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Why is E&M important?—most relevant to everyday life (from mechanical forces to biological
processes) among the four fundamental interactions
_The four fundamental forces:

Relative strength Range (meter) Responsible for
Strong 1038 10715 Binding quarks into
hadrons, and neutrons
and protons in nucle1

Electromagnetic 103 0o

Weak 1023 10-18 Transforming neutron
into proton in nuclear
decay

Gravitation 1 o0



Some simple factors from high school physics:
Origin of charge from atoms

Atom
@ Proton: Positive charge
&) Mostof the Mass = 1.673 X 10727 kg
atom’s volume
i 10 m—> is occupied Neutron: No charge
sparsely by Mass = 1.675 X 1077 kg
electrons.

®  Electron: Negative charge
Mass = 9.109 X 103! kg

—
Tiny compared with the The charges of the electron and
Nucleus rest of the atom. the proton are equal in magnitude.
@ nucleus contains over
99.9% of the atom’s mass.
~107 " m

A conductor permits easy movement of charge through it, while an insulator does not



Neutral object: number of positive charge = number of negative charge

Charge by rubbing (insulators)

(@) Interaction between plastic rods rubbed

on fur
Plain plastic rods neither
attract nor repel each
/ n other...
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2 Cg\/ ... but after being

rubbed with fur,
the rods repel
each other.

(b) Interaction between glass rods rubbed
on silk

Plain glass rods neither
attract nor repel each
0 other ...

Silk Glass

~ ... but after being
rubbed with silk,

the rods repel
each other.

(€) Interaction between objects with opposite
charges

The fur-rubbed plastic
rod and the silk-
rubbed glass rod

attract each
other ...

.. and the fur and silk
each attracts the rod it




Charge by induction (conductors)

Electron
Metal deficiency
ball Negatively N
- charged = &
rod —~

Electron buildup

Negative
charge in
round

7

(b) Negative charge on rod
repels electrons, creating
zones of negative and
positive induced charge.

(@) Uncharged metal ball

E3
Ground

(c) Wire lets electron build-
up (induced negative
charge) flow into

ground.

rd

(d) Wire removed; ball now
has only an electron-
deficient region of

positive charge.

(e) Rod removed;
electrons rearrange
themselves, ball has
overall electron
deficiency (net
positive charge).



Real Life Examples
Combing hair in winter

(b) How a negatively charged comb attracts an
insulator

Electrons in each
molecule of the neutral
insulator shift away
from the comb.

: Negatively

As a result, the

(+) charges in each

molecule are closer o

0 the comb than are the (—)

charges and so feel a stronger

force Irom the comb. Therefore
the net force is attractive.

charged comb

(c) How a positively charged comb attracts an
insulator

This time, electrons in
the molecules shift
toward the comb ...

el

n |
0 o lﬁ-’ e L S0 Lhat the
0 ’. (—) charges in each

0 ’ molecule are closer to
o O
VS

the comb, and feel a
stronger force from it, than

the (+) charges. Again, the net
force is attractive.

&
&
9



Laser printing

@ Laser beam “writes” on the drum, leaving negatively "
charged areas where the image will be.

>

R Toner (positively charged)
@ Wire sprays ions onto drum, giving the drum’ '
a positive charge.
@Lump discharges the drum, l‘ead‘ying
It to start the process over.

Nt . gs
L @Ro]ler applies positively charged toner to drum.
Toner adheres only to negatively charged areas

+ of the drum “written™ by the laser.

Rotating
imaging

+

@Fuser rollers heat paper so toner
remains permanently attached. L

<
' Paper (feeding to left)

';"t-

(&) Wires spray a stronger negative charge
on paper so toner will adhere to it.



Electrostatic painting

Metal object

Spray. of to be painted
negatively o )
charged : Minimizes overspray and gives a smooth
aint droplets| " _ ™\ e i .
. 4 . = ‘-\+"" Positive charge finish
\/ - =\ 4 isinduced on

= - | surface of metal.

v’

Paint sprayer Giviitid




Question: Two metal balls, one charged and one neutral, hanging on insulating threads.
If they are close to each other but not touching, they will (attract / repel / 1ignore) each other.

Once they touch, they will (attract / repel / 1ignore) each other.




Lightning
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- k{/ Pillar

Fig 1 Van de Graaff Generator




Two very important facts about charges:
1. Principle of conservation of charge — the algebraic sum of all the electric charges in any
closed system (no charge can escape) 1s constant,
2. Electron charge 1s the fundamental (cannot be further divided) unit of charge
e = 1.602176565(35) x 1071° C



Coulomb’s Law

F : .
\%\\ Charges of the ﬁ/lagmtude of electric force betwea
- r sdme .H'iéll] [‘CPC'. two point Charges
(4 e
. i 1 |g19.l
S & F = 5
i NI on 2 47-[60 r
Fron2==Faon) > €0 = 8.854 x 10712 C?>/Nm?, or
4149>! 1
f l on2 / nl = K 2 - 8.988.0 X 109 NIAIIE/C2
| & Y
Charges
of opposite
@\ .. sign aftisct. A\ Two 1C charge at 1m apart exert a
( =y
ot | B 2 \, force of 9 x 10° N on each other! 1C

