmetry. 

 

2.4 Motion of Charges in electric field 

 

a) Point charge 

 

    A particle with charge q satisfies Newton‟s Equation of motion amF


  under electric field, 

where m is the mass of the particle. The force the particle feels is EqF


 , followed from the 

definition of electric field. 

 

 

b) Dipole 

 

    Since a dipole is consist of 2 opposite charges of equal magnitude, the force acting on a dipole 

will be zero if electric is uniform. However, the forces on the charged ends do produce a net 

torque 


 on the dipole in general. The torque about its center of mass is 
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     Notice that the torque is trying to rotate the dipole 

clockwise to decrease   in the figure, which is why there is 

a (-) sign.  

                             

 In vector form, Ep


 . Notice that associated with the 

torque is also a potential energy 
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Questions 

 

What is the x-component of electric field at position ),,( zyxr 


 from 3 point charges with 

magnitude q , q’ and q”, respectively located at ,,, 000 zzyyxxr
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  respectively? Recall: 
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What is the x-component of electric field at position ),0,( zxr 


 from a surface charge 

distribution ')','( aryx   for Ryxr  22 ''' , and 0)','( yx  for Ryxr  22 ''' . z is the 

vertical distance from the disc. 
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3 Gauss’ Law  

 

3.1 What is Gauss’ Law 

 

Gauss‟ Law is discovered by the great mathematician Carl Friedrich Gauss. It‟s an 

alternative way to express Coulomb‟s Law. What is interesting about Gauss‟ Law is that at first 

sight it does not look related to Coulomb‟s Law in any way at all. The equivalence between 

Gauss‟ Law and Coulomb‟s Law relies on some very deep mathematics which gradually evolves 

x 



into the field of differential geometry. It also begins an evolution in physics – that physical laws 

have profound geometrical meanings. 

 

 

3.2 Language – closed surface and flux  

 
The Gauss‟ Law looks so different from Coulomb‟s Law that in order to describe it we 

first have to introduce a few new mathematical language or concept.  

 

      First we introduce the concept of (close) surface. 

 

A close surface is a surface that closes on itself and has no boundary. In 3D it can be considered 

as the surface covering a solid object. The close surface (or the solid object) can have any shape 

or size.  

Some examples of simple close surfaces include surface of a sphere, a table, or a rectangular box. 

 

     Next we introduce the concept of flux. 

 

   The concept of flux was first introduced in fluids. It describes how much fluid passes through a 

certain piece of (open) surface per unit time. 

 

             
 

 

  Let‟s consider the flow of fluid through a small square loop of area A as shown in the right 

figure. The velocity of fluid is v


. The rate of flow of fluid through the loop depends on the angle 

between v


 and the normal to the plane of the loop n


. If  v


 is perpendicular to the plane (or 

parallel to n


), the rate of flow is vA. On the other hand, if v


 is parallel to the plane 



(perpendicular to n


), there is no fluid flowing through the surface. The rate of flow is zero. 

Mathematically, the rate of mass flow through a small piece of flat surface can be written as 

Anv


. , where  is the density of fluid. 

 

   This construction can be generalized to surfaces S of 

arbitrary shape and for fluid flow where velocity is not 

constant in space. The idea is to divide the surface into small 

pieces iS , each of area dS. The pieces are small enough such 

that each small surface can be considered as flat, and the 

fluid flow velocity is constant on this small surface (see 

figure below). Notice that the flow velocity can vary 

between different small surfaces.  

                                         

  The total flow rate through the surface S is thus 

 

  
i

iii
i

iii sdxvxdsnxvx


).()().()(  , 

 

where isd


 is a vector with magnitude ds, and with direction 

along the normal of the surface element in


. In the limit when 

ds goes to zero, we obtain 

 

( ) ( )r v x ds   . 

 

Sign of normal sd


 

 

   Notice that the sign of sd


 is arbitrary, depending on how we 

assign the sign to a surface. Different sign of v ds  reflects 

different direction of net current flow through the surface. 

 

  For close surface enclosing a volume, the usual sign 

convention is that current flowing outward from the volume is 

assign a positive (+) sign. In this case the total flux flowing 

outside from a close volume is usually written as 

 

( ) ( )x v x ds   , 

 

where the circle on the integral sign indicates that the integration is to be taken over the entire 

(closed) surface. For example, a close surface covering a sphere with water coming out from all 

directions has ,0  and 0  if water is flowing into the volume at all directions. 

