0．Measurement and Units

International System of Units (SI units)

- A coherent system of units of measurement built on seven base units (called base standards)
- Based on the meter-kilogram-second (MKS) rather than centimeter-gram-second(CGS)
- All physical quantities can be expressed/derived in term of these seven base quantities

Quantity name	Unit name	Unit symbol
Length	Meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

The fundamental base unit can be defined only in term of the procedure used to measure them

Distance and Time

- Time: second (s)

The duration of $9,192,631,770$ periods of the radiation corresponding to the transition between two energy levels of the caesium-133 atom

- Length: meter (m)

The distance traveled by light in absolute vacuum in $1 / 299,792,458$ of a second

All other units can be derived based on the 7 base units

Examples:
Force $=$ Newton $=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
Speed $=$ distance travelled/time $=\mathrm{ms}^{-1}$
Energy $=$ Joule $=\mathrm{N} \mathrm{m}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$

Time (Second)

(a) Measuring the second

Microwave radiation with a frequency of exactly $9,192,631,770$ cycles per second ...

Outermost

... causes the outermost electron of a cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune microwaves to this exact frequency. It then counts I second for each $9,192,631,770$ cycles. o 2012 Puseon Educaion, inc:

Length (Meter)

(b) Measuring the meter

source
Light travels exactly $299,792,458 \mathrm{~m}$ in 1 s .
© 2012 Pearson Education, Inc.

Mass (Kilogram)

Changing Units

- Change the units in which a physical quantity is expressed
- Conversion factor
- Example: 1 minute and 60 second are identical time intervals, we have

$$
\frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1 \text { and } \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1
$$

- We can use the conversion factor to cancel unwanted units.
- Example:

$$
2 \min =(2 \mathrm{~min})(1)=(2 \text { min }) \frac{60 \mathrm{~s}}{1 \text { min }}=120 \mathrm{~s}
$$

Example:

Light-year (ly) - The distance the light travelled in one Julian year (365.25 days)

Speed of light c = $299792458 \mathrm{~ms}^{-1}$
$1 \mathrm{ly}=\left(299792458 \mathrm{~ms}^{1}\right)(1$ year $)=\left(299792458 \mathrm{~ms}^{-1}\right)(1$ vear $) \frac{\left(\begin{array}{ccc}365.25 & 24 & 60 \\ \text { 60s }\end{array}\right)}{\begin{array}{c}\text { (1year) }\end{array}}$
$1 \mathrm{ly}=9460730472580800 \mathrm{~m}$
Conversion factor

Dimension of physical quantities

- Physical quantities are derived from the base quantities (eg. length (L), time (T), mass (M)....) by a set of algebraic relations defining the physical relation between these quantities
- Example
- Length (x) has the dimension L
- Velocity $(\mathrm{v})=$ distance travelled (x) divided by the time (t).
- The dimension of v is:

$$
[v]=\left[\frac{x}{t}\right]=\frac{[\text { length }]}{[\text { time }]}=L T^{1}
$$

More examples

Acceleration

$$
\begin{aligned}
& a=\frac{d v}{d t} \\
& {[a]=\frac{[\text { velocity }]}{[\text { time }]}=\frac{[\text { length }]}{[\text { time }]^{2}}=L T^{2}}
\end{aligned}
$$

Force

$$
\begin{aligned}
& F=m a \\
& {[F]=\frac{[\text { mass }][\text { length }]}{[\text { time }]^{2}}=M L T^{2}}
\end{aligned}
$$

Kinetic energy

$$
\begin{aligned}
& K=\frac{1}{2} m v^{2} \\
& {[K]=[m][v]^{2}=\frac{[\text { mass }][\text { length }]^{2}}{[\text { time }]^{2}}=M L^{2} T^{2}}
\end{aligned}
$$

Dimensional analysis

Any physical meaningful equation must have the same dimensions on the left and right sides (dimensional homogeneity)

Example: Consider a simple pendulum consisting of a massive ball suspended from a fixed point by a string. Let t denote the time (period of pendulum) that it takes the bob to complete one cycle of oscillation. What is t ?

What are the possible physical quantities involved?

- Length of pendulum, I
- Mass of pendulum bob, m
- Gravitational acceleration, g
- Initial angular amplitude, θ

We want to find a relationship such that

$$
t=b l^{X} m^{Y} g^{Z}
$$

where b is a dimensionless constant. Since angle θ is dimensionless, $b=b(\theta)$ can be a function of the angle θ.

$$
\begin{gathered}
{[t]=[b()][l]^{X}[m]^{Y}[g]^{Z} \quad T=L^{X} M^{Y} L^{Z} T^{2 Z}} \\
X=Z=1 / 2, Y=0
\end{gathered}
$$

$$
t=b() \sqrt{\frac{l}{g}}
$$

(We will solve the problem exactly and show $b()=2$)

Name of Quantity	Symbol	Dimensional Formula
Time of swing	t	T
Length of pendulum	l	L
Mass of pendulum	m	M
Gravitational acceleration	g	$\mathrm{~L} \cdot \mathrm{~T}^{-2}$
Angular amplitude of swing	θ_{0}	No dimension

1. Vector

Vector
 An "arrow" in space, has magnitude (length) and direction e.g. in 2D Cartesian coordinates (due to Renè Descartes)

$$
\begin{aligned}
& \text { Note: } A=\sqrt{A_{x}^{2}+A_{y}^{2}} \text { (Pythagoras thm) } \\
& \quad \tan \theta=\frac{A_{y}}{A_{x}}
\end{aligned}
$$

x-component, $A_{x}=A \cos \theta$

Addition

Subtraction

Subtracting $\overrightarrow{\boldsymbol{B}}$ from $\overrightarrow{\boldsymbol{A}}$...
... is equivalent to adding $-\vec{B}$ to \vec{A}.

$$
\vec{A}+(-\vec{B})=\vec{A}-\vec{B}
$$

Unit Vectors

Vectors of unit magnitude are called unit vectors. Most commonly used unit vectors are $\hat{\imath}, \hat{\jmath}$, and \hat{k}, along x, y, and z directions in Cartesian coordinates

3D:

What are the x - and y components of the

 vector \vec{E} ?(b)
$E_{x}(+)$
A. $E_{x}=E \cos \beta, E_{y}=E \sin \beta$
B. $E_{x}=E \sin \beta, E_{y}=E \cos \beta$
C. $E_{x}=-E \cos \beta, E_{y}=-E \sin \beta$
D. $E_{x}=-E \sin \beta, E_{y}=-E \cos \beta$
E. $E_{x}=-E \cos \beta, E_{y}=E \sin \beta$

Q1.1

What are the x - and y components of the

(b) vector \vec{E} ?

