Rotational Motion – II

Reading: Chapter 11
Rolling

2 points of view:

(1) Combined rotation and translation
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FIG. 11-5 A photograph of a
rolling bicycle wheel. The spokes
near the wheel’s top are more
blurred than those near the bottom
because the top ones are moving
faster, as Fig. 1 1-4¢ shows. (Courtesy
Alice Halliday)



[image: image86.jpg]FIG. 11-2 A time-exposure photo-
graph of a rolling disk. Small lights
have been attached to the disk, one
at its center and one at its edge.

The latter traces out a curve called a
cycloid. (Richard Megna/
Fundamental Photographs)



[image: image87.png]FIG. 11-3 The center of mass O of a

rolling wheel moves a distance s at
velocity V., while the wheel rotates
through angle 6. The point P at
which the wheel makes contact with
the surface over which the wheel
rolis also moves a distance s.
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FIG. 11-12 Defining angular mo-
mentum. A particle passing through
point A has linear momentum

P (= mv), with the vector p lying in
an xy plane. The particle has angular
momentum £ (= 7 x 7) with re-
spect to the origin O. By the right-
hand rule, the angular momentum
vector points in the positive direc-
tion of z. (@) The magnitude of €
isgivenby ¢ = rp, = rmv,.(b) The
magnitude of € is also given by
{=r.p=rmy
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FIG. 11-9 (a) A yo-yo,shown in
cross section. The string, of assumed
negligible thickness, is wound
around an axle of radius Ry. (b) A
free-body diagram for the falling yo-
yo. Only the axle is shown.
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(a) Translation: the center of mass moves with velocity vcm.

(b) Rotation: the wheel rotates about the center of mass.

If the wheel rolls without slipping, s = R(, then
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(2) Pure Rotation
[image: image6.png]Rotation axis at P

FIG. 11-6 Rolling can be viewed
as pure rotation, with angular speed
w, about an axis that always extends
through P. The vectors show the in-
stantaneous linear velocities of
selected points on the rolling wheel.
You can obtain the vectors by com-
bining the translational and rota-
tional motions as in Fig. 11-4.




Rolling can also be considered as a pure rotation, with angular speed (, about an axis through the contact point. e.g. velocity at the top: vtop = (()(2R) = 2((R) = 2vcm.

Kinetic Energy of Rolling
If we consider the motion as a pure rotation about the contact point,
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Using the parallel axis theorem,
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Hence 
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The kinetic energy consists of:

(a) the kinetic energy of the translational motion of the center of mass,

(b) the kinetic energy of the rotation about the center of mass.

Friction and Rolling
[image: image11.png]b R B W eteet W RTINS

FIG. 11-7 A wheel rolls horizon-
tally without sliding while accelerat-
ing with linear acceleration @ g,. A
static frictional force ?; acts on the
wheel at P, opposing its tendency to
slide.




(a) When the cyclist applies a torque on the wheel intending to make it rotate faster, the bottom of the wheel tends to slide to the left at point P. A frictional force at P, directed to the right, opposes the tendency to slide.

(b) The frictional force acts on the wheel and produces the acceleration of the bicycle.

Rolling Down a Ramp

[image: image90.jpg](&)

FIG. 1115 (a) A rigid body rotates
about a z axis with angular speed w.
A mass element of mass Am; within
the body moves about the z axis in a
circle with radius r ;. The mass ele-
ment has linear momentum 7, and
it is located relative to the origin O
by position vector 7. Here the mass
element is shown when r; is parallel
to the x axis. (b) The angular momen-
tum €, with respect to O, of the mass
element in (@). The z component

¢;, is also shown.




The gravitational force tends to make the wheel slide down the ramp. There is a frictional force opposing this sliding, and is thus directed up the ramp.

Using Newton’s second law for translational motion,
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Using Newton’s second law for rotational motion,
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Since a = R(, we obtain from (2): 
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Substituting into (1),
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Example
11-2 A uniform ball, of mass M = 6.00 kg and radius R, rolls smoothly from rest down a ramp at angle ( = 30.0o.

(a) The ball descends a vertical height h = 1.20 m to reach the bottom of the ramp. What is its final speed?

(b) What are the magnitude and direction of the frictional force on the ball as it rolls down the ramp?