 

Example: 

 

  Imagine water flowing through a pipe system as shown in the figure below, 



 
 

 

Can you construct closed surface where the total flux flowing through the closed surface is (i) > 

0, (ii) = 0, (iii) < 0? 

 

3.3 Electric flux 

 

  After introducing the language of close surface and flux, we introduce the idea of electric flux. 

The idea is simply to imagine that electric field represents something “flowing” in space like 

fluids and replace )()( xvx


  by )(xE


. Thus the electric flux passing through a surface is    

 

( ). ( )i i i i
i i

E x n ds E x ds     

 

and ( )
S

E x ds    for a close surface. Pictorially, the electric flux  through a closed surface 

measures the net number of electric field lines passing through that surface.(see textbook p.546) 

 

 

Example: What is the flux  passing through each of the closed (ellipsoid) surfaces below? 

  

                                 
 



                 
 

 

  

3.4 Gauss’ Law 

 

    Gauss‟s Law states that the net flux  of electric field passing through any closed surface is 

proportional to the net charge Qen that is enclosed by the same surface. The proportionally 

constant is o/1 , i.e. 

 

( ) en

S o

Q
E r ds


   . 

   

Exercise:  

 

Apply Gauss‟ Law to the examples we have discussed above. What are the ’s? 

 

(Gauss‟ Law seems rather „magical‟, but it is in fact not to hard to prove. One only needs to 

prove it for a point charge, of which the electric field is known, and then generalize the law to an 

arbitrary charge distribution using the superposition principle.) 

 

3.5 Examples of application of Gauss’ Law 

 

  Gauss‟ Law is most useful in calculations when we can construct simple closed surfaces where 

the electric field E


 is either (i) always perpendicular to and have the same value E on the surface 

or (ii) always parallel to the surface.  

    In case (i) we have ( )E x ds EA , where  dsA  is the surface area. In case two, we have 

( ) 0E x ds  . 

 

 

1) A charged Isolated Conductor 

 

  Using Gauss‟ Law we can prove an important result about conductors: 

 

  If an excess charge is placed on an isolated conductor, the charge will move entirely to the 

surface of the conductor. None of the excess charge will stay within the body of the 

conductor. 



 

Actually we have argued that this must be true using 

Coulomb‟s Law. To prove that this is true we note that the 

electric field inside a conductor must be zero. If this were not 

so, the electric force will force charges to move, and there 

will be electric current flowing in the conductor. This cannot 

happen to an isolated conductor in steady state. Now we can 

apply Gauss‟ Law to a close surface inside, but following the 

surface of the conductor (see figure). Since 0E


 everywhere 

inside the conductor, 0  and consequently, the net (excess) 

charges enclosed by the surface must be zero. The excess 

charges can only stay on the surface of the conductor. 

 

        

  Notice that using the same argument; we can also prove that for an isolated conductor with an 

inside cavity, there is no charge accumulated on the surface of the cavity. The charges are all 

accumulated on the outer surface. 

 

 

  Electric field and charge distribution for a non-spherical conductor 

 

     For non-spherical conductors, the charges will not be uniformly distributed on the surface on 

the conductor. This variation makes the determination of the electric field set up by the surface 

charges very difficult. 

 

   However, Gauss‟ Law implies that there is a simple 

relation between the electric field just outside the surface 

of a conductor and the corresponding surface charge 

distribution )(x


 . 

 

We apply Gauss‟ Law to a section of the surface ds that is 

small enough to be considered “flat”. We then imagine a 

tiny cylindrical close surface to be embedded in the section 

as shown in the figure below. The cylinder is perpendicular 

to the surface and the length of the cylinder dh is small. 

 

   The electric field E


 at and just outside the conductor‟s surface must also be perpendicular to 

the surface. If it were not, there will be a parallel component to the surface and would cause a 

surface current. Again, this cannot happen for an isolated conductor in steady state.  

 

   We now apply Gauss‟ Law to the close surface. There is no electric field through the surface 

inside the conductor. There is also no electric field passing through the sides of the cylinder in 

the limit 0dh . In this limit, the only flux through the close surface is that through the external 

end cap. In the limit 0ds , the total flux is given by 
o

ds
Eds




 , or )(

)(
)( xn

x
xE

o









 . 