A. $E_{x}=E \cos \beta, E_{y}=E \sin \beta$
P. $E_{x}=E \sin \beta, E_{y}=E \cos \beta$
C. $E_{x}=-E \cos \beta, E_{y}=-E \sin \beta$
D. $E_{x}=-E \sin \beta, E_{y}=-E \cos \beta$
E. $E_{x}=-E \cos \beta, E_{y}=E \sin \beta$

Scalar/Dot product

$\vec{A} \cdot \vec{B}=A B \cos \phi$

Special cases:

(ii) if $\overrightarrow{\boldsymbol{A}} \perp \overrightarrow{\boldsymbol{B}}, \overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=0$, in particular, $\hat{i} \cdot \hat{j=} \hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0$

In analytical form, $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

Vector/Cross product

Magnitude: $C=A B \sin \phi$ direction determined by Right
Hand Rule
(a) Using the right-hand rule to find the direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(1) Place $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ tail to tail. $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(2) Point fingers of right hand along $\overrightarrow{\boldsymbol{A}}$, with palm facing $\overrightarrow{\boldsymbol{B}}$.
(3) Curl fingers toward $\overrightarrow{\boldsymbol{B}}$.
(4) Thumb points in direction of $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$.

Important!
(b) $\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}=-\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$ (the vector product is anticommutative)

Example:

Consider the unit vectors $\hat{\imath}, \hat{\jmath}$ and \hat{k}
What is $\hat{\imath} \cdot \hat{\imath}$ and $\hat{\imath} \cdot \hat{\jmath}$?
What is $\hat{\imath} \times \hat{\imath}$ and $\hat{\imath} \times \hat{\jmath}$?

For the unit vectors $\hat{\imath}, \hat{\jmath}$ and \hat{k}, we have

$$
\begin{aligned}
& \hat{i} \times \hat{j}=\hat{k} \\
& \hat{j} \times \hat{k}=\hat{i} \\
& \hat{k} \times \hat{I}=\hat{j}
\end{aligned}
$$

For any two vectors,

$$
\begin{gathered}
\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \\
\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{c} & =\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|= \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Exercise:

Consider two vectors

$$
\begin{aligned}
\vec{A} & =\hat{i}+2 \hat{j}-\hat{z} \\
\vec{B} & =\hat{i}+\hat{j}+\hat{j}
\end{aligned}
$$

What is

$$
\begin{array}{r}
\vec{A}+\vec{B} \\
\vec{A}-\vec{B} \\
\vec{A} \cdot \vec{B} \\
\vec{A} \times \vec{B}
\end{array}
$$

Can you construct a unit vector which is perpendicular (orthogonal) to both vector \vec{A} and \vec{B} ? Does the vector unique?

2. Trajectory and Motion Kinematics

We first study the motion of point particle without considering its causes

How to describe the motion of a point particle?

Position Vector and Displacement

- We can use position vectors $\mathbf{r}(t)$ to specify the position of the particle on a plane at time t
- The above figure shows the position of the particle at two different moments, t_{1} and t_{2}
- The displacement is given by

$$
\Delta \mathbf{r}=\mathbf{r}\left(t_{2}\right)-\mathbf{r}\left(t_{1}\right)
$$

Coordinates in 2D

Cartesian

Polar

$\mathbf{r}(t)=x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}$

$\mathbf{r}(t)=r(t) \hat{\mathbf{r}}(t)$

We shall use Cartesian coordinates

Displacement in Cartesian Coordinates

$$
\begin{array}{rlrl}
\mathbf{r}\left(t_{1}\right) & =x\left(t_{1}\right) \hat{\mathbf{x}}+y\left(t_{1}\right) \hat{\mathbf{y}} \quad \mathbf{r}\left(t_{2}\right)=x\left(t_{2}\right) \hat{\mathbf{x}}+y\left(t_{2}\right) \hat{\mathbf{y}} & \\
\Delta \mathbf{r} & =\mathbf{r}\left(t_{2}\right)-\mathbf{r}\left(t_{1}\right) & & \\
& =\left(x\left(t_{2}\right) \hat{\mathbf{x}}+y\left(t_{2}\right) \hat{\mathbf{y}}\right)-\left(x\left(t_{1}\right) \hat{\mathbf{x}}+y\left(t_{1}\right) \hat{\mathbf{y}}\right) & & \\
& =\left(x\left(t_{2}\right)-x\left(t_{1}\right)\right) \hat{\mathbf{x}}+\left(y\left(t_{2}\right)-y\left(t_{1}\right)\right) \hat{\mathbf{y}} & & \Delta x=x\left(t_{2}\right)-x\left(t_{1}\right) \\
& =\Delta x \hat{\mathbf{x}}+\Delta y \hat{\mathbf{y}} & & \\
& \text { where } & \Delta y=y\left(t_{2}\right)-y\left(t_{1}\right)
\end{array}
$$

Average Velocity

- The average velocity during the interval Δt is a vector defined by

$$
\mathbf{v}_{a v}=\frac{\Delta \mathbf{r}}{\Delta t}
$$

- Meaning: If you start from the initial position and move with constant velocity $\mathbf{v}_{a v}$, you will reach the final position after Δt

Infinitesimal Displacement

What happens when the time interval tends to zero?

$$
\|\Delta \mathbf{r}\| \rightarrow 0
$$

Direction of $\Delta \mathbf{r} \rightarrow$ Direction of tangent of the trajectory

Limit of Average Velocity

However, in general the limit of the average velocity exists

The instantaneous velocity is defined to be the limit of the average velocity

Instantaneous Velocity

- The instantaneous velocity at time t is defined as the limit of the average velocity when Δt tends to zero:

$$
\mathbf{v}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}=\frac{d \mathbf{r}}{d t}
$$

- Its direction is along the tangent to the trajectory
- Its magnitude is the instantaneous speed $v=\|\mathbf{v}\|$

With respect to any function $f(x)$, the operation

$$
\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

is called differentiation.
We say we are taking derivative of function $\mathrm{f}(\mathrm{x})$ with respect to x
(ref. to tutorial 1)

Derivative of function

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

$$
\begin{aligned}
& \frac{d}{d x}(x)=1 \\
& \hline \frac{d}{d x}(c u)=c \frac{d u}{d x} \\
& \frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x} \\
& \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& \frac{d}{d x} \sin x=\cos x \\
& \frac{d x}{d y}=\frac{1}{d y / d x} \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& \hline
\end{aligned}
$$

Velocity in Cartesian Coordinates

Since $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are constant vectors

$$
\begin{aligned}
& \mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x \hat{\mathbf{x}}+\Delta y \hat{\mathbf{y}}}{\Delta t}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta x}{\Delta t} \hat{\mathbf{x}}+\frac{\Delta y}{\Delta t} \hat{\mathbf{y}}\right) \\
& =\left(\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}\right) \hat{\mathbf{x}}+\left(\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}\right) \hat{\mathbf{y}}=\frac{d x}{d t} \hat{x}+\frac{d y}{d t} \hat{y} \\
& v_{x}=\frac{d x}{d t}, v_{y}=\frac{d y}{d t}
\end{aligned}
$$

$$
\mathbf{v}=v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}
$$

$$
v=\|\mathbf{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Example:

The trajectory of a particle is given by

$$
\mathbf{r}(t)=3 \hat{\mathbf{x}}+\left(t-5 t^{2}\right) \hat{\mathbf{y}}
$$

Find its velocity and speed.
Solution:

$$
\begin{aligned}
\left\{\begin{array}{c}
x(t)=3 t \\
y(t)=t-5 t^{2}
\end{array}\right. & \Rightarrow\left\{\begin{array}{c}
d x / d t=3 \\
d y / d t=1-10 t
\end{array}\right. \\
\mathbf{v}(t) & =3 \hat{\mathbf{x}}+(1-10 t) \hat{\mathbf{y}} \\
v(t) & =\sqrt{3^{2}+(1-10 t)^{2}}
\end{aligned}
$$

Example:

The trajectory of a particle is given by

$$
\mathbf{r}(t)=\cos \omega t \hat{\mathbf{x}}+\sin \omega t \hat{\mathbf{y}}
$$

where $\omega>0$ is a constant. Find its velocity and speed.
Solution:

$$
\left\{\begin{array} { l }
{ x (t) = \operatorname { c o s } \omega t } \\
{ y (t) = \operatorname { s i n } \omega t }
\end{array} \Rightarrow \left\{\begin{array}{l}
v_{x}=d x / d t=-\omega \sin \omega t \\
v_{y}=d y / d t=\omega \cos \omega t
\end{array}\right.\right.
$$

$$
\mathbf{v}(t)=-\omega \sin \omega t \hat{\mathbf{x}}+\omega \cos \omega t \hat{\mathbf{y}}
$$

$$
v(t)=\sqrt{(-\omega \sin \omega t)^{2}+(\omega \cos \omega t)^{2}}=\omega
$$

Change in Velocity

- After evaluating the instantaneous velocity at every moment t, we can then consider the rate of change of velocity w.r.t. time
- During a time interval Δt, the change in velocity is

$$
\Delta \mathbf{v}=\mathbf{v}(t+\Delta t)-\mathbf{v}(t)
$$

Average Acceleration

- Acceleration is the rate of change of velocity
- The average acceleration during a time interval Δt is a vector defined by

$$
\mathbf{a}_{a v}=\frac{\Delta \mathbf{v}}{\Delta t}
$$

Instantaneous Acceleration

The instantaneous acceleration at time t is defined as the limit of the average acceleration when Δt tends to zero:

$$
\mathbf{a}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{v}(t+\Delta t)-\mathbf{v}(t)}{\Delta t}=\frac{d \mathbf{v}}{d t}
$$

Acceleration in Cartesian Coordinates

In Cartesian coordinates

$$
\begin{aligned}
& \mathbf{v}(t)=v_{x}(t) \hat{\mathbf{x}}+v_{y}(t) \hat{\mathbf{y}} \quad \mathbf{v}(t+\Delta t)=v_{x}(t+\Delta t) \hat{\mathbf{x}}+v_{y}(t+\Delta t) \hat{\mathbf{y}} \\
& \begin{aligned}
\Delta \mathbf{v} & =\mathbf{v}(t+\Delta t)-\mathbf{v}(t) \\
& =\left(v_{x}(t+\Delta t)-v_{x}(t)\right) \hat{\mathbf{x}}+\left(v_{y}(t+\Delta t)-v_{y}(t)\right) \hat{\mathbf{y}} \\
& =\Delta v_{x} \hat{\mathbf{x}}+\Delta v_{y} \hat{\mathbf{y}}
\end{aligned}
\end{aligned}
$$

Since $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are constant vectors

$$
\begin{gathered}
\mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x} \hat{\mathbf{x}}+\Delta v_{y} \hat{\mathbf{y}}}{\Delta t}=\left(\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}\right) \hat{\mathbf{x}}+\left(\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{y}}{\Delta t}\right) \hat{\mathbf{y}} \\
a_{x}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}, a_{y}=\frac{d v_{y}}{d t}=\frac{d^{2} y}{d t^{2}} \\
\mathbf{a}=a_{x} \hat{\mathbf{x}}+a_{y} \hat{\mathbf{y}} \quad a=\|\mathbf{a}\|=\sqrt{a_{x}^{2}+a_{y}^{2}}
\end{gathered}
$$

Example:

The trajectory of a particle is given by

$$
\mathbf{r}(t)=3 t \hat{\mathbf{x}}+\left(t-5 t^{2}\right) \hat{\mathbf{y}}
$$

Find its acceleration.
Solution:

$$
\begin{gathered}
\left\{\begin{array} { c }
{ v _ { x } = 3 } \\
{ v _ { y } = 1 - 1 0 t }
\end{array} \Rightarrow \left\{\begin{array}{c}
a_{x}=d v_{x} / d t=0 \\
a_{y}=d v_{y} / d t=-10
\end{array}\right.\right. \\
\mathbf{a}(t)=-10 \hat{\mathbf{y}} \\
a(t)=10
\end{gathered}
$$

Example:

The trajectory of a particle is given by

$$
\mathbf{r}(t)=\cos \omega t \hat{\mathbf{x}}+\sin \omega t \hat{\mathbf{y}}
$$

where $\omega>0$ is a constant. Find its acceleration.

Solution:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ v _ { x } = - \omega \operatorname { s i n } \omega t } \\
{ v _ { y } = \omega \operatorname { c o s } \omega t }
\end{array} \Rightarrow \left\{\begin{array}{l}
a_{x}=d v_{x} / d t=-\omega^{2} \cos \omega t \\
a_{y}=d v_{y} / d t=-\omega^{2} \sin \omega t
\end{array}\right.\right. \\
& \mathbf{a}(t)=-\omega^{2} \cos \omega t \hat{\mathbf{x}}-\omega^{2} \sin \omega t \hat{\mathbf{y}}=-\omega^{2} \mathbf{r} \\
& a(t)=\sqrt{\left(-\omega^{2} \sin \omega t\right)^{2}+\left(-\omega^{2} \cos \omega t\right)^{2}}=\omega^{2}
\end{aligned}
$$

Displacement and velocity vectors

Distance and speed - scalars
Displacement and velocity - vectors

Acceleration vector

To find the car's average acceleration between P_{1} and P_{2}, we first find the change in velocity $\Delta \vec{v}$ by subtracting \vec{v}_{1} from \vec{v}_{2}. (Notice that $\vec{v}_{1}+\Delta \vec{v}=\vec{v}_{2}$)
(a) Acceleration: curved trajectory

The average acceleration has the same direction as the change in velocity, $\Delta \vec{v}$.

Resolve into parallel (or tangential) $a_{\|}$, and perpendicular (or radial) a_{\perp} components

Q3. 3

The motion diagram shows an object moving along a curved path at constant speed. At which of the points A, C, and E does the object have zero acceleration?