F|:2\® 1s a huge charge!

q-

Very much like gravitation, F = Gm,m,/r?, but much stronger

E.g. two helium nuclei (He?**, m = 6.64 x 10727 kg and g = 3.2 x 1071°C), ratio of electric to
gravitational force is

1 [q19;]
Fo _dmeo 12 _ 50 100
F:Q Gmym,

T2



Example 21.4 Vector Addition of Electric Forces in a Plane

Two equal positive charges g = g, = 2.0 uC are locatedat x =0,y =030mand x =0,y =

—0.30 m respectively. Find the total electric force experienced by a charge Q = 4.0 uC at x =
0.40mand y = 0?

i
q1=20uC By Symmetry, P‘;} =0
T D\“ o= 19192
) x cos o
0.30m 477:60 e
| = = 2(9.0 x 10° Nm?/C?)
. j 40x107°Q)(20x107°C
040 m : ﬁ_ » ( )( : )
030 m (0.50 m)
| 2 L 040m _ .
el 050 m
2 =20uC A\ careful about the precision!

Question: If g, = —2.0 uC 1nstead, the total force on Q will be (along x direction / along - x
direction / along y direction / along — y direction / zero / none of these).




A (Q feels the charge due to other charges (g, and g,) only, never its own charge
A\ If charge Q changed, just substitute a new value into above formula. Did g, and g, set up

something independent of charge Q7 Yes, they set up an electric field.
Q

+t 4 E (due to charge Q)
+ +| 4o
) I
t s L Fo
The force on a positive test charge g, points ) i - »+ Electric force
in the direction of the electric field. hlectrlc‘ﬁeld e, ..‘E Fy  onatest charge ¢,
clectnic force ey due to other charges
0 per unit charge 10 v. ; :
& i . N R B, Value of test charge
Fy E (due to charge Q)
+ >
= T o4 S 40
The force on a negative test charge g, points

opposite to the electric field.



Electric Field due to a Point Charge
Always radially outward (for +ve charge) or inward (for —ve charge)

(@) The field produced by a positive point (b) The field produced by a negative point

sharoa 3 vt » sharoe .
charge points away from the charge. charge points toward the charge.

W\ 1/

QN X\
— s = T _A~
- / \

77\ f

Value of point charge ~+Unit vector from point charge

Electric field --... oy 22 1 g ¥ toward where field is measured
duetoa E = —=F . ‘ _ (21.7)
point charge 411'60 [ O P Distance from point charge

X

Electric constant to where field is measured

A 7 is always pointing radially outwards



'Example 21.6
A point charge g = —0.8 nC placed at the origin. The electric fieldatx = 1.2 mand y = —1.6

m 18
Y EXECUTE: The distance from S to P is
5 q=-30nC r=Vx+y*= \/(1.2 m)* + (—1.6 m)* = 2.0 m
] \_\ : X The unit vector 7 is then
\\?‘ | . T xi+yj
| re—=
: r r
| (1.2 m)t + (—1.6 m)] X A
| = — f—
: 0 m 0.601 — 0.80y
|

Then, from Eq. (21.7),
1 q.

S

41rey 1>

(—8.0 X 1079 C)
(2.0 m)?

= (9.0 X 10°N-m?/C?) (0.607 — 0.807)

= (=11 N/C)t + (14 N/C)j



Clicker Questions

Q21.3
Three point charges lie at the Charge #2
vertices of an equilateral triangle as i
shown. All three charges have the qe
same magnitude, but charges #1 Charge #1 -~
and #2 are positive (+¢) and charge +q 0 '
#3 is negative (—¢q). The net electric y g
force that charges #2 and #3 exert
on charge #1 is in ‘ g e
& Charge #3
A. the +x-direction. B. the —x-direction.
C. the +y-direction. D. the —y-direction.

E. none of the above.




A21.3

Three point charges lie at the Charge #2
vertices of an equilateral triangle as i
shown. All three charges have the ‘39
same magnitude, but charges #1 Charge #1
and #2 are positive (+¢q) and charge +q e
#3 is negative (—g). The net electric 3 5
force that charges #2 and #3 exert
on charge #1 1s in —q Q

X Charge #3
A. the +x-direction. B. the —x-direction.
C. the +y-direction. VD. the —y-direction.

E. none of the above.

© 2016 Pearson Education, Inc.



Q21.6

Two point charges and a point P lie Charge #1
at the vertices of an equilateral —QQ
triangle as shown. Both point L
charges have the same magnitude ¢ B ’

but opposite signs. There 1s nothing
at point P. The net electric field that y

charges #1 and #2 produce at point o
*q 3

Pisin

X Charge #2
A. the +x-direction. B. the —x-direction.
C. the +y-direction. D. the —y-direction.

E. none of the above.

© 2016 Pearson Education, Inc.