 

The equation relates the electric field just outside the surface of a conductor at position x


, to the 

surface charge density just below. )(xn


 is a unit vector pointing away from the surface at the 

same position. 

 

Example  

 

   The figure shows a cross section of a spherical metal 

shell of inner radius R. A point charge of -5.0C is 

located at a distance R/2 from the center of the shell. If 

the shell is electrically neutral, what are the (induced) 

charges on its inner and outer surfaces? 

 

Solution:  

 

(1) Notice electric field = 0 inside conductor  (a) induced 

charges can only be at inner and outer surfaces and (b) total 

induced charge on inner surface = 5.0 C. 

(2) charge neutrality of conductor  total induce charge on outer surface = -5.0C. 

 

(3) Question for you: how is the charge distributed outside, and why? 

 

 

2) Cylindrical Symmetry: Electric field from an infinite line of charge. 

                                       

Recall that we have worked out this problem before. The electric field we obtain is given by 

a complicated integral. The final result is 

 

          
r

rE
o



2
)(  ,  is the line charge density. 

 

   The direction of electric field is pointing away from the wire.  

   We now apply Gauss‟ Law to solve the problem. We construct a 

cylindrical closed surface of radius r and height h as shown in the 

figure.  Notice that the two end caps are part of the surface. 

 

    By symmetry, we expect that the electric fields are pointing 

radially out from the wire, with the same magnitude for all points that 

are at the same distance from the wire, i.e.  

 

rrEzrE


)(),,(   ,  

 

in cylindrical coordinate. 

 

    Applying Gauss‟ Law to the close surface, we obtain 



 

o

h
rrhE


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

2
)(  , 

 

 

the same result as we obtained before. 

 

 

3) Planar Symmetry: Electrical field from two conducting plates. 

 

   The result here will be used later in capacitors.  

 

4) Spherical Symmetry 

 

 

1) Point charge and Gauss’ Law 

 

 At the beginning of this chapter we emphasize that Gauss‟ Law is actually equivalent to 

Coulomb‟s Law. That is, we can (a) derive Gauss‟ Law from Coulomb‟s Law, and we can 

also do the reverse, (b) derive Coulomb‟s Law from Gauss‟ Law. The proof of the 

equivalence of the two laws is mathematically quite subtle and requires familiarity of 

multiple variable calculus. Here, we shall consider a simple case. We shall show that 

Coulomb‟s Law for a point charge can be derived from Gauss‟ Law. 

 

We apply Gauss‟ Law to a spherical surface with radius r 

surrounding a point charge q that sits at the center.  

 

                                                           

 

     By symmetry we expect that the resulting electric field will be 

pointing outward from the center and has the same magnitude in 

all directions, i.e. rrErE


)()(  . 

    

   Therefore, the flux that passes through the surface is 

    
o

q
rErsdxE


  )()4()( 2

,  

or 
24

)(
r

q
rE

o
 , which is Coulomb‟s Law for point charge. 

 

2) A spherical thin shell with uniform charge density  

 

  We consider positions both outside and inside the shell (see figure below). The radius of the 

shell is R.  

                                          

     We consider 2 concentric spherical surfaces, S1 and S2. S2 is outside the charge shell, and S1 is 



inside. Again we expect rrErE


)()(   because of spherical symmetry. 

 

   Applying Gauss‟ Law, we obtain 

 

     
o

q
rErsdxE


  )()4().( 2

 for S2,  

 

   where q = total charge on the shell, and 

 

     0)()4().( 2  rErsdxE 


 for S1,  or 
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r

q
rE

o


24
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   for Rr  ,  0)( rE


 for Rr  . 

 

      Thus, a charge particle will feel no electrostatic force inside the shell, and will feel 

electrostatic force outside as if all the shell‟s charge is concentrated at the center of the shell. 

 

  The same analysis can also be applied to a sphere of radius R and with uniform charge 

density. 

 

  For positions outside the sphere, it is easy to show that 

   r
r

q
rE

o


24

)(


 ,   

 

where 
 3

3

4
Rq    is the charge density. 

 

   For positions inside the sphere at distance r < R from the center, Gauss‟ Law implies 

 

r
r

rq
rE

o


24
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
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where 
 3

3

4
)(' rrq   is the total charge enclosed in the 

sphere with radius r (see figure). 

                                                              

Therefore, r
r

rE
o







3
)(  . 