A. point A only
B. point C only
C. point E only
D. points A and C only
E. points A, C, and E

Q3. 3

The motion diagram shows an object moving along a curved path at constant speed. At which of the points A, C, and E does the object have zero acceleration?

Equations of Constant-Acceleration Motions

Constant acceleration $=a$

$$
\text { At } t=t_{0}, v=v_{0}, x=x_{0}
$$

General equations

$$
x=x_{0}+v_{0}\left(t-t_{0}\right)+\frac{1}{2} a\left(t-t_{0}\right)^{2}
$$

$$
v=v_{0}+a\left(t-t_{0}\right)
$$

$$
v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)
$$

$x=v_{0} t+\frac{1}{2} a t^{2}$

$$
v=v_{0}+a t
$$

$$
v^{2}-v_{0}^{2}=2 a x
$$

Example:

An object initially at rest falls from the roof of a 100-m-high building. Suppose air resistance and all other forces except gravity can be ignored. Find the elapsed time and the speed of the object when it reaches the ground.
Take downward as positive in your calculation.

Solution:

Let the moment the object starts to fall be $t=0$, and take the roof as the reference height. In other words, $t_{0}=x_{0}=0$. Hence

$$
v^{2}-v_{0}^{2}=2 g x
$$

It is also given that $v_{0}=0$. So $v^{2}=2 g x$
When it reaches the ground $x=100$. Therefore

$$
v= \pm \sqrt{200 g}= \pm \sqrt{200 \times 9.8} \approx \pm 44.3 \mathrm{~m} / \mathrm{s}
$$

To obtain the time elapsed, use

$$
v=v_{0}+g t=g t \Rightarrow t=v / g= \pm \sqrt{200 / g}
$$

Obviously the answer $t<0$ is not physical and should be rejected. Hence

$$
t=\sqrt{200 / g} \approx 4.5 \mathrm{~s} \quad v=\sqrt{200 g} \approx 44.3 \mathrm{~m} / \mathrm{s}
$$

The object hits the ground at a velocity of $44.3 \mathrm{~m} / \mathrm{s}$ after 4.5 s

Example:

Redo the last question. This time take upward as positive.

Solution: Still set $t_{0}=x_{0}=0$. Now

$$
v^{2}-v_{0}^{2}=-2 g x \Rightarrow v= \pm \sqrt{-2 g x}
$$

This time when the object reaches the ground, $x=-100$.
Therefore

$$
\begin{gathered}
v= \pm \sqrt{-2 g x}= \pm \sqrt{-2 g(-100)}= \pm \sqrt{200 g} \\
v=v_{0}-g t=-g t \Rightarrow t=-v / g \\
v=\sqrt{200 g} \Rightarrow t=-\sqrt{200 / g}<0
\end{gathered}
$$

which should be rejected. Hence the solution is

$$
t=\sqrt{200 / g} \approx 4.5 \mathrm{~s} \quad v=-\sqrt{200 g} \approx-44.3 \mathrm{~m} / \mathrm{s}
$$

Exercise 1: A rocket is launched at $t=0$ and has a constant upward acceleration of $2 g$. The engine breaks down 20 s after the launch. Assume one can ignore air resistance. (a) Find the maximum height H above ground reached by the rocket.
(b) Find the time T when the rocket hits the ground.

Exercise 2:

To estimate the height of a bridge, a stone (initially at rest) is dropped from the bridge to the water below. If the splash is heard after 4 s , find the height of the bridge. Assume that the speed of sound is $344 \mathrm{~ms}^{-1}$ and air resistance can be neglected.

Exercise 1: A rocket is launched at $t=0$ and has a constant upward acceleration of $2 g$. The engine breaks down 20 s after the launch. Assume one can ignore air resistance.
(a) Find the maximum height H above ground reached by the rocket.
(b) Find the time T when the rocket hits the ground.

Solution:

Take the ground as the reference and upward as positive.
For $t<20, a=2 \mathrm{~g}$. So at $t=20$,

$$
v=2 g \times 20=40 g \quad x=\frac{1}{2} \times 2 g \times(20)^{2}=400 g
$$

For $t>20, a=-g$.
(a)The object reaches maximum height H when its velocity is 0 .

$$
0^{2}-(40 g)^{2}=-2 g(H-400 g) \Rightarrow H=400 g+1600 g^{2} / 2 g=1200 g
$$

(b) To find T, solve

$$
\begin{aligned}
& x=x_{0}+v_{0}\left(t-t_{0}\right)-\frac{1}{2} g\left(t-t_{0}\right)^{2} \Rightarrow 0=400 g+40 g(T-20)-\frac{1}{2} g(T-20)^{2} \\
& T-20=\frac{-40 \pm \sqrt{(40)^{2}+800}}{-1}=40 \mp \sqrt{2400}=40 \mp 20 \sqrt{6}
\end{aligned}
$$

Rejecting the negative root $\rightarrow T=60+20 \sqrt{6}$

Exercise 2:

To estimate the height of a bridge, a stone (initially at rest) is dropped from the bridge to the water below. If the splash is heard after 4 s , find the height of the bridge. Assume that the speed of sound is $344 \mathrm{~ms}^{-1}$ and air resistance can be neglected.

Solution:

Let the height of the bridge be h, the time taken for the stone to reach the water be t_{1}, and the time taken for the splash to reach the bridge be t_{2}. Take downward as positive, and the ground to be $x=0$. Let $t=0$ at the moment when the stone starts to fall. In other words, $t_{0}=0, x_{0}=-h$. Besides, $v_{0}=0$. Hence

$$
\begin{aligned}
x & =x_{0}+v_{0}\left(t-t_{0}\right)+\frac{1}{2} g\left(t-t_{0}\right)^{2} \\
& =-h+\frac{1}{2} g t^{2}
\end{aligned}
$$

Solution:

At the moment when the stone hits the water

$$
0=-h+\frac{1}{2} g t_{1}^{2} \Rightarrow t_{1}= \pm \sqrt{2 h / g}
$$

The solution of negative time should be rejected. Hence

$$
t_{1}=\sqrt{2 h / g}
$$

It is easy to see that

$$
t_{2}=h / 344
$$

Therefore

$$
\begin{aligned}
& t_{1}+t_{2}=\sqrt{2 h / g}+h / 344=4 \\
& \Rightarrow 344 \sqrt{2 h / g}+h=1376 \\
& \Rightarrow h+344 \sqrt{2 / g} \sqrt{h}-1376=0 \\
& \Rightarrow \sqrt{h}=\frac{-344 \sqrt{2 / g} \pm \sqrt{344^{2} \times 2 / g+4 \times 1376}}{2}
\end{aligned}
$$

The smaller root is negative and should be rejected. Thus

$$
\begin{aligned}
& \sqrt{h}=\sqrt{344^{2} / 2 g+1376}-344 / \sqrt{2 g} \approx 8.400 \\
& h \approx 70.6 \mathrm{~m}
\end{aligned}
$$

Projectile motion

Since a projectile moves in 2-dimensions, it therefore has two components.

