
EM-2 
 

1 Coulomb’s law, electric field, potential field, 

superposition 
 

 

Electric field of a point charge  
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Force of q on a test charge e at position r
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Electric potential 
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The potential energy of a test charge e at position r


 is )(reV


 

 

 
2

1

)()( 12

r

r

ldErVrV






  (3)  

which is independent of the path. 

 

Superposition of field and potential. Given charge distribution )'(r
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 , the potential at r
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And the electric field is 
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Uniqueness theorem: It is quite obvious from Eqs. (4) and (5) that given )'(r


  then )(rV


 and 

)(rE


are uniquely determined. The reverse, which is not obvious from the equations, is also 

true. This is quite important in some cases where one can guess the charge distribution to 

produce the given potential field. If the guess is correct, then it is the one and the only correct 

answer. 

 

2 Gauss’s law 
 

Gauss’s Law 
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Here E


is the total field, but Q is the charge within the space enclosed by S. 

 

Differential form: 0/ E


  (6a) 

For the electric potential, it is 
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This is called Poisson’s Equation. In the space where the charge density is zero, we have the 

Laplace Equation 

02  V   (6c) 

Example-1: Verify Eq. (6) with a point charge. 

Take a spherical surface of radius r centered on the point charge at 0'r


. The electric field at 

any point on the surface is parallel to the surface normal and its amplitude is 
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kq
. The total 

surface of the sphere is 24 r , so 
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  ans. 

 

Gauss’s Law is useful in cases with high symmetry. 

 

Example-2:  

Find the E-field and potential of an infinitely long straight wire carrying uniform charge of  

per unit length. 

 

Solution:  

Symmetry analysis shows that the electric field is pointing outwards 

along the radial direction, and depends on r (the radial distance) only. 

Take a closed Gauss surface as shown, the top/bottom surfaces will have 

no flux. The flux through the size wall is
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The electric potential V(r) is likewise depending on r only. Taking a 

line integral along the radial direction from r1 to r2, we have 
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ans. 

 

3 Conductors  

 

Conductors contain virtually infinite amount of free charges, usually electrons, and a fixed 

positive charge background. Therefore, in equilibrium, there is no electric field inside a 

conductor, and the electric potential of the whole body of a conductor is equal. There is 

charge neutrality everywhere inside a conductor, so the net charge must all be at the surface.  

Example-3 

 

Surface charge density and pressure on a charged conductor surface. 

 

At a point very close to the surface, the surface can be taken as flat and infinitely large. 

Choose a small flat box with one of its large surface in the conductor and the other outside, 

use Gauss’s law, it is straightforward to show that the E-field is 0/E  outside the 

conductor and 0 inside. The direction is perpendicular to the surface because any parallel E-

field component would drive the surface charge to move around. (The parallel component of 

the E-fields at both side of the boundary must be the same.) 
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Now let us find out the electric field 

force upon a small patch of surface 

charge on a conductor. The force is 

not σEA, where A is the area of the 

patch, because the E-field contains 

contribution from the charge on the 

patch, and that charge does not exert 

force on itself.  

 

A patch of charge will produce E-field 

0/
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The rest of the flat charge sheet produces a field 0/
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combined field of the patch and the flat sheet with the hole is σ/ε0 pointing to the right. So 

the force of the flat sheet with hole on the patch is AF 2
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ans. 

 

The main problem associated with conductors is that only the potential and/or total charge of 

each conductor is usually known. The exact charge distributions on the conductors are not 

known in advance, and have to be found as part of the solution of the Laplace Equation or 

Poisson’s Equation. In mathematical terms, the potential and/or total charge of each 

conductor is called the boundary conditions, which must be given in prior. For example, the 

surface of a sphere of radius R centered at (x0, y0, z0) is
22
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If it is a conductor held at potential V0, then the potential field )(rV


must be equal to V0 when 

r


satisfy the above equation for the sphere surface. 

The boundary conditions are of the same in math as the initial conditions in mechanics. 

Consider for example a particle in uniform acceleration a along the X-direction. The equation 

is then a
dt

dvx  . Solving it one gets 0vatvx  , and v0 is a constant and determined by the 

initial condition of vx at t = 0. 

 

The potential or the total charge of all conductors must be known in order to determine the 

potential field )(rV


.  