(a) Method 1: Conservation of energy
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Other terms: Uf = Ki = 0, Ui = Mgh. Hence
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   (answer)

Method 2: Newton’s law

Translational motion: 
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(1)

Rotational motion: 
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where 
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   (answer)

(b) 
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The Yo-Yo
[image: image91.jpg]FIG. 11-20
(a) Initial
phase of a
tour jeté:
large rota-

tional inertia t
and small
angular
speed. (b)
Later phase:
smaller rota-
tional inertia
and larger an-
gular speed.
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FIG. 11-17 (a) The student has a
relatively large rotational inertia
about the rotation axis and a rela-
tively small angular speed. (b) By
decreasing his rotational inertia, the
student automatically increases his
angular speed. The angular momen-
tum L of the rotating system re-
mains unchanged.



Using Newton’s second law for translational motion,
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Using Newton’s second law for rotational motion,
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Since a = R0(, we obtain from (2): 
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Substituting into (1),
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Angular Momentum



[image: image93.jpg]FIG. 11-18 The diver’s angular mo-
mentum L is constant throughout
the dive, being represented by the
tail & of an arrow that is perpendic-
ular to the plane of the figure. Note
also that her center of mass (see the
dots) follows a parabolic path.







Alternatively, 

 or 

.

Newton’s Second Law




The vector sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle.

Proof




Differentiating with respect to time,









 because the angle between 

 and itself is zero.




Using Newton’s law, 

 Hence
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Since 

, we arrive at
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The Angular Momentum of a System of Particles
Total angular momentum for n particles:




Newtons’ law for angular motion:






 includes torques acting on all the n particles. Both internal torques and external torques are considered.

Using Newton’s law of action and reaction, the internal forces cancel in pairs. Hence




[image: image34.jpg]TABLE 11-1

More Corresponding Variables and Relations for Translational
and Rotational Motion?

Translational Rotational

Force F Torque Z(=T7 x F)
Linear momentum 7] Angular momentum 4 (=7x%xP)
Linear momentum” P(=3p) Angular momentum?® E(=>17)
Linear momentum?” P= MV, Angular momentum¢® L=Iw

5 dP = _ b
Newton’s second law” net =~ Newton’s second law” ool =
Conservation law? P = aconstant | Conservation law? L = a constan

“See also Table 10-3.

For systems of particles, including rigid bodies.

“For a rigid body about a fixed axis, with L being the component along that axis.
“For a closed, isolated system.




The Angular Momentum of a Rigid Body
[image: image94.jpg]FiG. 11-19  Windmill motion of the
arms during a long jump helps main-
fain body orientation for a proper
[landing.

E





For the ith particle, angular momentum:




The component of angular momentum parallel to the rotation axis (the z component):
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The total angular momentum for the rotating body


[image: image37.wmf]å

å

^

D

=

=

i

i

i

i

i

iz

z

r

v

m

l

L



[image: image38.wmf].

)

(

2

÷

ø

ö

ç

è

æ

=

D

=

å

å

^

^

^

i

i

i

i

i

i

i

r

m

r

r

m

w

w


This reduces to




Conservation of Angular Momentum




If no external torque acts on the system,










Law of conservation of angular momentum.

Examples
1. The spinning volunteer: When the student pulls in the dumbbells, the rotational inertia I decreases. Since 

, the angular velocity increases.

2. The springboard diver: When the diver is in the tuck position, the rotational inertia decreases, and the angular velocity increases.

When the diver is in the layout position, the rotational inertia increases, and the angular velocity decreases.

[image: image95.jpg]T Lwh vi b l_l‘wh
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FIG. 11-21 (a) A student holds a bicycle wheel rotating
around a vertical axis. (b) The student inverts the wheel, set-
ting himself into rotation. (c) The net angular momentum

of the system must remain the same in spite of the inversion.
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Support

Circular path
taken by head
of L vector

L) =

()

FIG. 11-23 (a) A nonspinning gyro-
scope falls by rotating in an xz plane
because of torque 7. (b) A rapidly
spinning gyroscope, with angular
momentum L, precesses

around the z axis. Its precessional
motion is in the xy plane. (¢) The
change dL/dt in angular momentum
leads to a rotation of L about O.