A21.6

Two point charges and a point P lie Charge #1
at the vertices of an equilateral )
triangle as shown. Both point L
charges have the same magnitude ¢ B ’

but opposite signs. There 1s nothing
at point P. The net electric field that y

charges #1 and #2 produce at point o
*q 3

Pisin
X Charge #2
A. the +x-direction. B. the —x-direction.
“C. the +y-direction. D. the —y-direction.

E. none of the above.

© 2016 Pearson Education, Inc.



Electric Field Lines

An elegant 1dea to visualize the field by Michael Faraday

Field at E}J Field at

. Imaginary lines whose tangent gives the
point £ point R

direction of the electric field at that point.
They must:

Elﬁzmc 1. Start from a positive charge
ie

line 2. End at a negative charge
3. Repel (not cross) each other



Some examples:
(@) A single positive charge (b) Two equal and opposite charges (a dipole) (c) Two equal positive charges

11

N

Y

E
5 E
W
- o - 4 ,'L
= Field lines always point-===""" At each point in space, the electric Field lines are close together where the field is
away from (+) charges field vector is tangent to the field strong, farther apart where it is weaker.

and toward (—) charges. line passing through that point.

A\ larger density of field lines indicates strong field
A\ field line 1s NOT trajectory of a test charge, because they indicate the direction of
acceleration, not velocity



Demonstration

Electric field apparatus




'Superposition of Electric Fields
Total field is the vector sum of fields due to individual point charges

q @
\.‘\\

Electric field _  “~_P Electric field Fo=F, +F, +F3+--
at P due to ¢, at P due to ¢, :qu1+quz+qu3+'”

|‘!'.11

02?1"‘?2"‘?3""“
0

E =

%5
A
o
vy
-~

The total electric field E at point
P is the vector sum of E, and E,.



Example: Field of an electric dipole

Point charges ¢; = +12 nC and ¢, = —12 nC are 0.100 m apart

(Fig. 21.22). (Such pairs of point charges with equal magnitude
and opposite sign are called electric dipoles.) Compute the electric
field caused by ¢, the field caused by ¢,, and the total field (a) at
point a; (b) at point b; and (c) at point c.

IDENTIFY and SET UP: We must find the total electric field at vari-
ous points due to two point charges. We use the principle of super-
position: E=E 1+ E . Figure 21.22 shows the coordinate
system and the locations of the field points a, b, and c.

EXECUTE: At each field point, E depends on E 1 and E‘Q there; we
first calculate the magnituges E,| and E, at each field point. At a
the magnitude of the field E, caused by ¢ is

el : b el(e

By, = = (9.0 X 10° N-m%/C})——

" o /) (0.060 m)?
= B > 10F @

We calculate the other field magnitudes in a similar way. The
results are

B = 3.0 < i NiEe | T = 6RECEN/E
B — 629 (10 N@

By, = Gk Nyle - g0 = 056 % e
By, — B, — 639 X 107 N/C

The directions of the corresponding fields are in all cases away
from the positive charge ¢, and foward the negative charge g5.

21.22 Electric field at three points, a, b, and c, set up by
charges ¢; and ¢,, which form an electric dipole.

4.0 6.0
cm cm cm

(a) Ata, E 1¢ and E 1 are both directed to the right, so
BN = Ol 0eN O

(b) At b, Elb is directed to the left and E’Qb is directed to the
right, so

Eb = _Elbi + E2bi - (_62 X 104 N/C)i



(c) Figure 21.22 shows the directions of E 1 and E » at ¢. Both
vectors have the same x-component:

Eiex = Eper = Eyjccosa = (639 X 10° N/C)(F)
= 7405 5 (02 e

From symmetry, £, and E,, are equal and opposite, so their sum
is zero. Hence

E. = 2(2.46 X 10> N/C)i = (4.9 X 10 N/C)i

EVALUATE: We can also find I_fv using Eq. (21.7) for the field of a
point charge. The displacement vector 7 from ¢, to point c is
7, = rcosatl + rsinaj. Hence the unit vector that points from
g to point ¢ is F; = F;/r = cosal + sinaj. By symmetry, the
unit vector that points from ¢, to point ¢ has the opposite x-

component but the same y-component: 7, = —cosal + sinaj.
We can now use Eq. (21.7) to write the fields E 1 and E'Zc at ¢ in
vector form, then find their sum. Since g, = —¢; and the distance
7 to ¢ is the same for both charges,

- - — ] o ] A
Ty = By b Ty o=y =
. . ¢ 4dmey 42 dieq r2

A A q1 A
(qiry + qorp) = Ei=1
47'r60r2 477607'2 )

_ 1o
4’776072

(2 cosat)

e
= O 5 M W ame e (2

(0.13m)
=@ 0P N @)

This is the same as we calculated in part (c).



Field of a charged line segment Example 21.10
A line segment 2a with charge O distributed uniformly throughout. Divide it into an infinite
number of small segments dy, each like a point charge.

