Noninertial Coordinate Systems
Reading: Arya Chapter 11
Translating Coordinate Systems
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In component form,

[image: image3.wmf],

'

0

x

x

x

+

=



[image: image4.wmf],

'

0

y

y

y

+

=



[image: image5.wmf].

'

0

z

z

z

+

=


Assume that the noninertial frame O’ is travelling with velocity v0 and acceleration a0. Differentiating,
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Newton’s law is valid in the inertial frame O:
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It has to be modified in the noninertial frame O’:
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To an observer in the noninertial frame, Newton’s law takes the form:
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where F’ = F ( ma0. The term (ma0 is called a noninertial force or fictitious force, while F is called a real force.

Example 11.1

[image: image1.png]Figure 11.1 Primed coordinate system S’ is in translational
motion with respect to a fixed stationary unprimed
coordinate system S.



A wheel of radius R is rolling with a uniform linear velocity v0 along a straight path. What are the position, velocity, and acceleration of a particle fixed to the rim of the wheel according to (a) a reference frame fixed with the wheel, and (b) a stationary observer on the ground?
(a) 
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(b) 
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Rotating Coordinate Systems

[image: image18.png]Figure 11.2 Coordinates X',
Y’, and Z' of system S’ are
rotating with respect to the
stationary coordinates X, Y,
and Z of system S.





Let r be the position vector in an inertial frame, and r’ be the position vector in the rotating frame. Consider a vector A in space.
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The time derivative with respect to the fixed and rotating frames are:
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The relation between the two:
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[image: image26.png]B(t + A1)

Figure 11.3 Primed
coordinate system with
vecfor B in it is rotating
about an axis ON with an
[ angular velocity .




Consider an infinitesimal rotation of the vector B in time (t:
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In the limit (t(0,


[image: image29.wmf].

sin

q

w

B

dt

dB

=


This has the magnitude of 
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Furthermore, the direction of the vector dB/dt is perpendicular to the plane containing 
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Therefore
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Substituting,
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In general, we may write:
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Velocity

Applying this formula to the position vector,
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Acceleration
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In the last term,
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since 
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Coriolis theorem:
d2r/dt2 ( acceleration relative to the fixed coordinate system
d’2r/dt2 ( acceleration relative to the rotating coordinate system
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 ( Coriolis acceleration, which is present when a particle is moving in the rotating coordinate system
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Modification to Newton’s law:
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To an observer in the rotating system,
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where

First term = real forces

Second term = 
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Third term = 
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Fourth term = 
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 = noninertial force due to nonuniform rotation

Discussions:
Centrifugal force = 
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[image: image57.png]Figure 11.4 Centripetal
acceleration a, = |w X @ X r|
resulting from the rotation of
the primed coordinate
system.




[image: image58.png]—mw X ® X r
Centrifugal force

Figure 11.5 Centrifugal force
resulting from rotational
motion is shown directed
away from the center.
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It is the centripetal acceleration, directed towards the center and perpendicular to the axis of rotation.
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 is the centrifugal force.

It is equal to 
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, directed away from the center of rotation. It is not a real force, but a noninertial force or fictitious force due to observing Newton’s law in a noninertial frame. They are only introduced to make Newton’s law appear in the same form as if they did in an inertial frame.

Coriolis force = 
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 is the Coriolis force. It results from the motion of a particle in a rotating frame. Again, it is not a real force, but a noninertial force or fictitious force due to observing Newton’s law in a noninertial frame.

Summarizing,
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If the noninertial frame has both translational and rotational motion,
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See Youtube movie “Coriolis force”.

Example

Consider a merry-go-round with a constant angular velocity 
[image: image69.wmf]w

v

. Find the effective force acting on a body at distance x0 from the center if it is moving with velocity v0 (a) along the radial direction; (b) perpendicular to the radial direction.
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(a) 
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Noting that 
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Therefore, 
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(b) 
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Therefore, 
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Example 11.1
A bucket partially filled with water (or any other liquid) spins with an angular velocity ( about a vertical axis. Show that the surface of the water assumes a shape of paraboloid of revolution.
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Consider forces acting on a volume element of water on the surface.
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Integrating,
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Description of Motion on the Rotating Earth

Examples of the effects of the earth’s rotation:

1. Equatorial bulge

2. Wind circulation (North hemi.– counterclockwise, South hemi. – clockwise)

3. Deflection of projectiles and missiles

4. Precession of the plane of oscillation in the Foucault pendulum

Static Effects (Plumb Line)

Consider the effective forces acting on a body at rest on the earth’s surface.
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Effects:

1. ge gives the direction of the plumb line.

2. ge gives the normal to the surface of liquids.

3. The earth becomes an oblate ellipsoid.
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Figure 11.6 Rotating Earth: (a) centrifugal force —mw X

@ Xr on an object of mass m at rest on Earth’s surface,
(b) direction of a plumb line is along g., and (c) deviation
€ from the vertical.



Let ( be the latitude. Then
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Using sine law,
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The deviation angle of the gravitational force:
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( = 0 at the equator and the poles,
( maximum at ( = 45o.

Dynamic Effects

A. Deflection of a Projectile Fired Horizontally

[image: image101.png]£ e o>

£

€
B

> >R

]

Z (vertical)

X (east)

(a)

= latitude Z (vertical)
= colatitude Y
=90°=\ North @
= m,i + o j + wk
) ’ ‘ \ /TN
= wcos A ONM o Ao, X
= osin A East
- 0 “ h 0 ~
= 0 at the equator; 0, = o, ®, = -

A q RRE West

90° at the north pole; o, =00, =0 South
oul

(b)

Figure 11.7 (a) Coordinates XYZ, w, and g. and latitude
A needed to describe the motion of a projectile, and (b)
components of w.