 

Uniqueness theorem: Given the potential on the surface of a closed space and the charge 

distribution in the space, the potential (and electric field) in the space is uniquely determined. 

 

Here are some examples of closed space. 

 

(1) The closed space is the rest of the rest of the space 

not occupied by the conductors, and the boundaries are the 

surfaces of the conductors. 
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(2) Here there are two closed spaces. One is the cavity, 

with its boundary being the inner spherical surface. The 

other is the space outside the conductor, and its boundary 

is the outer surface of the conductor. These two spaces are 

not connected. 

 

Proof: 

 

Situation-1: The potential of each and every conductor is known. 

Consider the case as (1) above, assume that there are two potential fields, )(1 rV


and )(2 rV


, 

both satisfy the Poisson’s Equation and the boundary conditions that their values on 

conductor-1, -2, -3 are U1, U2, and U3, respectively. Then, let )()()( 21 rVrVrV


 , then it is 

straightforward to show that )(rV


satisfy the Laplace Equation (no charge density outside the 

conductors), and its value on all conductors is 0. This is the case where there is no charge 

everywhere, so 0)( rV


. 

 

Situation-2: The total charge on each conductor is known. (HW exercise) 

 

Example-4 

A point charge is in a cave inside a conductor held at potential V. The 

potential and E-field in the cave remain the same as long as the 

conductor is at potential V, regardless of how this is achieved, e. g., 

by putting charge on the conductor or by placing some charge Q near 

the conductor. 

Likewise, the potential and E-field outside the conductor is uniquely 

determined as long as the conductor remains at potential V, regardless 

of the interior of the conductor, which can even be carved out till 

only a thin shell remains, completely filled, or the charge q removed. 

ans. 

 

 

The technique of image charge: Use a charge distribution to create the same potential 

distribution on the surface of a closed space to facilitate the finding of potential (field) in the 

space. 

 

 

Example-5 A point charge is placed at distance d from 

an infinitely large conductor plate at V = 0. Find the 

potential, E-field, the surface charge density on the 

plate, and the force on the charge. 

 

Solution: 

 

The E-field in the space of x < 0 is zero. So is V.  

For the space x > 0, the boundary of it is the plate at x = 

0. The boundary condition is V(x = 0) = 0. This is 

maintained by the induced charge on the plate which is 

so properly distributed and the point charge q at x = d.  
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Put an ‘image charge’ –q at x = –d will produce the same boundary condition. So for the E-

field in x > 0 the effect of the induced charge on the plate is exactly the same as the image 

charge –q while removing the plate. The force on q is the same as the force of point charge –

q on it, i. e., 
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As an exercise, find the E-field and the charge density at the plate surface. 

 

Note that the image charge –q cannot be applied to the x < 0 region, because its presence 

changes the condition there (Originally there is no charge in that region). 

 

4 Several conductors, capacitance, capacitors 

 

Suppose there are three conductors (1, 2, 3) in a closed space. The electric potential of the 

conductors are Vi (i = 1, 2, 3) and the total charge on each is Qi. Then it can be shown that  
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  (7), 

where Pij = Pji depend on the shapes and the positions of the conductors only. If there are n 

conductors, then i and j run from 1 to n. Note that P12 for two conductors alone usually will 

change when the third conductor is added. 

 

With only one conductor, V = PQ, and C = 1/P is the capacitance of the conductor. 

 

If conductor-1 is inside conductor-2, then P12 remains the same regardless of the presence of 

other conductors (use uniqueness theorem to proof). They form a capacitor. The potentials 

due to charges on other conductors will be the same for both conductor-1 and -2. So P1j = P2j, 

j > 2. Also, P22 = P12.  Let Q1 = –Q2, then V2 = 0, and V1 = (P11 – P12)Q1. The capacitance of 

the capacitor is C = 1/( P11 – P12). In general, to find the capacitance of a pair of conductors 

that form a capacitor, we put opposite charges on the pair of conductors and find their 

potential difference. 

 

Total energy:    i
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For a capacitor,   2

2

1
CVW    (8a). 

 

Example-6 

A very small conductor is placed at distance d from the center of a conductor sphere with 

radius R (< d). Find the potential of the sphere when the small conductor carries charge q.  