Two-dimensional motion of an object

- Vertical
- Horizontal

Since the perpendicular components of motion are independent of each other.

Key idea:

The horizontal and the vertical motion can be considered independently!!

Acceleration due to Gravity

Near the Earth's surface, all objects are subject to a constant downward acceleration $g \approx 9.8 \mathrm{~ms}^{-2}$

Set up the coordinate system so that:
x : horizontal
y : vertical (upward taken as positive)

$$
\mathbf{a}=-g \hat{\mathbf{y}} \Rightarrow\left\{\begin{array}{c}
a_{x}=0 \\
a_{y}=-g
\end{array}\right.
$$

Projectile motion:

	Horizontal Motion	Vertical Motion
Acceleration	No	Yes
Velocity	Constant	g is downward at $9.8 \mathrm{~m} / \mathrm{s}^{2}$
		Changing
		By $9.8 \mathrm{~m} / \mathrm{s}$ per second

By combining two components, it will produce a trajectory/path, which is parabolic.

Equation of motion:

	Horizontal (x) Uniform motion	Vertical (y) Accelerating motion
acceleration	$a_{x}=0$	$a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
velocity	$v_{x}=v_{i x}=v_{x} \cos \theta$	$v_{y}=v_{i y}-g t$ $v_{y}=v_{i} \sin \theta-g t$ displacement$\quad x=v_{i x} t=v_{i} t \cos \theta$
		$y=v_{i y} t-\frac{1}{2} g t^{2}$ $y=v_{i} t \sin \theta-\frac{1}{2} g t^{2}$

$\mathrm{v}_{\mathrm{ix}}, \mathrm{v}_{\mathrm{iy}}$: initial horizontal and vertical velocity components v_{i} : magnitude of the vector \vec{v}_{i} $\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}$: acceleration along the horizontal and vertical direction
θ : angle between the initial velocity v and the horizontal direction

Trajectory of a projectile motion

$$
\begin{gathered}
x=v_{i} t \cos \theta \\
y=v_{i} t \sin \theta-\frac{1}{2} g t^{2}
\end{gathered}
$$

Eliminate time, t

$$
t=\frac{x}{v_{i} \cos \theta}
$$

$$
y=x \tan \theta-\frac{g}{2 v_{i}^{2} \cos ^{2} \theta} x^{2}
$$

$$
y=b x+a x^{2} \quad y+\frac{b^{2}}{4 a} \div=a x+\frac{b}{2 a} \div \quad \tilde{y}=a \tilde{x}^{2}
$$

Parabola!!
Remember $\mathrm{a}<0$ is negative!

Total time travelled by the ball

Final height $\mathrm{y}=0$ after time interval t

$$
\begin{aligned}
& 0=v_{i} t \sin \quad \frac{1}{2} g(t)^{2} \\
& t=\frac{2 v_{i} \sin }{g}
\end{aligned}
$$

Trajectories at different angle $\boldsymbol{\theta}$

$$
y=x \tan \theta-\frac{g}{2 v_{i}^{2} \cos ^{2} \theta} x^{2}
$$

- Horizontal range are the same for angles θ and $(90-\theta)$
- Horizontal range is the greatest at $\theta=45$ - WHY?

Horizontal range (R):

$$
\begin{array}{r}
\sin (2)=\sin \left(2\left(90^{\circ} \quad\right)\right) \\
2 \sin \cos =\sin (2)
\end{array}
$$

$$
0=R \tan \quad \frac{g}{2 v_{i}^{2} \cos ^{2}} R^{2} \quad R(\quad)=0 \quad \text { OR }
$$

$$
R(\quad)=\frac{2 v_{i}^{2} \cos ^{2} \tan }{g}=\frac{2 v_{i}^{2} \cos \sin }{g}=\frac{v_{i}^{2} \sin 2}{g}
$$

Check!! $R(\mathrm{r})=R\left(90^{\circ} \quad\right)$

Why 45° ?

Maximum height

$$
\begin{aligned}
& y+\frac{b^{2}}{4 a} \div=a x+\frac{b^{2}}{2 a} \div \quad y+\frac{b^{2}}{4 a} \div=|a| x+\frac{b}{2 a} \div 0 \\
& y \quad \frac{b^{2}}{4 a}=\frac{2 v_{i}^{2} \tan ^{2} \cos ^{2}}{4 g}=\frac{v_{i}^{2} \sin ^{2}}{2 g} \\
& h_{\max }=
\end{aligned}
$$

Path of a Particle Launched at Ground Level

Example: A particle is projected from a point $O 25 \mathrm{~m}$ above a

 horizontal plane. After 5 seconds it hits the plane at a point whose horizontal distance from O is 100 m . Find the horizontal and vertical components of the initial velocity of the particle, and hence the initial speed. Also find the greatest height the particle reaches above the plane.

Solution: Let $t_{0}=0$. Set up the coordinate system as shown in the figure below so that $x_{0}=0, y_{0}=25$.

$$
\begin{gathered}
x(t)=v_{x 0} t \Rightarrow v_{x 0}=100 / 5=20 \mathrm{~ms}^{-1} \\
y(t)=25+v_{y 0} t-\frac{1}{2} g t^{2} \Rightarrow 0=25+5 v_{y 0}-\frac{25}{2} g \Rightarrow v_{y 0}=19.5 \mathrm{~ms}^{-1}
\end{gathered}
$$

The initial speed is
$v=\sqrt{20^{2}+19.5^{2}} \approx 27.9 \mathrm{~ms}^{-1}$
To find the maximum height, use

$$
\begin{aligned}
& 0^{2}-v_{y 0}^{2}=-2 g(H-25) \\
& H=25+\frac{v_{y 0}^{2}}{2 g}=44.4 \mathrm{~m}
\end{aligned}
$$

Example: The Monkey and the Hunter
The monkey sees that the barrel of a hunter's gun is pointed directly at him. If he lets go of the branch at the instant the bullet is fired, will the bullet pass over his head?

Solution:

The bullet will always hit the target.
Time taken for the bullet to travel a horizontal distance d :

$$
\tau=\frac{d}{v_{0} \cos \theta}
$$

Height of the target at τ :

$$
h-\frac{1}{2} g \tau^{2}
$$

Height of bullet at τ :

$$
v_{0} \tau \sin \theta-\frac{1}{2} g \tau^{2}
$$

Difference in height:

$$
h-v_{0} \tau \sin \theta=h-v_{0} \frac{d}{v_{0} \cos \theta} \sin \theta=h-d \tan \theta=0
$$

3. NEWTON'S LAWS OF MOTION

Relative velocity -

concerning more than one observer
An observer making observation/measurement forms a reference frame e.g.