Neglecting the centrifugal force and consider the effects of the Coriolis force. Then
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Consider motion confined in the horizontal plane. Acceleration in the rotating frame:
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In the Northern hemisphere, ( > 0. For east-west motion, v’y = 0. The Coriolis acceleration is:
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For north-south motion, v’x = 0. The Coriolis acceleration is:
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In all cases, the Coriolis acceleration is directed towards the right of the particle’s motion.

Similarly, horizontally moving bodies in the Southern hemisphere are deflected to the left.
B. Deflection of a Freely Falling Body

Consider the direction of the vector 
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Acceleration in the rotating frame:


[image: image112.wmf]'.

2

'

v

g

a

´

-

=

w

v



[image: image113.wmf],

0

=

x

w

   
[image: image114.wmf],

cos

l

w

w

=

y

   
[image: image115.wmf].

sin

l

w

w

=

z



[image: image116.wmf].

ˆ

cos

'

'

0

0

sin

cos

0

ˆ

ˆ

ˆ

'

i

k

j

i

v

l

w

l

w

l

w

w

z

z

v

v

=

»

´

v


Equation of motion:
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Integrating the z-equation, we obtain v’z ( (gt to substitute into the x-equation. Integrating the x-equation,
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Integrating again,
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After falling a height h,
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Hence the eastward deflection d is
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Example 11.3

A parabolic projectile is launched with an initial speed v of 500 m/s southward, at an angle ( of 30o from a point at a latitude ( of 60o. Calculate the point of impact.
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Integrating,
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Integrating again,
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Point of contact: z’ = 0   ( 
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x’ = (316 m,   y’ = (2.21 ( 104 m

Foucault Pendulum
The Coriolis force produces a precession of the plane of oscillation in a pendulum. This is called the Foucault pendulum. (See Youtube movie “Foucault Pendulum”.)
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Figure 11.9 Forces acting on a bob of mass m of a
Foucault pendulum.




Equation of motion:
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where
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(east)
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(north)
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(up)

For a very long pendulum and small displacements, neglect the motion in z-direction:
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Equation of motion:
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For small displacements, T ( mg. Therefore
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Let (’ = (sin(. Then
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Coupled equations. To look for a precessing solution, consider the transformation
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X’Y’ is rotating with angular velocity ((’.

The primed coordinates are rotating about the unprimed coordinates at an angular speed ((’. Then
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Dropping terms of order (’2,
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[image: image162.png]Figure 11.10 Motion of the Foucault pendulum as viewed
by transformation to a new set of coordinate axes O'X'Y’
rotating in the XY plane with constant angular velocity
—w' (= — wsin A) relative to the OXY axes.




Since these equations hold for all time, we should have
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This reveals that the motion has an elliptical orbit in the rotating reference frame of x’ and y’, as in an ordinary simple harmonic motion. Hence in the original reference frame of x and y, the axes of the pendulum are precessing in a clockwise direction (in the northern hemisphere) with an angular velocity (’ = (sin(.
The period of precession Tp is given by
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At the north and south pole, the plane of the pendulum precesses with a period of 24 h.

At the equator, the plane of the pendulum does not precess.

[image: image166.png]R
g Il gl
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Figure 11.11 (a) Elliptical path of the bob of a Foucault
pendulum as viewed from the rotating coordinates O'X'Y".
(b) Steady precession of the major axis of the ellipse

when viewed from the coordinates OXY, that is,
demonstrating the precession of the plane of the
pendulum.




Horizontal Wind Circulations: Weather Systems

Coriolis force causes wind motions to deflect to the right in the northern hemisphere.

Hence we have anticlockwise circulation about a low pressure center,

and a clockwise circulation about a high pressure center.
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Figure 11.12 Wind direction from a high to low pressure
(a) in the absence of the Coriolis force, and (b) in the
presence of the Coriolis force.

(b) Idealized flow (c) Actual

Figure 11.13 Wind flow about a low pressure in the
northern hemisphere (a) without the Coriolis force, (b)
idealized in the presence of the Coriolis force F, and (c)
actual.

Low
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Figure 11.12 Wind direction from a high to low pressure
(a) in the absence of the Coriolis force, and (b) in the
presence of the Coriolis force.

(b) Idealized flow (c) Actual

Figure 11.13 Wind flow about a low pressure in the
northern hemisphere (a) without the Coriolis force, (b)
idealized in the presence of the Coriolis force F, and (c)
actual.

Low





[image: image169.png]Figure 11.14 Wind flow about a high pressure in the
northern hemisphere (a) without the Coriolis force, and
(b) actual with the Coriolis and other forces.
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Figure 11.15 Forces acting on a mass of air at a distance 7
from the center of a low pressure.




Consider a small mass of air thickness (r and cross-sectional area A, at a distance r from the center of low pressure.

Pressure force on the inner surface = PA
Pressure force on the outer surface = (P + (P)A
Therefore, the net inward pressure force FP = (P A.

Coriolis force FC = 2m(v sin(.

Hence the equation of motion is
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where m = (V = (A(r. Thus
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Solution:
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Near the center of low pressure, dP/dr is very large and hence the wind velocity is very large, resulting in typhoons.
Far away from the center,
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(equivalent to neglecting the term v2/r in the original equation, yielding (1/()(dP/dr) = 2(vsin(.)

For a high pressure center, dP/dr < 0, and v < 0. Thus if
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then FP > FC, and the high pressure center cannot provide a centripetal acceleration to form a typhoon. Thus storms and typhoons are always low-pressure systems, not high-pressure systems.

[image: image177.png](a) For low pressure (b) For high pressure

Figure 11.16 Flow and direction of the forces around (a)
low-pressure and (b) high-pressure regions.
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