Y
5 l Linear charge density (charge per unit length)
1ISA=0Q/2a

Qo
~<
|

dy carries a charge dQ = Ady, creating a field

0 at P
1 Ady
dE = —
Ame, 12
_G]'
JE. — dE 1 Adyx 1 Q X P
= B B = Aey 12 v 4mey2a (x2 + y2)3/2 Y

1 Qx (¢ dy 1 Q
~ 4me, 2a J._a (x2 +y2)3/2  Amey x\/%2 + a2

J

E,

!

= 2a/x*Vx? + a2, check integral table of Wolfram Alpha



By symmetry, E,, = 0, therefore

2Ly
, 1 Q ]
E = i
4meg xv/x2 + a2
A For x > a, the segment behaves like a point charge, E = 4;: x%
-0

A For x < a (infinitely long segment),

1 Q/a 4
dme, x = 2mMeEyx
decreases as 1/x, as oppose to 1/x? for point charge

E =

Question: 1f the segment has charge +Q uniformly distributed from 0 to a, and - Q from 0 to - a,
the field at P will be (in +x direction / in —x direction / in +y direction / in —y direction / zero).




Field due to a ring of charge along its axis Example 21.9
A ring with charge Q distributed uniformly around it. Divide into an infinite number of small arc

segments ds, each like a point charge at the same distance away from P
4 Linear charge density (charge per unit

length) 1s A = Q/2ma

A small arc segment ds carries a charge
dQ = Ads, creating a field at P

>r—— X
'\M\ JE — 1 Ads
. |  4me, 12

dE

1 Adsx 1 Q =
s ds

Ate, T2 T Ame, 2ma (x2 + a?)3/?

dE, = dE cosa =

1 Q X J.dsz 1 Qx

¥ 4mey 2ma (x2 + a?)3/2 \ Amteg (x2% + a?)3/2

2ma



By symmetry, E,, = 0, therefore

1 Qx !
i
41re, (x2% + a?)3/2
A\ At the center of the ring, x =0, and E=0 by symmetry
1 Q

E —

A For x > a, the ring behaves like a point charge, E =

471'&_0 .xz



Field of a uniformly charged disk Example 21.11
Total charge O, surface charge density (charge per unit area) is 0 = Q /mR? . Divide into an
infinite number of small rings, each with radius » and width dr, charge dQ = 2nrodr

Field due to an infinitesimal ring
p dE, JE — 1 x(2mrodr)
@ > X Arre, (x2 + 12)3/2
ox [ 2rdr o 1

E=——= — 1 —
4eg Jo (x2+12)3/2 2, JR?/x?) +1

If the plate is infinitely large, R — oo,|E = 0/2€, | & independent of distance!




Field of two oppositely charged infinite sheets Example 21.12

X

l

Sheet2 —o

/|\ X
d E’]‘\ **2 TE':EI +ﬁ4‘“ <«— E = d/¢€,, field lines uniform

Sheet ] +o 3




Field of an electric dipole Example 21.14
An electric dipole is a pair of equal and opposite charges +g and —¢ at a fixed distance d apart.

Its electric dipole moment p is defined as p = qd and points from —¢ to +¢
,“.

1 q —q
Ey = A€, [(y —d/2)> ® (y + d/2)2]

h __1 4]y d\~? L. 2
E. " 4me, y2 ( Zy) ( Zy)
—p— —
d d
g fy»d ———>=1+7 =l=z
| ]
1
v+ df2 nn—1
1+x)" = 1+nx+(T)x2 + -
—f——® *¢ e 1 g 2d 1 p
By = o2 ap >3]
g p1‘ p ; dteqgyc vy  2meyy
A decay as 1/y? when far away




A water molecule behaves like an electric dipole

-~

The electric dipole moment p’is
directed from the negative end to
the positive end of the molecule.



What if vou put an electric dipole in a uniform electric field?
(How to achieve a uniform electric field?)

Define d from —g to +q, i.c.., B = qd

— Total force iﬁ+ +F_= 0, center of mass does not move

But tends to rotate, 1.¢., torque 1s non-zero

1?
| €
N
<8
<
|
~|
I I
QN
X X
Ty
|l +
_|_
|
X
o

1.€.

Y

Sl
I
il
X
bl

torque on a dipole




Recall:

Define torque about a point O as a vector

F 1= r XF
F. =Fsing,”” T A7 is Lto both r and F
Magnitude: = » Fsing = rsing F
F..q = Fcosd¢ — \—y—}
=" component 1 distance from
(out of page) g S ——— ofF Lltor O to line of
actions of F
( = sin.;[b— Direction gives the sense of rotation about O
e = lever arm through the right-hand-rule.

Notation: © out of the plane into the plane

SI unit for torque: Nm (just like work done)




F
ds

Work Done AW = ﬁ . 3

Work done by the electric field on the dipole to turn it through angle d¢ (still remember how to
define the direction of dg?)
dW =% -d¢p = —pE sinp do

¢2
W = —J. pE sin ¢ d¢ = pE cos ¢, — pE cos ¢,
1

Since W = —AU (work done by electric field = -ve of change of potential), define the potential

energy of a dipole in an electric field as U = —pE cos ¢, or
U=-p-E
A P align with (parallel to) E to minimize potential energy, and T = 0

Question: if the dipole moment P is opposite (anti-parallel) to E, then the dipole is (1n stable
equilibrium / 1n unstable equilibrium / not 1n equilibrium).