 

 

Questions: 

 

The figure on the right shows, in cross section, a central metal 

R

r

R

r



ball, two spherical metal shells, and three spherical closed 

surfaces of radius R, 2R and 3R, all with the same center. The 

uniform charges on the 3 objects are: ball, Q, smaller shell, 3Q; 

larger shell, 5Q. Rank the closed surfaces according to the 

magnitude of the electric field at any point on the surface, 

Greatest first. 

                                                              

4 Electric Potential  

 

4.1 Conservative force and potential energy 

 

Recall that in Newtonian mechanics, a potential energy can be defined for a particle that 

obeys Newton‟s Law maF 


  if the force is conservative. In this chapter, we shall see that the 

electric force felt by charges (we assume implicitly that charges have mass and obey Newton‟s 

Law) are conservative. Therefore, we can define potential energy for charges moving under 

electric force. We can also define the electric potential – the potential energy per unit charge, 

following the introduction of electric field from electric force. First we review what a 

conservative force is. 

 

Conservative force 

 

    A conservative force is a force where the work done by the 

force in moving a particle (that experience the force) is path 

independent. It depends only on the initial and final positions 

of the particle. 

                                                              

  In this case, the work done by the force on the particle can be expressed as minus the difference 

between the potential energies on the two end points, if UUW  , the potential energy 

)(xU


 is a function of the position of the particle only. The potential energy can be related to the 

force by noting that the work done is related to the force by dW F dl . Consequently, 

 

   )( if

f

i

UUldFW  


. 

 

The integral is path independent for conservative force. Using multi-variable calculus, it can be 

shown that the above equation can be inverted to obtain ).(rUF


  This is a simplified 

notation for 3 equations 
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4.2 Electric Potential energy and electric potential 

i

f

i

f



 

  We can define electric potential energy for a point charge particle if electric force is 

conservative. Fortunately we know that electric force is conservative because of its similarity to 

gravitational force, at least if the electric force is coming from another point charge, 
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 . We know from analogy with gravitational force that the electric potential 

energy for a charge q1 moving under the influence of another charge q2 should be 
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and the corresponding electric potential at a distance r from a charge q2 is 
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Direct Evaluation of  2V . 

 

   The potential energy expression 12U  can be derived using the formula  

 

                ( )
f

f i
i

W F dl U U    ,  

 

where we shall set the initial point i at infinity and the final point f at 

a distance r from a fixed charge q2. Notice that the electric potential 

is given by a similar integral  

 
f

f i
i

V V E dl   ,  

 

since electric field is the force per unit charge by definition. We shall for simplicity chooses the 

initial and final points to be on a straight line that extends radially from q2 (see figure). 

 

In this case the integral becomes 
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  Choosing the reference electric potential to be 0)(  rVVi , we obtain the result  

r

q
rV

o4
)( 2

2  . 

 

Equipotential Surfaces 

 

i

f

i

f



    You may wonder what happens if in evaluating the electric potential, the initial and final 

points do not rest on a straight line that extends radially from q2. How can we evaluate the 

integral 
f

i

E dl  in this case?  

   The construction of equipotential surfaces is useful in this case. Equipotential surfaces are 

points in space that have the same electric potential. These points usually form closed surfaces in 

space. For the electric potential from a single charge q, 
r

q
rV

o4
)(  . The equipotential surfaces 

are surfaces consist of points at same distance r from the charge, i.e. they are spherical surfaces 

surrounding the charge.  

 

 

 
Notice that no (net) work W is done on a charged particle when the particle moves between any 

two points i and f on the same equipotential surface. This follows from  

 

( ) 0
f

f i
i

W F dl U U       if  if UU  .  

 

As a result the electric force (field) must be everywhere perpendicular to the equipotential 

surface. To see this we consider an arbitrary infinitesimal displacement dl  on the equipotential 

surface. The work done is 0dW F dl  . This can be satisfied for arbitrary displacement dl  

on the equipotential surface only if the force F


 is everywhere perpendicular to the equipotential 

surface. 

 

   The figure above shows the equipotential surfaces for several different situations. The surfaces 

can be constructed easily from the electric field lines since they are surfaces perpendicular to the 

electric field (force) lines. 

 

  With the equipotential surfaces we can evaluate the integral 
f

i

E dl  rather easily for end points 

not on a straight line that extends radially from the charge q by choosing a line as shown below. 