 

Solution. 

Let the sphere be the conductor-1 and the other conductor-2, V1 = P12q. But P12 = P21=V2/q1. 

So the problem is converted to finding the potential of the small conductor when the sphere 

carries charge q, the answer of which is readily available: V = kq/d  ans. 

 

Example-7 

 



As shown in the figure, a thin conducting 

circular ring is placed at distance a from the 

center of a conductor sphere of radius R. The 

line joining the center of the sphere and that of 

the ring is perpendicular to the ring plane. The 

ring carries total charge q > 0. (Let 04/1 k ) 

 

(1) When the sphere carries no net charge, what is its voltage? 

(2) When the sphere is grounded, what is the total charge on it? 

(3) When the voltage of the sphere is V0, what is the total charge on it? 

(4) Compare (3) with (2), what is the amount and direction of the change of force acting 

upon the ring by the sphere? 

(5) Compare (1) with (2), what is the amount and direction of the change of force acting 

upon the ring by the sphere? 

 

Solution: 

 

According to P12 = P21, the answer of (1) is equal to the voltage of the ring when the sphere 

is carrying charge q and the ring carries none. The distance between the edge of the ring to 

the sphere center is 22 ar  . Note that the space occupied by the ring is an equal-potential 

one when the ring is absent. Therefore the presence of the ring carrying no charge will not 

change the charge distribution of the sphere surface. This is only true when the ring plane is 

perpendicular to the line joining the two centers. So the answer to (1) is V= 22/ arkq  . (A 

charge distribution )(  on the sphere surface produces an E-field that cancels precisely that 

by the charged ring, so the interior of the sphere is zero-field everywhere.) 

 

For (2), the charge 1q  on the sphere must produce 22

1 // arkqVRq  ,  

so 22

1 / arkRqq  . Note that the charge 1q  is uniformly distributed on the sphere 

surface. 

 

For (3), 22

20 // arkqRkqV  , so 2q  can be readily found. 

 

For (4), the difference in the amount of charge is 12 qq  , which is uniform on the surface, so 

the force is 
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For (5), the difference in the amount of charge is 1q , which is uniform on the surface, so 

the force is 
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5 Dielectrics Media 

 

The microscopic origin of this effect can be understood if we consider insulators as composed 

of closed packed, non-polar atoms, with each atom composed of negative and positive 

charges centered at the same point. When the insulator is put under an electric field, the atom 
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will be polarized – the positive charge is pushed away a little bit by the electric field and the 

negative charge is pulled towards the electric field a little bit (see figure).  

 

            
 

 

  Notice that the insulator as a whole is neutral except at the surface, where a layer of induced 

negative (positive) charge q’ is found next to the capacitor plate with positive (negative) 

charge q. The layers of induced charge produce an electric field 'E


 that opposes the electric 

field E


 coming from the capacitor charge. The total electric field between the plates 

'EEEtot


  is smaller than E


, resulting in an weaker voltage between the plates. 

 

Some dielectrics (like water) have molecules with 

permanent electric dipole moments. In the 

absence of external electric field the dipoles are 

pointing in random directions. When they are put 

under an electric field, the dipoles are aligned 

with the external field (see figure below).  

                                                               

                                  

 

The net effect is similar to non-polar neutral atoms except that induced effective charge q’ is 

usually larger, and the total electric field 'EEEtot


  is smaller. 

 

E-field induces dipoles. Polarization P


= dipole moment per unit volume. 

 

5.1 Bound Charge 

Consider the small volume of area a and length dx, the net charge 

within the volume is dx
x

P
axPdxxPa x

xx



 ))()(( , so the bound 

charge density is 
x

Px
b




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In general, consider any closed surface, the net charge within is  
S

b sdPQ


, its 

differential form is then (compare to Gauss’s Law) Pb


 ; surface charge density 

Pnb


 , where n


 is the surface normal direction. 

 

Define electric displacement PED
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 0  

x x + dxx x + dx



Gauss’s law becomes: SdDQ
S

f


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
 

 

The force on a test charge is still )(rEe


, and the electric potential is still given by Eq. (3). 