Demonstration

Electric field apparatus




Example 21.13: ¢ = 1.6 x 107 C,d = 0.125 x 107 m, E = 5.0 x 10° N/C

—q
E 35° _ . - _E
y e
145° 145°
& +q

-
=

p=qd=(1.6x10"1C)(0.125x 10" m) = 2.0 x 1072° Cm
T =pEsing = (2.0 x 1072 Cm)(5.0 x 10° N/C) sin 145° = 5.7 x 107%* Nm

U=—pEcos¢ = —(2.0x 1072 Cm)(5.0 x 10> N/C) cos 145° = 8.2 x 107%*]



Clicker Questions
Q21.9

The illustration shows the electric field lines due to three
point charges (shown by the black dots). The electric field
1S strongest

A. where adjacent field lines are
closest together.

B. where adjacent field lines are
farthest apart.

C. where adjacent field lines are
parallel.

D. where the field lines are most
strongly curved.

E. at none of the above locations.

© 2016 Pearson Education, Inc



A21.9

The illustration shows the electric field lines due to three
point charges (shown by the black dots). The electric field
1s strongest

“ A. where adjacent field lines are
closest together.

B. where adjacent field lines are
farthest apart.

C. where adjacent field lines are
parallel.

D. where the field lines are most
strongly curved.

E. at none of the above locations.

£ 2016 Pearson Education, Inc.



Q21.11

Three point charges lie at the Charge #2
vertices of an equilateral triangle .
as shown. Charges #2 and #3 q
make up an electric dipole. The Charge #1
net electric torque that charge #1 +q e
exerts on the dipole 1s
A. clockwise. -4
* Charge #3

B. counterclockwise.
C. zero.

D. either A or B.

E. any of A, B, or C.

© 2016 Pearson Education, Inc.



A21.11

Three point charges lie at the Charge #2
vertices of an equilateral triangle .
as shown. Charges #2 and #3 q
make up an electric dipole. The Charge #1
net electric torque that charge #1 +q e
exerts on the dipole 1s
V A. clockwise. -4
* Charge #3

B. counterclockwise.
C. zero.

D. either A or B.

E. any of A, B, or C.

© 2016 Pearson Education, Inc.



Gauss law



Know charge distribution — know electric field (by Coulomb’s law)
Inverse problem: know electric field — know charge distribution? In principle yes, by mapping
out the field in 3D space using a test charge

(a) A box containing an unknown amount of (b) Using a test charge outside the box to probe

charge the amount of charge inside the box
f E
S . . . ’
‘ \ Test charge g,
. !—'
E
—
' ' E

'S
L

What if we know the field on the surfaces of the (imaginary) box only? Consider electric field

But tedious to map out the field in 3D

lines flowing into and out of the box, called electric flux (“flux” meaning “flow”, just like a

fluid)



Where’s the source/sink ? Follow the flow!

We only see water flowing out

The source of this
fountain must be
here!




Where’s the source/sink ? Follow the flow!

Water flowing in =
water flowing out

There is NO
source inside the
box!




We only see
water flowing in

The sink of this
fountain must be
here!

Where’s the source/sink ? Follow the flow!




Water flow <-> electric flux
Water source <-> positive charge
Water sink <-> negative charge

With a net charge inside box, a net electric flux flow in/out

=3

E

j‘\ /e \Ll > . ol N\
. e T . [

7

\\\\

}




With no net charge, electric flux flowing in and out cancels, and net flux 1s zero

+0 — Uniformly

i charged
sheet
. \|+q@ \\Lg:
_____ | - N
\ = T Q-4 [T \E’
\

No charge nearby



Clicker question
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Clicker question
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To summarize:

l.

A net inward/outward electric flux through a close surface means that the charge enclosed 1s
negative/positive.

Charges outside the close surface give no net flux through the surface.

Net flux « charge enclosed, but independent of size of closed surface (Just like a fluid).




To properly define the electric flux through a surface, draw analogy with fluid flow:

surface 1 flow surface at angle a to flow

» flow direction U

=

>

>
volume flow through after =~ volume flow through after dt is
dt is A(vdt) A(vdt)cosp = A - B dt

Define area vector 4 = AR, where 7 is the outward (may be ambiguous) normal unit vector
Electric flux due to a uniform field through a flat surface is defines as

@E:E-E:EAcosqb

ST unit is Nm?/C



Example 22.1 Electric flux through a disk

r=010m (R 5 E = 2.0 X 103N/C, electric flux through the disk

30"

E &, = EAcos¢ = (2.0 Xx 10°N/C)m(0.10m)? cos 30°
— 54 Nm?2/C




Example 22.2 Electric flux through a cube

(@) ®p =E + A = EL%cos 180° = —EL?