Notice that the work done is zero between o-f. 

 

        

 

                                                        f  
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Potential of a charged Isolated Conductor 

 

  Recall that for excess charges distributed on an isolated conductor, all charges must be 

distributed on the surface such that the electric field on the surface cannot have a component 

parallel to the surface. (Otherwise there will be a current on the conductor surface) 

 

  Therefore, for any points i and f on the surface of conductor, 

 

   0
f

f i
i

V V E dl    , 

 

i.e. the surface of an isolated conductor forms a equipotential 

surface. We show in the figure below the electric potential V(r) 

and electric field E(r) as a function of distance r from center 

for a spherical conductor with radius 1. 

 

Notice that 
r

rV
rE



 )(
~)( .  

Units of electric potential energy and electric potential: 

 

   The SI unit for energy is Joule (J) (1 Joule = 1 Newton  1 

meter). The SI unit for electric potential is therefore 

 

    1 Volt (V) = 1 Joule per Coulomb (J/C). 

       

This new unit allows us to adopt a more conventional unit for electric field E


, which we have 

measured up to now in Newton per Coulomb (N/C). We note that 
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  We also notice that an energy unit that is often more convenient to use in atomic and subatomic 

domain is electron-volt (eV). 1 eV = energy equal to the work required to move a single 

elementary charge e through a potential difference of one volt, or 



 

    1 eV = e  (1V) = 1.610
-19

C(1J/C) = 1.6  10
-19 

J. 

 

   It is interesting to compare this with the fundamental unit of thermal energy kT. With k = 

1.3810
-23

J/K, we find that 1eV of energy is equal to thermal energy with temperature T = 

(1.610
-19

/1.3810
-23

)K, or 

 

  1 eV ~ thermal energy at 1.1610
4 
K. 

 

4.3 Electric Potential due to a group of point charges 

 

   For many charges, the forces and electric field satisfy the law of superposition, 
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Therefore, the electric potential ( )
r

V r V E dl


    is given by (setting 0V ) 
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The last equality comes because the final potential is a sum of potentials from single point 

charges. Notice that electric potential is a scalar and the last sum is a simple algebraic sum of 

numbers (scalars). This is considerably simpler to evaluate than the sum over electric fields 

which are vectors.  

 

 Example: electric potential at position ),,( zyxr 
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 from 2 point charges with magnitude q , and 

'q , respectively located at zzr
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0  
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  where 
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Evaluating the electric field from V(r). 

 

Recall that for a conservative force, the force can be derived from the potential energy using 
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Since FEq


  and UqV  , we also have 
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Example:  

 

  What are the electric potential and electric field at the center of the circle due to electrons in the 

figure below? 

 

(Notice that there are 12 electrons around the perimeter in 

both cases) 

Exercise: evaluate the electric field for the 2-charge 

problem from V(r). Show that it gives the same result as 

what we have obtained previously by directly adding up the 

electric fields from 2 separate charges. 

 

 

Electric dipole potential 

 

   This is the electric potential due to 2 point charges with 

magnitude q , and q , respectively located at zr d


2 , and at 

distances dr ||


 from the origin. 

 

    Using the above result, we obtain for the dipole electric potential;  
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  where p = qd, and  is the angle between r


 and z-axis (see figure). 

                                                          

Notice that in Cartesian coordinate, 
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Exercise: evaluate the electric field for the dipole problem from V(r). Show that it gives the same 

result as what we have obtained previously for the dipole electric field. See also textbook p.574-

575 for electric dipoles that occur in nature. 

 

 

4.4 Electric Potential from a continuous charge distribution 



 

 

6) Electric field from a line of charge. 

 

We imagine a very narrow rod which may not be straight. The rod has charge distribution 

)(x


 , where Lx  ||0


, L is the length of the rod. The total charge on the rod is 


L

dxxQ
0

)( . The electric potential produced by this rod is, by generalizing the formula 

for discrete charges, 
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  We shall consider the example of electric potential 

coming from a straight line of charge at a point P at 

distance r from the line.  