(c) Relative velocities (seen from above)

$$
\Rightarrow \vec{v}_{P / A}=\vec{v}_{B / A}+\vec{v}_{P / B}
$$

velocity of P measured in frame A
velocity of frame B measured in frame A
velocity of P measured in frame B

Q3. 12

The pilot of a light airplane with an airspeed of $200 \mathrm{~km} / \mathrm{h}$ wants to fly due west. There is a strong wind of $120 \mathrm{~km} / \mathrm{h}$ blowing from the north.
If the pilot points the nose of the airplane north of west so that her ground track is due west, what will be her ground speed?
A. $80 \mathrm{~km} / \mathrm{h}$
B. $120 \mathrm{~km} / \mathrm{h}$
C. $160 \mathrm{~km} / \mathrm{h}$
D. $180 \mathrm{~km} / \mathrm{h}$
E. It would impossible to fly due west in this situation.

Q3. 12

The pilot of a light airplane with an airspeed of $200 \mathrm{~km} / \mathrm{h}$ wants to fly due west. There is a strong wind of $120 \mathrm{~km} / \mathrm{h}$ blowing from the north.
If the pilot points the nose of the airplane north of west so that her ground track is due west, what will be her ground speed?
A. $80 \mathrm{~km} / \mathrm{h}$
B. $120 \mathrm{~km} / \mathrm{h}$
D. $180 \mathrm{~km} / \mathrm{h}$
E. It would impossible to fly due west in this situation.

Exercise:

There are two boats across a river with width l and their connection line make an angle α with the river.
Assume that the maximum speed for two boats are u_{A} and u_{B} respectively and the speed of the water current is v. If two boats depart at the same time, which direction should they move such that they will meet in the shortest time.
The velocity of boat A and B (relative to shore) are

$$
\vec{V}_{A}=\vec{u}_{A}+\vec{v}, \quad \vec{V}_{B}=\vec{u}_{B}+\vec{v}
$$

The velocity of boat B relative to A is

$$
\vec{V}_{B / A}=\vec{V}_{B}-\vec{V}_{A}=\vec{u}_{B}-\vec{u}_{A}
$$

Two boats will meet if $\vec{V}_{B / A}$ is parallel to the connection line A and the maximum speed if \vec{u}_{A} and \vec{u}_{B} are anti-parallel. The time taken is

$$
T=\frac{l / \sin \alpha}{u_{1}+u_{2}}
$$

V

Newtons' first law of motion

A body acted on by no net force moves with constant velocity

$$
\begin{aligned}
& \sum \overrightarrow{\boldsymbol{F}}=0 \\
& \text { body in equilibrium }
\end{aligned}
$$

Q4.6

An elevator is being lowered at constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator shaft.
The upward force exerted on the elevator by the cable has the same magnitude as the force of gravity on the elevator, but points in the opposite direction. Why?

A. Newton's first law
B. Newton's second law
C. Newton's third law

An elevator is being lowered at constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator shaft.
The upward force exerted on the elevator by the cable has the same magnitude as the force of gravity on the elevator, but points in the opposite direction. Why?

4. Newton's first law
B. Newton's second law
C. Newton's third law

Inertial Frame of Reference

Passenger (in roller skate) accelerates inside the train, but net force is zero.
Violate Newton's first law??
The train is not an inertial frame.

Inertial Frame

Definition:
 A frame of reference in which Newton's first law is valid is called an inertial frame

Note: 1. Is the earth an inertial frame?
Only approximately
2. Given an inertial frame A,

Any frame B moving with constant $V_{B / A}$ (can be zero) is also an inertial frame
(c) The vehicle rounds a turn at constant speed.

In a non-inertial frame of reference, may feel like being acted on by a (non-existing) force.

$$
t=0
$$

Question

- In which of the following situations is there zero net force on the body?
a) an airplane flying due north at a steady speed and at a constant altitude, assuming that the earth is flat and is an inertial frame;
b) a car driving straight up a hill at constant speed;
c) a hawk circling at constant speed and constant height above an open field;
d) a box with slick, frictionless surfaces in the back of a truck as the truck accelerates forward on a level road at constant acceleration.

Forces are vectors and can be added up (superposition of forces)
$\overrightarrow{\boldsymbol{R}}$ is called the net or resultant force

The SI unit of force is newton, $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$

Newton's second law

If a net external force acts on a body, the body accelerates according to

$$
\sum \overrightarrow{\boldsymbol{F}}=m \underbrace{\text { in }}_{\substack{\text { inertial mass } \\ \text { is to reluctant the body } \\ \text { is the its velocity }}}
$$

©
Make sure F is the net force, see Demonstration: fan car

Q4.12

A woman pulls on a $6.00-\mathrm{kg}$ crate, which in turn is connected to a $4.00-\mathrm{kg}$ crate by a light rope. It is given that both crates have non-zero
 accelerations and the light rope remains taut.
Compared to the $6.00-\mathrm{kg}$ crate, the lighter $4.00-\mathrm{kg}$ crate
A. is subjected to the same net force and has the same acceleration.
B. is subjected to a smaller net force and has the same acceleration.
C. is subjected to the same net force and has a smaller acceleration.
D. is subjected to a smaller net force and has a smaller acceleration.
E. none of the above

A4.12

A woman pulls on a $6.00-\mathrm{kg}$ crate, which in turn is connected to a $4.00-\mathrm{kg}$ crate by a light rope. It is given that both crates have non-zero
 accelerations and the light rope remains taut.
Compared to the $6.00-\mathrm{kg}$ crate, the lighter $4.00-\mathrm{kg}$ crate
A. is subjected to the same net force and has the same acceleration.
. is subjected to a smaller net force and has the same acceleration.
C. is subjected to the same net force and has a smaller acceleration.
D. is subjected to a smaller net force and has a smaller acceleration.
E. none of the above

Equation of motion:

$$
\mathbf{F}(\mathbf{r}, \mathbf{v})=\mathbf{F}_{i}(\mathbf{r}, \mathbf{v})=m \frac{d^{2} \mathbf{r}}{d t^{2}}
$$

In particualr, if the net force is 0 (i.e. $\mathbf{F}(\mathbf{r}, \mathbf{v})=0), \frac{d \mathbf{r}}{d t}=\mathbf{v}=$ constant (First law!)

Newton's second law, together with the force laws, becomes a law governing the accelerations of objects

Our goal is to find the laws for the force.....

Examples of force laws: Newton's law of universal gravitation, Coulomb's law, Hooke's law, law of friction....

One comment on the initial reference frame

$$
\begin{gathered}
r^{\prime}=r \\
t^{\prime}=t \\
v^{\prime}=v
\end{gathered} \quad R \begin{aligned}
& \\
& \mathbf{F}(\mathbf{r}, \mathbf{v})=m \frac{d^{2} \mathbf{r}}{d t^{2}} \\
& \mathbf{F}^{\prime}\left(\mathbf{r}^{\prime}, \mathbf{v}^{\prime}\right)=m \frac{d^{2} \mathbf{r}^{\prime}}{d t^{\prime 2}}
\end{aligned}
$$

The Newton law looks the same in two initial reference frames!!