 

Linear media: EP


 0 . So  

 

EED


 00 )1(   (9) 

 

ε is permeability (dielectric constant)  

 

5.2 Boundary conditions: //

2

//

1 EE


 ; (10a)  fDD  

21
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 (10b). 

 

Generalized uniqueness theorem: 

In a space containing conductors (shapes, positions, and potentials given) and dielectrics 

(shapes, positions, and ε’s all given), and free charge distribution, the potential V( r


) 

throughout the space is then uniquely determined. 

 

Image charges can be used to produce the same boundary conditions. 

 

Ohm’s law: EJ


   (11),  

vJ


 is the electric current density,  the mobile charge density. σ is the conductivity of 

the medium. Both σ and ε are the material parameters of a medium. 

 

Electric current:   
S

SdJI


.  

So in general one has to define the surface before talking about current. 

Under steady conditions (nothing changes with time but things can move), 0 J


. So 

 
  21 JJ    (12) 

 

at an interface (boundary) between two media. 

 

Example-8 

At the boundary between two media (ε1, σ1, ε2, σ2), the electric displacement 1D


in medium-1 

is known. Find 2D


 and the free surface charge density. 

 

Solution: 

 

Using Eqs. (9), (10a) and (11), we first have
2
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 . Using Eq. (12), we then 

have
2
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. Then use Eq. (10b) to find the free surface charge density. The electric 

fields and the current densities in both media can be found using Eqs. (9) and (11). Ans. 

 



Example-9 

Consider a parallel capacitor made of two 

large metal plates of L by L separated by 

distance d (<<L) with a neutral dielectric slab 

(thickness a, same area as the metal plates). 

The potential difference between the two 

plates is V. Find the amount of charge on the 

plates and energy stored in (a) and (b). 

 

Solution: 

(a) 

Since there is no free charge in the space 

between the plates, D is the same between 

the plates, as one can check that such D 

satisfies the boundary condition for D. The 

E-field inside the dielectric is E1 = D/εε0, 

and in the air gaps E2 = D/ε0. Let the upper 

air gap thickness be x1, and that of the lower 

air gap be x2, then 

 

V = E1(x1 + x2) + aE2 = D[(d – a) /ε + a]/ε0 

Then the surface charge density is D for upper/lower plates. Total charge Q = σL
2
. The 

capacitance C = Q/V = ε0L
2
/[(d – a)/ε + a] 

Energy W = 0.5QV 

 

(b) 

In the x portion the answer of (a) can be applied. For the rest part σ2 = ε0V/d.  

Total charge is  Q = ε0xL/[(d – a)/ε + a] + ε0L(L – x)/d. 

W = QV/2 depends on x. So the force of the plates on the dielectric is 
dx

dW
F  . F being 

positive means W increases with decreasing x, i. e., the force is pushing the slab out. ans. 

 

Example-10 

 

As shown, half the conductor sphere (radius R) is 

buried in a dielectric medium. The sphere is held at 

potential V0. Find V, E, free and bound charge 

distributions. 

 

Solution: 

The potential is 0)( V
r

R
rV  , i. e., as if the dielectric was not there! 

Let us examine whether all the boundary conditions are met, which are 

(i) 0)( VRrV  ; (ii) Eq. (10a) at the dielectric/air boundary, and (iii) 021   DD


 at the 

dielectric/air boundary. (i) is obvious. Note that with the potential given above, the E-field is 

parallel to the boundary, so (ii) and (iii) do hold. 

 

The E-field is then r
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The free charge density of the upper hemisphere is 
R

V00
1


  , which is also equal to the total 

charge density at the lower hemisphere surface.  

The electric displacement r
r
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rD


3

00)(


  in the lower half of the space, and the free charge 

density at the lower hemisphere surface is 
R

V00
2


  .  

The bound charge density is
R

V00
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
  ans. 

 

Example-11 

 

A point charge q is placed at x = d in front of an infinitely large dielectric medium filling the 

space of x < 0. Find everything also. 

 

Partial solution: 

 

Again we use image charges. For E-field in x > 0, we put a charge q’ at x = –d. For E-field in 

x < 0, put a charge q + q” at x = d. The boundary conditions at x = 0 are again Eqs. (10a) and 

(10b) with zero free charge at the interface. There boundary conditions determine q’ in terms 

of q and ε (permeability). 

 