. ®py = E- A = EL?cos0° = +EL?

Mine A :
,..--‘:: f. \ ""‘::f (I)EB = (‘I)E4 = (DES = (I)E() —_— EL2C0390° =0
— Cp = Qg + Py + Pp3 + Py + Pps + D
—= N = 2 2

— S = —EL2+E2+0+0+0+0=0

n + I,
n

(b) ®p = E-njA = EL?cos(180° — ) = —EL*cos 6

Oy = E+fiy A = +EL*cosf

®p3 = E+fi3A = EL?cos (90° + 6) = —EL’sin 6
®py = E-nyA = EL*cos(90° — 6) = +EL’sin 6
Dps = $pe = EL*c0s90° = 0

The total flux (I)E = ('I)EI + (I)E2 -+ (1)53 -+ (I)E4 -+ (DES + (DEﬁ
through the surface of the cube is again zero.

A no net charge enclosed leads to no net electric flux



Example 22.3 Electric flux through a sphere
\ 1 / Surface 1s not flat!!
//

Solution: break up surface into infinitesimal flat patches dA

\ — — — —
— e ~_.. ¢E:7E.dA—><fE-dA
/ . \\ \ ) . . )
/ \ sum over infinitesimal surface integral
E / l \ patches
Anywhere on the surface of the sphere, E = q/(4meyr?) and E| dz, b, E-dA = EdA
— — 1
CDE:fE-dAZIEdA:EfdA: %47??“ =
4mMeg T €o

A while E depends on r, @ independent of size of close surface!
A This can be generalized to any close surface and charge distribution!



Gauss’s Law
The total electric flux through a closed surface (called a Gaussian surface) 1s equal to the net
electric charge inside the surface, divided by €,

[otal charge

- - Q s |
Gauss’s law: ¢, = fE cdA = =% enclosed by surface (22.8)
o~ EO

Electric flux through a closed surface ™ Electric constant
of area A = surface integral of E

© 200 Peerson Education, c

How to make sense out of 1t?

No charge enclosed, electric field lines cannot
start/end 1nside 1t, flux in = flux out, no net flux

Field line
entering surface

Same field line
leaving surface



The sume number ol [ield lines and (he same
flux pass through h(:th of thssc area clmV_\* R 2 CElIlCGlS 011'[, ll’ldependent Of SiZG Of Surface

q q
b, =EA = — (47R?) = —
E 47{60R2( 7R%) €0

A turns Coulomb’s law (a physical law in terms of force) into
a geometric law

A 1/r? in Coulomb’s law is because of the dimensionality of
the 3D space

(a) The outward normal 1o the :
surface makes an angle ¢ ™
with the direction of E. E

(b)

If closed surface 1s not spherical, the projection

E - dA makes sure that the effective tangential
surface area 1s the same as a sphere

The projection of the
arca clement dfA onto
the spherical surface
is dA cosd.



Question: rank the 5 Gaussian surfaces 1n increasing electric
flux through them, from —ve to +ve




Conductor

Electrostatic condition means that a there 1s no net flow of charge (current) inside a conductor

Under this condition,

1. electric field inside a conductor must be zero, otherwise charge will flow leading to a
current inside the conductor

2. electric field on the surface of a conductor must be perpendicular to the surface, otherwise

charge will flow on the surface, leading to a surface current




A consequence of Gauss’s law — excess charge on a conductor resides entirely on its surface

; < i Gaussian surface A
Choose a Gaussian surface inside the

inside conductor Conductor
: : 5 s - i shown in
conductor but arbitrarily close to surface, from  shownin i
' Cross section) Cross section)

Gauss’s law
Anywhere inside a

conductor, E=0

(DE — %‘E -dA = Qencl/EU

otherwise its

electrons will flow

5 Charge on surface
E=0 = &,=0 = Q=0 ,enclose of conductor

no net charge!

All excess charge must reside on the surface



What if the conductor 1s hollow?

Because E = () at all points within the conductor,

Arbitrary
Gaussian
surface A

the electric field at all points on the Gaussian

surface must be zero.

Excess charge + induced
charge (can be of
opposite sign) reside on
the outer surface

Excess charge still resides on the outer
surface l

Is it possible that equal and opposite
charges reside on difference places on the
inner surface? — Not possible (otherwise
charge will flow) unless charge on the
mner surface 1s induced by another charge
in the cavity

For E to be zero at all points on the Gaussian
surface, the surface of the cavity must have a

total charge —q.



Example 22.11

A hollowed conductor has a net charge +7

Net ch&rge. =+1nC
o Gowssion
surfoce

nC. Inside the cavity, there 1s a charge -5 nC
but not touching 1t. How much charge resides
on the outer and inner surfaces?