Newton's third law of motion

- If body A exerts a force on body B (an "action"), then body B exerts a force on body A (a "reaction").
- These two forces have the same magnitude but are opposite in direction.
- These two forces act on different bodies.

Example 4.9
 Action and reaction forces acting on an apple sitting on a table

(a) The forces acting on the apple
(b) The action-reaction pair for the interaction between the apple and the earth

(c) The action-reaction pair for the interaction between the apple and the table

mutual interaction of two different objects.
(d) We eliminate one of the forces acting on the apple

The two forces on the apple CANNOT be an action-reaction pair because they act on the same object. We see that if we eliminate one, the other remains.

Example: Tension in an elevator cable An elevator, mass 800 kg , moving downwards at $10.0 \mathrm{~m} / \mathrm{s}$ If it comes to a stop in a distance of 25.0 m
(a) Descending elevator

S2012 Pearson Enocabos ine
(b) Free-body diagram
for elevator

Moving down with decreasing speed

To find deceleration a_{y}

Tension in the cable

$$
\begin{aligned}
\sum F_{y} & =T-w=m a_{y} \\
\Rightarrow \quad T & =m\left(g+a_{y}\right)=9440 \mathrm{~N}
\end{aligned}
$$

Example: Forces within an elevator cab

A passenger of mass $\mathrm{m}=72.2 \mathrm{~kg}$ stands on a platform scale in elevator cab. We are concerned with the scale readings when the cab is stationary and when it is moving up or down.

The reading is equal to the magnitude of the normal force $\mathbf{F}_{\mathbf{N}}$ on the passenger from the

(a)

(b)

Passenger
These forces compete.
Their net force causes a vertical acceleration. scale. The only other force acting on the passenger is the gravitational force

$$
F_{N} \quad m g=m a \text { or } F_{N}=m(g+a)
$$

Therefore,
if $\mathrm{a}>0$ (accelerating upward), $\mathrm{F}_{\mathrm{N}}>\mathrm{mg}$
if $\mathrm{a}<0$ (accelerating downward), $\mathrm{F}_{\mathrm{N}}<\mathrm{mg}$
In particular, if $\mathrm{a}=-\mathrm{g}$ (free fall), $\mathrm{F}_{\mathrm{N}}=0$
(You appear weightless in a non-inertia reference frame)

More importantly, the passenger is stationary relative to the elevator cab. (i.e. his acceleration relative to the frame of the cab is zero.)

But

$F^{\prime}{ }_{\text {net }}=F_{N}-F_{g} \neq 0$
Hence, we conclude that

(a)

$\mathrm{F}^{\prime}{ }_{\text {net }} \neq \mathrm{ma}{ }^{\prime}$
The Newton's $2^{\text {nd }}$ law doesn't hold in the frame of the accelerating elevator cab (the non-inertia reference frame)

Question

Both are under the gravitational attraction of the earth. Why does the person has weight but the astronaut is weightless?

Summary

Newton's First Law:

Objects in motion tend to stay in motion and objects at rest tend to stay at rest unless acted upon by an unbalanced force.

Newton's Second Law:
Force equals mass times acceleration $(\mathrm{F}=\mathrm{ma})$.
Newton' s Third Law:
For every action there is an equal and opposite reaction.

Some particular Forces - Gravitational Force

The gravitational force $\mathbf{F}_{\mathbf{g}}$ on a body is a certain type of pull that is directed toward a second body (Earth).

$$
\overrightarrow{\mathrm{F}}_{g}=m g \hat{y} \text { (take upward as positive) }
$$

The weight W of a body is the magnitude of the net force required to prevent the body from falling freely, as measured by someone on the ground.

Caution: A body's weight is not its mass. If you move a body to a point where g is different (eg, on the moon), the body's mass (intrinsic property) is the same but the weight is different.

Fig. 5-5 An equal-arm balance. When the device is in balance, the gravitational force $\vec{F}_{g L}$ on the body being weighed (on the left pan) and the total gravitational force $\vec{F}_{g R}$ on the reference bodies (on the right pan) are equal. Thus, the mass m_{L} of the body being weighed is equal to the total mass m_{R} of the reference bodies.

Some particular Forces - Normal force

When a body presses against a surface, the surface (even a seemingly rigid one) deforms and pushes on the body with a normal force F_{N} that is perpendicular to the surface.

The compressed

molecular springs push . upward on the object.
-Atoms
Molecular bonds

$\vec{F}_{N}+\vec{F}_{g}=m \vec{a}$
$F_{N} \quad F_{g}=m a \quad$ (upward as positive)
$F_{N}=m(a+g) \quad$ (For example, if the table is in an accelerating elevator)
In particular, if $\mathrm{a}=0$, we have
$\mathrm{F}_{N}=m g$

Some particular Forces - Tension

The tension force is the force that is transmitted through a string, rope, cable or wire when it is pulled tight by forces acting from opposite ends. The tension force is directed along the length of the wire and pulls equally on the objects on the opposite ends of the wire.

The forces at the two ends of the cord are equal in magnitude.
(a)

(b)

(c)

Action-reaction forces??

Example 1

A block S (the sliding block) with mass M. The block is free to move along a horizontal frictionless surface and connected, by a cord that wraps over a frictionless pulley, to a second block H (the hanging block), with mass m . The cord and pulley have negligible masses compared to the blocks (they are "massless"). The hanging block H falls as the sliding block S accelerates to the right. Find
(a) the acceleration of block S ,
(b) the acceleration of block H ,
(c) the tension in the cord.

Free Body Diagram - In every problem where the Newton's $2^{\text {nd }}$ Law applies. it is fundamental to draw what is called the Free Body Diagram. This diagram must show all the external forces acting on a body. We isolate the body and the forces due to that strings and surfaces are replaced by arrows; of course, the friction forces and the force of gravity must be included. If there are several bodies, a separate diagram should be drawn for each one.

> We assume that the cord does not stretch, so that if block H falls 1 mm in a certain time, block S moves 1 mm to the right in that same time. This means that the blocks move together and their accelerations have the same magnitude a.

We first apply the Newton's $2^{\text {nd }}$ law on block S,
Vertical: $\quad F_{N} \quad F_{g}^{M}=M a_{y}=0 \quad F_{N}=M g$
Horizontal: $\quad T=M a$
Next, we apply the Newton's $2^{\text {nd }}$ law on block H, (downward as +ve)

$$
F_{g}^{m} \quad T=m a \quad m g \quad T=m a
$$

Hence, we have
$\mathrm{mg}-\mathrm{Ma}=\mathrm{ma} \quad \mathrm{a}=\frac{m}{m+M} g$
And the tension $T=\frac{m M}{m+M} g$

Some particular Forces - Friction

If we either slide or attempt to slide a body over a surface, the motion is resisted by a bonding between the body and the surface. The resistance is considered to be a single force \mathbf{F}_{f}, called either the frictional force or simply friction. This force is directed along the surface, opposite the direction of the intended motion

(a)

(b)

Fig. 5-8 A frictional force \vec{f} opposes the attempted slide of a body over a surface.