                                       

 

The charge density  is uniform along the line. Applying the above formula, we obtain 
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This integral can be evaluated using standard integral formula (Integral 17 in Appendix E 

of textbook). We obtain  
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7) Electric potential from a surface of charge 

 

  For the situation where charges ),( yx  are distributed over a surface of very small 

thickness instead of along a line, the formula for the electric potential becomes 
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  Now let us apply it to calculate the electric potential 

at a symmetry point P, at a distance z above a plastic 

circular disc of radius R with uniform charge density 

 ),( yx .  
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L/2

-L/2



                                                       

with ''2'2 drrrd  , we obtain 
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4.5 Electric potential energy of a system of point charges 

 

    We have shown that for a pair of charges q1, q2, the electric potential 

energy is 
12

21
12

4 r

qq
U

o
 , which is minus the work done by the electrostatic force to move one of 

the charges from infinity (with the other charge fixed) to its position at r12. For a collection of 

charges, we may define the electric potential energy similarly. We define: 

  The electric potential of a system of fixed point charges is equal to the work done by an external 

agent to assemble the system, bring each charge in from an infinite distance.  

 

   Let‟s see how we can derive the potential energy expression for 3 charges, q1, q2, q3, located at 

r1, r2, r3, respectively, using the expression for U12 and the principle of superposition. 

 

   Our strategy is to bring in the charges one by one, and sum up the energy we needed to bring in 

all the charges together. 

 

  First we bring in charge 1 to position r1. The electric potential energy U1 we needed is zero, 

since there is no charge around.   

 

  Next we bring in the second charge to position r2. The electric potential energy we need is 

U2=U12 from definition. 

 

   We then bring in the third charge. From the principle of superposition, the force experienced 

by the third charge is the sum of the forces from the first two charges. Consequently the work 

done needed to bring in the third charge is equal to sum of the work done against the force of the 

first 2 charges, i.e. U3=U13+U23. 

 

  Therefore the total electric potential energy needed to build up the system is 

 

U = U1+U2+U3 = (0)+(U12)+(U13+U23) = U12+U13+U23. 

 

 

  In fact, we can continue this construction to show that the electric potential of a system of N 

charges is 
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Question 

 

The figure below shows the electric potential V as a function 

of x. (a) Rank the five regions according to the magnitude of 

the x component of the electric field within them, greatest first. 

What is the direction of the field along the x-axis in (b) region 

2 and (c) region 4? (d) Indicate points where charges may be 

present in the system. 

 

5 Capacitor  

 

5.1 Introduction 

 

In the previous few chapters we have learnt about the basic physics in electrostatics. In 

this and the next few chapters we shall discuss how these physics can be applied in daily life to 

build circuits. We start with learning a basic circuit-device element - capacitor. Crudely speaking, 

capacitors are devices for storing electric charges. Because of electrostatic forces energy is also 

stored in capacitor at the same time.  

 

 

Capacitance 

 

    Generally speaking, capacitors are composed of two 

isolated conductors of any shape. We shall call them 

capacitor plates. The capacitor is “charged” when equal 

and opposite amount of charges is put on the two plates. 

                                                    

 

Because the plates are conductors, they are equipotential 

surfaces.  Moreover, there is a potential difference V 

between the two plates when the capacitor is charged. 

 

    The potential difference between the two plates can be expressed as   

V E dl




  ,  

 

where the integral is performed a line joining the plate with positive charge to the plate with 

negative charge. Since the electric field from a charge distribution is directly proportional to the 

magnitude of charge, i.e., qE 


 , we must have qV  , or  

                  q = CV. 

 

  The proportionality constant C is called the capacitance of the capacitor. We shall see that C 

depends only on the geometry of the plates and not on their charge or potential difference. This is 

a direct consequence of the linearity of the Coulomb‟s Law. 

 



  The SI unit for capacitance is farad.  

 

  1 farad = 1 F = 1 Coulomb per volt = 1C/V. 

 

  

 

5.2 Calculating the Capacitance  

 

  The idea is to apply formulaV E dl E dl
 

 

    , for a given charge q on the capacitor, where 

+ and – are end points of the conductor. The capacitance is deduced from the relation between V 

and q. We shall consider situations with high symmetry and will often apply Gauss‟ Law to 

calculate the electric field. 

 

 

A Parallel-Plate capacitor 

                                                          

  We assume that the plates of our parallel-plate capacitor are 

so large and so close together that we can “forget” that the 

plates has a boundary, i.e. we treat them as two infinite 

parallel plates put close together.  