A\ result independent of location of the -5 nC _ aCon | I_nC on

charge covity wall outer surfoce



Clicker Questions

0222

Spherical Gaussian surface #1 has point charge +¢ at its center.
Spherical Gaussian surface #2, of the same size, also encloses

the charge but is not centered on it. There are no other charges
inside either Gaussian surface. Compared

to the electric flux through surface #1,

the flux through surface #2 is

A. greater.

B. the same.

C. less, but not zero. / . \
(Gaussian Gaussian

D. zero. surface #1 surface #2

E. Not enough information is given to decide.



A222

Spherical Gaussian surface #1 has point charge +g at its center.
Spherical Gaussian surface #2, of the same size, also encloses

the charge but is not centered on it. There are no other charges
inside either Gaussian surface. Compared

to the electric flux through surface #1,

the flux through surface #2 1s

A. greater.
VB. the same.
C. less, but not zero. / _ \
Gaussian Gaussian
D. zero. surface #1 surface #2

E. Not enough information 1s given to decide.

©@ 2016 Pearson Education, Inc.



Q22.4

A conducting spherical shell with inner
radius a and outer radius b has a positive
point charge O located at its center. The
total charge on the shell is —3Q, and it is
insulated from its surroundings. In the
region a <r<»,

A. the electric field points radially outward.
B. the clectric field points radially inward.

C. the electric field points radially outward 1n parts of the
region and radially inward in other parts of the region.

D. the electric field 1s zero.

E. Not enough information is given to decide.

© 2016 Pearson Education, Inc.



A22.4

A conducting spherical shell with inner
radius a and outer radius b has a positive
point charge O located at its center. The
total charge on the shell 1s —3Q, and it is
insulated from its surroundings. In the
region a <r <,

A. the electric field points radially outward.
B. the electric field points radially inward.

C. the electric field points radially outward in parts of the
region and radially inward in other parts of the region.

“D. the electric field 1s zero.

E. Not enough information is given to decide.

@ 2016 Pearson Education, Inc.



Q-RT22.1

The figure shows
siX point charges
that all lie 1n the
same plane.

Four Gaussian
surfaces each
enclose part of this
plane, and the
figure shows the
intersection of
each surface with
the plane. Surface C ~ Surface D

Rank surfaces A, B, C, and D in order of the electric flux
through them, from most positive to most negative.

© 2016 Pearson Education, Inc.



A-RT22.1

The figure shows
siX point charges
that all lie 1n the
same plane.

Four Gaussian
surfaces each
enclose part of this
plane, and the
figure shows the
intersection of
each surface with
the plane. Surface C ~ Surface D

Rank surfaces A, B, C, and D in order of the electric flux
through them, from most positive to most negative.

“Answer: ADBC

© 2016 Pearson Education, Inc.



Faraday’s icepail experiment

(@) Insulating — (b)
thread Charged
conducting Metal lid
ball

Insulating
stand

/

container

(c)

Metal lid

¥ +
i I4
¥\ | ¥
+ |+
+ +
+ £ +
ol K_") +

Charged ball induces charges on the
interior and exterior of the container.

Once the ball touches the container, it
is part of the interior surface; all the
charge moves to the container’s exterior.

Pull the conducting ball out of the icepail — 1t 1s uncharged, thus verifying a consequence of the

Gauss’s law



Faraday cage
A metal cage shields its inside from external electric field

Field pushes elecirons  Net positive charge
toward left side. remains on right side.
—_—— ____.—-:_h—
_-“\-"—h-'-.‘-‘._ :'

)
.

—_— +
- = R
E E=10 E
e -
e +
— < ofe

J
|

Field perpendicular to conductor surface




Using Gauss’s law to calculate electric field
B Gauss’s law gives the flux only, not the field.

B Only in cases where the charge distributions are symmetric we can calculate the field from
the flux.

B Choose a Gaussian surface with the same symmetry as the charge distribution.



Field of a uniformly charge sphere — spherical symmetry (Example 22.9)
By symmetry Eis radially outwards from the center of the sphere, choose a concentric sphere as

the Gaussian surface on which E - d4 = EdA, and E everywhere the same on the surface

o +:{_\_'/»— Spherical insulator
f / A -*\‘
A+

3

Inside sphere, volume charge density p = Q /2r&?

%E’) ’ dz — QenCI/EO

Gaussian
/V T surface
4 3
E(4?IT2) 511:7‘3;3:(2%
1@
=% IF = 7 E = I —Qi“
4me, R3 d4meq re

I

|

|

|

A linear in r |
A charge outside has no effect on the field on the }
|

Gaussian surface 0



Outside sphere, choose a larger Gaussian surface
E(4nr?) = Q/eg

1 e

= |BE = >
ey r

A\ as if charge concentrate at origin
A same result even if p is not constant, provided it is still

spherically symmetry, 1.e., depend on r only

If the sphere 1s a solid/hollow conductor, £ = 0 inside and same as a point charge outside.
(Example 22.5)



Field of a long uniform line charge — cylindrical symmetry (Example 22.6)

By symmetry Eis radially outwards L to the line, choose a cylinder as the Gaussian surface

On the curved surface, E-dA=E dA, and E everywhere the same on the surface

E Gaussian
/ _ Linear charge density is 4
\
B = R f E-dA = Qencl/EU
| EQnrl) = Al/e,
- . 1 A
=  2ueg T