Properties of Friction

1. If the body does not move, then the static frictional force $\mathbf{F}_{\mathbf{s}}$ and the component of \mathbf{F} that is parallel to the surface balance each other. They are equal in magnitude, and \mathbf{F}_{s} is directed opposite that component of \mathbf{F}.
2. The maximum value of the static friction is given by, $\mathbf{F}_{\mathrm{s}, \max }=\mu_{\mathrm{s}} \mathbf{F}_{\mathrm{N}}$ where μ_{s} is the coefficient of static friction.
3. If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value $\mathbf{F}_{\mathbf{k}}$ given by, $\mathbf{F}_{\mathbf{k}}=\boldsymbol{\mu}_{\mathbf{k}} \mathbf{F}_{\mathbf{N}}$ where $\boldsymbol{\mu}_{\mathrm{k}}$ is the coefficient of kinetic friction.

There is no attempt at sliding. Thus, no friction and no motion.

Force \vec{F} attempts sliding but is balanced by the frictional force. No motion.

Force \vec{F} is now stronger but is still balanced by the frictional force. No motion.
Force \vec{F} is now even
stronger but is still
balanced by the
frictional force.
No motion.

Finally, the applied force has overwhelmed the static frictional force. Block slides and accelerates.

To maintain the speed, weaken force \vec{F} to match the weak frictional force.

(c)

(d)

(e)

Frictional force $=F$

Weak kinetic
frictional force

Same weak kinetic frictional force

Static \& Kinetic Friction Coefficients

Material	Coefficient of Static Friction μ_{S}	Coefficient of Kinetic Friction μ_{S}
Rubber on Glass	$2.0+$	2.0
Rubber on Concrete	1.0	0.8
Steel on Steel	0.74	0.57
Wood on Wood	$0.25-0.5$	0.2
Metal on Metal	0.15	0.06
Paper on paper	0.28	
Synovial Joints in Humans	0.01	0.003

Example 2

The pulley is frictionless and weightless. The block of mass m_{1} is on the plane, inclined at an angle β with the horizontal. The block of mass m_{2} is connected to m_{1} by a string.

1. Assuming there is no friction, show a formula for the acceleration of the system in terms of m_{1}, m_{2}, β and g.
2. What condition is required for m_{1} to go up the incline?
3. Assume that the coefficient of kinetic friction between m_{1} and the plane is $0.2, m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=2.5 \mathrm{~kg}$ and the angle $\beta=30^{\circ}$. Calculate the acceleration of m_{1} and m_{2}.
4. What is the maximum value of friction coefficient so the system can still move.

Free Body Diagram - In every problem where the Second Newton's Law applies it is fundamental to draw what is called the Free Body Diagram. This diagram must show all the external forces acting on a body. We isolate the body and the forces due to that strings and surfaces are replaced by arrows; of course, the friction forces and the force of gravity must be included. If there are several bodies, a separate diagram should be drawn for each one.

Free Body diagram

Key Observations:

- The (tension) force that m_{1} exerts on m_{2} through the rope has the same magnitude T . This is so because a rope only changes the direction of a force, not its magnitude assuming a weightless rope.
- The magnitude of the acceleration is the same at both ends of the rope assuming an inextensible rope.

Free Body diagram

Components of forces

Free Body diagram

> Notice from the diagram the weight of m_{1} has been split into the components $m_{1} g \sin \beta$ parallel to the incline, and $m_{1} g \cos \beta$ perpendicular to it.

Without friction

1) Let's assume the direction of the acceleration makes m_{1} to go upward.

Sum of forces on m_{1} in the dirction of the incline plane: $T m_{1} g \sin =m_{1} a$
Sum of verticeal forces on $m_{2}: m_{2} g \quad T=m_{2} a$
Adding both equations we get $m_{2} g \quad m_{1} g \sin =a\left(m_{1}+m_{2}\right)$
$a=g \frac{m_{2} m_{1} \sin }{m_{1}+m_{2}}$

The acceleration of the masses is:
Free Body diagram

$$
a=g \frac{m_{2} m_{1} \sin }{m_{1}+m_{2}}
$$

2) For a to be positive (i.e. m_{1} going up): $m_{2}>m_{1} \sin$ For a to be negative (i.e. m_{1} going down): $\mathrm{m}_{2}<m_{1} \sin$
3) Now appears a friction force, always in an opposite direction to the movement. The magnitude of this friction force is $F_{f}=\mu F_{N}$. Where μ is the coefficient of kinetic friction.
$F_{N} \quad m_{1} g \cos =0$ OR $F_{N}=m_{1} g \cos$
Free Body diagram

The friction force is then $F_{f}=m_{1} g \cos$.
Hence the sum of forces on m_{1} on the incline plane is now:
$T m_{1} g \sin \quad m_{1} g \cos =m_{1} a$
The sume of vertical forces on m_{2} is:

$$
\begin{aligned}
& m_{2} g \quad T=m_{2} a \\
& a=\frac{m_{2} g \quad m_{1} g(\sin +\cos)}{m_{1}+m_{2}}
\end{aligned}
$$

Replacing values, we have $\mathrm{a}=2.51 \mathrm{~m} / \mathrm{s}^{2}$

The acceleration of the masses is:

Free Body diagram

 decreases until the acceleration becomes zero. The condition is obtained when:
$m_{2} g m_{1} g(\sin +\cos)=0$

$$
=\frac{m_{2} g m_{1} g \sin }{m_{1} \cos }
$$

Replacing values we get $=0.87$.

Example 3: Why banked curves in a racing track help?

On a flat curve

Example 3: Why banked curves in a racing track help?

If banked at angle β

What supplies the centripetal force? n and f !

$$
\begin{gathered}
\Sigma F_{x}=n \sin \beta+f \cos \beta=m v^{2} / R \\
\Sigma F_{y}=n \cos \beta-f \sin \beta-m g=0 \\
\Rightarrow f=m\left(\frac{v^{2}}{R} \cos \beta-g \sin \beta\right), n=m\left(\frac{v^{2}}{R} \sin \beta+g \cos \beta\right) \\
f \leq \mu_{s} n \Rightarrow v \leq v_{\max }=\sqrt{\frac{\tan \beta+\mu_{s}}{1-\mu_{s} \tan \beta} g R} \geq \sqrt{\mu_{s} g R}
\end{gathered}
$$

Challenging Question:
What happen to the friction f if $v<\sqrt{g R \tan \beta}$? How would you interpret this situation?