 

   We draw a closed surface as shown in figure, Notice that 

one side of the surface is inside the conductor where 0E


. In this case, all electric field come 

out perpendicular to the surface. Applied Gauss‟ Law, we have  

 

          EAq o ,     A = area of capacitor plate. 

    

  We also have  

               

         V E dl Ed




  , where d = distance between two plates.   Therefore, CVA
d

V
q o 








  . 

The capacitance is
d

A
C o . Notice that the capacitance does depend only on geometrical factors, 

the plate area A and plate separate d. We shall see that this remains true in later examples. 

 

 

A Cylindrical Capacitor 

                                                  

  The figure above shows, in cross section, a cylindrical capacitor of length L, formed by two 

coaxial cylinders of radii a and b. We assume L >> b so that we can neglect end effects. Each 

plate contains a charge of magnitude q.  

 



   To apply Gauss‟ Law, we choose a closed surface = a cylinder of length L and radius r, closed 

by caps at the end of the cylindrical capacitor. Notice that by symmetry the electric field goes 

radially outward from the inside cylinder. Applying Gauss‟ Law, we obtain 

 

)2( rLEEAq oo   . 

 

(2rL) is the area of the closed surface without the caps. There is no flux through the end caps. 

Solving for E we obtain  
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From the relation q = CV, we obtain
 

a
b

L
C o

ln

2
 . 

 

Notice that C depends on geometrical factors characterizing the cylindrical capacitor only. 

 

 

A Spherical Capacitor 

 

  A spherical capacitor consists of two concentric spherical shells, of radii a and b. It can be 

visualized by the same figure above, if you view it as a central cross section of the spherical 

capacitor 

                                                              

   To apply Gauss‟ Law we consider a spherical surface between the two shells. In this case, 
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and 
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 , a result we have obtained before. 

 

The potential difference between the shells is thus 
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and     
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C o


 4 . 

 

 



Isolated conductors 

 

   We can define a capacitance to a single isolated conductor by taking (“removing”) one piece of 

the conductor to infinity. For an isolated spheres taking b  we obtain aC o4 .  

 

   To understand the meaning of this result we look at the equation q/C = V. In the previous cases 

V is the potential difference between the two pieces of conductors. What is the meaning V when 

b ?  

 

(ans: V is the potential difference between the charged conductor and ground (or infinity).) 

 

 

 

5.3 Capacitors in parallel and in series 

 

  When there is a combination of capacitors in a circuit, we can sometimes describe its behavior 

as an equivalent capacitor – a single capacitor that has the same capacitance as the actual 

combination of capacitors. In this way, we can simplify the circuit and make it easier to analyze. 

There are two basic configurations of capacitors that allow such a replacement. 

 

Capacitors in parallel 

 

  The configuration is shown in the figure. 

  

    The equivalent capacitance can be derived by analyzing 

the applied voltage and charge on each capacitor. 

 

    The applied voltage is the same for the (3) capacitors, i.e., 

we have  

                    ,...., 332211 VCqVCqVCq   

 

The total charge stored is .....321  qqqq . Therefore the effective capacitance is  

 

                       ...321  CCC
V

q
Ceq  

 

for capacitors in parallel. 

 

 

Capacitors in Series 

 

   The configuration is shown in the figure below. 

                                                                     



    Notice that because of overall charge neutrality, the charge q stored on each capacitor must be 

the same = charge stored in the equivalence capacitor. The voltage across each capacitor is 

given by 

                ,....//,/ 332211 CqVCqVCqV   

 

The total voltage across the equivalence capacitor is  

 

eqC

q

CCC
qVVVV 








 ..

111
...

321

321 . 

 

 

Therefore the equivalent capacitance is 

given by 
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1111
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 These results will be used later in circuit analysis. 

 

5.4 Energy Stored in Capacitors (electric field) 

   

   To charge up a capacitor, we need work done. You may imagine that we need to move the 

electrons (-Ve charges) from neutral atoms in one capacitor plate to another. Energy is needed in 

this process because we have to separate positive and negative charges from an originally charge 

neutral configuration.  In practice the work done is supplied by a battery. 

 

   The total energy needed to charge up a capacitor can be evaluated by noting that the energy 

needed to move unit charge dq against a potential V is, by definition 

 

dq
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q
VdqdW  . 

 

  Therefore the work required to bring the total capacitor charge up to final value Q is 
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= potential energy (U) stored in a capacitor with charge Q. 