A Decay as 1/r, much slower than a point charge (1/7%)
A Independent of the thickness of the line charge as long as charge distribution is uniform

A near the end of the line charge, E no longer radially outward, this formula breaks down



Field of an infinite sheet of charge (Example 22.7)

By symmetry El plane on both sides, choose a cylinder (or rectangular box) as the Gaussian
surface

surface charge density 1s o

%‘E ’ dz — Qencl/E{)

EA =0A/¢€,
0
B ==
Gaussian 2€,

surface

A\ same as in using the Coulomb’s law, but much easier



Question: You place a charge O on an irregularly shaped conductor. If you know the size and
shape of the conductor, can you use Gauss’s law to calculate the electric field at an arbitrary
position outside the conductor?

Answer: No, only when the charge is symmetric enough




Field between oppositely charged parallel conducting plates (Example 22.8)
c./. Example 21.12 in P. 4 of Lecture 2 notes

(a) Realistic drawing

In real situation, charge distribution not uniform
Between the two ,@ . ’ g . ’
plates the electric field, 0 B especially near the edge. Charge reside on both the
is nearly umiform. [~

. + |

polntig ot s Jink—" | .~ mner and outer surfaces. Electric field extend outside
positive plate toward
the negative one.

. % the overlap region between the plates, called fringe

+
i T . L i B

g S effect
N~
— 8 A E must be 1 to metal plates

(



(b) Idealized model

E, E,

RS S =
a1

In the idealized case ™"
we ignore “fringing”

at the plate edges and
treat the field between
the plates as uniform.

Cylindrical Gaussian
surfaces (seen from
the side)

.......

oy o
= El__ 'E_‘:Q. 'E_‘:]
t':-i E i e
+ Eg__ s
L --) ——
+ . T
o 5 =
+ E— 53
-— S4_ =

Idealized situation — away from edge, same as assuming

plates are infinitely large, E mustbe L to plates and

everywhere the same in y direction, 1.e., ignore fringe

effect

Gaussian surfaces S, and S5 shows that |E = 0

everywhere outside the overlap region

S; and S, shows that

overlap region

E = o/€g

everywhere inside the

If you don’t feel confusing enough, look at the next case @



Field at the surface of a conductor of arbitrary shape (not just a plate)

q
ps TN
/ +\

&+ = Oithn +\
o conduclor )
+

S + +

§ >
The chzllrge gc resides entirely on the surface of
lj}c-: conductor, The situation is electrostatic, so
E = 0 within the conductor.

Outer
surface of
charged
conductor

-

A

E,A+0

Q/¢€o

E,

o

€p

& true only near

surface where E 1 to

surface



Example 22.13

The earth can be considered as a conductor. The averaged electric field measured near the earth
surface 1s 150 N/C and 1s radially inwards towards the earth’s center.

Surface charge density = €,E = (8.85 X 10712C%/N-m?)(—150 N/C) = —1.33 nC/m?

Total charge enclosed = € E (4mR%) = 4m(6.38 X 10° m)?(—1.33 X 1077 C/m?) = —6.8 X
10° C



Question: A spherical metal shell has no net charge, but has a charge +¢ inside it. You then
ground the outside of the shell. Will you measure an electric field outside the shell?




Clicker Questions
Q22.5

There is a negative surface charge density in a certain region on
the surface of a solid conductor. Just beneath the surface of this

region, the electric field

A. points outward, toward the surface of the conductor.
B. points inward, away from the surface of the conductor.
C. points parallel to the surface.

D. 1s zero.

E. Not enough information is given to decide.



A22.5

There 1s a negative surface charge density in a certain region on
the surface of a solid conductor. Just beneath the surface of this

region, the electric field

A. points outward, toward the surface of the conductor.
B. points inward, away from the surface of the conductor.

C. points parallel to the surface.

VD. 1S ZEro.

E. Not enough information is given to decide.

© 2016 Pearson Education, Inc.



Q22.6

For which of the following charge distributions would Gauss’s
law not be useful for calculating the electric field?

A. auniformly charged sphere of radius R

B. a spherical shell of radius R with charge uniformly distributed
over 1ts surface

C. aright circular cylinder of radius R and height # with charge
uniformly distributed over its surface

D. an infinitely long circular cylinder of radius R with charge
uniformly distributed over its surface

E. Gauss’s law would be useful for finding the electric field in all
of these cases.

© 2016 Pearson Education, Inc.



A22.6

For which of the following charge distributions would Gauss’s
law not be useful for calculating the electric field?

A. auniformly charged sphere of radius R

B. a spherical shell of radius R with charge uniformly distributed
over 1ts surface

“C. a right circular cylinder of radius R and height /# with charge
uniformly distributed over its surface

D. an infinitely long circular cylinder of radius R with charge
uniformly distributed over its surface

E. Gauss’s law would be useful for finding the electric field in all
of these cases.

© 2016 Pearson Education, Inc.