[image: image97.png]FIG. 11-8 A round uniform body of
radius R rolls down a ramp. The
forces that act on it are the gravita-
tional force F a normal force F, N>
and a fnctlonal force fs pomtmg up
the ramp. (For clarity, vector F v has
been shifted in the direction it points
until its tail is at the center of the
body.)





3. Long jump: When an athlete takes off, her angular momentum gives her a forward rotation around a horizontal axis.
In the air, the jumper shifts the angular momentum to her arms by rotating them in a windmill fashion. Then the body carries little angular momentum, keeping her body upright. She can then land with her legs extended forward.

4. Tour jeté: The dancer/gymnast leaps with one leg perpendicular to the body. In the air, the outstretched leg is brought down and the other leg is brought up, with both ending up at an angle ( to the body. The rotational inertia decreases and the angular speed increases.
On landing, a leg is again outstretched and the rotation seems to vanish.

See Youtube “Chen Helps China Sweep”, “Irving Saladino” and “tour jete”.

See demonstration “Bicycle wheel gyroscope” and “swinging Atwood machine”.

Examples

11-7 A student sits on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia I about its central axis is 1.2 kg m2. The wheel is rotating at an angular speed (wh of 3.9 rev/s; as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum Lwh of the wheel points vertically upward. The student now inverts the wheel; as a result, the student and stool rotate about the stool axis. The rotational inertia Ib of the student + stool + wheel system about the stool axis is 6.8 kg m2. With what angular speed (b and in what direction does the composite body rotate after the inversion of the wheel?


Using the conservation of angular momentum,
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   (ans)
11-8 A cockroach with mass m rides on a disk of mass 6m and radius R. The disk rotates like a merry-go-round around its central axis at angular speed (i = 1.5 rad s(1. The cockroach is initially at radius r = 0.8R, but then it crawls out to the rim of the disk. Treat the cockroach as a particle. What then is the angular speed?

[image: image43.jpg]FIG. 11-22 A cockroach rides at
radius r on a disk rotating like a ) i
merry-go-round. Rotation axis





Using the conservation of angular momentum,
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Rotational inertia:

The disk: 
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The cockroach: 
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Therefore,
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Precession of a Gyroscope


Torque due to the gravitational force
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Angular momentum
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For a rapidly spinning gyroscope, the magnitude of 
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 is not affected by the precession,
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Using Newton’s second law for rotation,
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Example Rolling of a Hexagonal Prism (1998 IPhO)

Consider a long, solid, rigid, regular hexagonal prism like a common type of pencil. The mass of the prism is M and it is uniformly distributed. The length of each side of the cross-sectional hexagon is a. The moment of inertia I of the hexagonal prism about its central axis is I = 5Ma2/12.

a) The prism is initially at rest with its axis horizontal on an inclined plane which makes a small angle ( with the horizontal. Assume that the surfaces of the prism are slightly concave so that the prism only touches the plane at its edges. The effect of this concavity on the moment of inertia can be ignored. The prism is now displaced from rest and starts an uneven rolling down the plane. Assume that friction prevents any sliding and that the prism does not lose contact with the plane. The angular velocity just before a given edge hits the plane is (i while (f is the angular velocity immediately after the impact. Show that (f = s(i and find the value of s.

b) The kinetic energy of the prism just before and after impact is Ki and Kf. Show that Kf = rKi and find r.
c) For the next impact to occur, Ki must exceed a minimum value Ki,min which may be written in the form Ki,min = (Mga. Find ( in terms of ( and r.

d) If the condition of part (c) is satisfied, the kinetic energy Ki will approach a fixed value Ki,0 as the prism rolls down the incline. Show that Ki,0 can be written as Ki,0 = (Mga and find (.
e) Calculate the minimum slope angle (0 for which the uneven rolling, once started, will continue indefinitely.
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a) Angular momentum about edge E before the impact
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Angular momentum about edge E after the impact
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Using the conservation of angular momentum, Li = Lf
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b) 
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c) After the impact, the center of mass of the prism raises to its highest position by turning through an angle 90o ( (( + 60o) = 30o ( (. Hence
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d) At the next impact, the center of mass lowers by a height of asin(. Change in the kinetic energy
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Kinetic energy immediately before the next impact
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When the kinetic energy approaches Ki,0,
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e) For the rolling to continue indefinitely,
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where A = r/(1 ( r) = 121/168 and
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