 

Alternatively, using the relation Q = CV, we may also write 2

2

1
CVU  . 

 

Electric field Energy density 



 

  The energy stored in a capacitor can be written in an alternative way. Let‟s consider a parallel 

capacitor. In this case dAC o /  and we may write 

 

2

2

2

222
E

Ad

d

VAd
V

d

A
U ooo 









 , 

 

where E is the electric field strength between the plates. The expression can be written as  

 

   U = (Ad) u,                  

   

   where  (AD)= volume between the capacitor plates and 

     

   2

2
Eu o  = energy density.  

 

  What is interesting is that this result, which is derived for the special case of a parallel-plate 

capacitor, is valid for any capacitors, i.e. the energy stored in any capacitor can be written as 

         )(3 xxudU


,   where 2)(
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)( xExu o
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 . 

 

   This expression suggests that the potential energy U, which is needed in separating the charges 

can be viewed as the energy needed to create the electric field associated with the charge 

separation! 

   This is a viewpoint which is very different from the conventional viewpoint of Newtonian 

mechanics, where potential energy is associated with the position of a particle (matter), but not 

associated with a force field. The viewpoint that energy is associated with a force field, if true, 

suggests that electric field has a physical significance that is more than representing force 

between charges. It is also a kind of matter – if you believe that energy and matter are equivalent. 

We shall address this question again later, when we discuss Maxwell equation and 

electromagnetic wave. 

 

 

5.5 Dielectric and capacitors (More in EM-2) 

 

    It was first observed by M. Faraday that if the space between capacitor plates is filled with 

dielectric, which is an insulating material such as mineral oil or plastic, the capacitance will 

increase by a numerical factor  > 1 ( CC  ).  is called the dielectric constant of the 

insulating material. The dielectric constant of a vacuum (unfilled capacitor) is unity by definition.  

 

  The effect of inserting the dielectric can be seen easily from the definition Q = CV. For the 

same voltage, a large C implies more charges will be accumulated (see figure). 

 



 
     

Microscopic Physics behind dielectrics  

 

   For the same amount of charge, a larger C implies a smaller voltage difference between the 

capacitors. Using the result 
f

i

V E dl  . We see that the effect of dielectric ( CCC  ) is to 

reduce the electric field ( EEE  / ) that comes out from the charge. The microscopic origin 

of this effect can be understood if we consider insulators as composed of closed packed, non-

polar atoms, with each atom composed of negative and positive charges centered at the same 

point. When the insulator is put under an electric field, the atom will be polarized – the positive 

charge is pushed away a little bit by the electric field and the negative charge is pulled towards 

the electric field a little bit (see figure).  

 

            
 

 

  Notice that the insulator as a whole is neutral except at the surface, where a layer of induced 

negative (positive) charge q’ is found next to the capacitor plate with positive (negative) charge q. 

The layers of induced charge produce an electric field 'E


 that opposes the electric field E


 

coming from the capacitor charge. The total electric field between the plates 'EEEtot


  is 

smaller than E


, resulting in an weaker voltage between the plates. 

 

  Some dielectrics (like water) have molecules with permanent 

electric dipole moments. In the absence of external electric 

field the dipoles are pointing in random directions. When they 

are put under an electric field, the dipoles are aligned with the 

external field (see figure below).  



                                                               

The net effect is similar to non-polar neutral atoms except that induced effective charge q’ is 

usually larger, and the total electric field 'EEEtot


  is smaller. 

 

  The magnitude of the induced charges q’ is related to the dielectric constant  of the insulating 

medium. To derive this relation we consider the electric field between a parallel plate capacitor 

with a dielectric inserted in between. 

 

The electric field between the plates, is using Gauss‟ Law (see previous notes on parallel plate 

capacitor), 
A

qq
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'
 . 

 

 On the other hand, we notice that the effect of dielectric is to weaken the original field 

)/(0 AqE o  by a factor , i.e. we expect  
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Therefore, /' qqq  , or  )
1

1('


 qq . 

 

Notice that  > 1 for the above picture to be valid. 

 

  The introduction of dielectric is not restricted to the discussion of capacitors. A more 

fundamental issue is how the electric force between 2 charges is modified if the charges are put 

into an insulating medium. What is found is that the Coulomb force is in general weakened, with 
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  Correspondingly, Gauss‟ Law is modified to
Q

E ds


 .  

  

 


