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Propagating	1D	plane	wave
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E ⋅d

l∫ =−E

y
(x,t)a +E

y
(x +Δx,t)a

= a E
y
(x +Δx,t)−E

y
(x,t)⎡

⎣⎢
⎤
⎦⎥ .

Φ
B
= B

z
(x,t)A = B

z
(x,t)aΔx,

dΦ
B

dt
=
∂B

z
(x,t)

∂t
aΔx.

Derivation	of
Electromagnetic	Wave	Equation	- 1



�Apply	Faraday’s	law:
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Derivation	of
Electromagnetic	Wave	Equation	- 1


E ⋅d

l∫ =−

dΦ
B

dt

a E
y
(x +Δx,t)−E

y
(x,t)⎡

⎣⎢
⎤
⎦⎥ =−

∂B
z
(x,t)

∂t
aΔx

E
y
(x +Δx,t)−E

y
(x,t)

Δx
=−
∂B

z
(x,t)

∂t
⇓ as Δx → 0

∂E
y
(x,t)

∂x
=−
∂B

z
(x,t)

∂t
.

� This	shows	that	if	there	is	a	time-varying	
component	Bz,	there	must	also	be	a	
component	Ey that	varies	with	x,	and	
conversely.
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Derivation	of
Electromagnetic	Wave	Equation	- 2


B ⋅d

l∫ =−B

z
(x +Δx,t)a +B

z
(x,t)a.

Φ
E
= E

y
(x,t)A = E

y
(x,t)aΔx,

dΦ
E

dt
=
∂E

y
(x,t)

∂t
aΔx.
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Derivation	of
Electromagnetic	Wave	Equation	- 2
�Apply	Ampere’s	law:


B ⋅d

l∫ = µ

0
ε

0

dΦ
E

dt

−B
z
(x +Δx,t)a +B

z
(x,t)a = ε

0
µ

0

∂E
y
(x,t)

∂t
aΔx

       ⇓ as Δx → 0

−
B
z
(x +Δx,t)−B

z
(x,t)

Δx
= ε

0
µ

0

∂E
y
(x,t)

∂t

−
∂B

z
(x,t)

∂x
= ε

0
µ

0

∂E
y
(x,t)

∂t
.
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Derivation	of
Electromagnetic	Wave	Equation	- 3

EM	wave	equation	in	
vacuum:

∂E
y
(x,t)

∂x
=−
∂B

z
(x,t)

∂t
⇓ ∂ / ∂x

∂2E
y
(x,t)

∂x 2
=−
∂2B

z
(x,t)

∂x∂t
.

∂2E
y
(x,t)

∂x 2
= ε

0
µ
0

∂2E
y
(x,t)

∂t 2
.

∂2y(x,t)
∂x 2

=
1
v2
∂2y(x,t)
∂t 2

.

−
∂B

z
(x,t)

∂x
= ε

0
µ
0

∂E
y
(x,t)

∂t
⇓ ∂ / ∂t

−
∂2B

z
(x,t)

∂x∂t
= ε

0
µ
0

∂2E
y
(x,t)

∂t 2
.

General	wave	
equation:

v =
1

ε
0
µ
0







Why	does	it	propagate	in	+x	direction?
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Energy	and	Momentum	in	Electromagnetic	Waves

� In	a	region	of	empty	space	where	E and	B fields	are	
present,	the	total	energy	density	u is

� For	electromagnetic	waves	in	vacuum,

�Combining	gives

�This	shows	that	in	vacuum,	energy	density	of	E field	is	
equal	to	energy	density	of	B field.

u =
1
2
ε
0
E 2 +

1
2µ
0

B2.

B =
E
c
= ε

0
µ
0
E.

u =
1
2
ε
0
E 2 +

1
2µ
0

ε
0
µ
0
E( )
2

= ε
0
E 2.



26

Electromagnetic	Energy
Flow	and	the	Poynting Vector
� Energy	dU in	the	volume	is

� Energy	flow	per	unit	time	
per	unit	area	A is

� SI	unit	of	S:
1	J/(sm2)	or	1	W/m2.

S =
1
A
dU
dt
= ε

0
cE 2

=
ε
0

ε
0
µ
0

E 2 =
ε
0

µ
0

E 2 =
EB
µ
0

.

dU = udV = ε
0
E 2( ) Acdt( ).
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Electromagnetic	Energy
Flow	and	the	Poynting Vector
� The	energy	the	EM	wave	carries	
per	unit	time	per	unit	area	is	
given	by	the	Poynting vector

� Its	direction	is	in	the	direction	
of	propagation	of	the	wave.

� SI	unit	of	S:
1	J/(sm2)	or	1	W/m2.


S =

1
µ
0


E×


B

S =
1
µ
0

EB sin90° =
1
µ
0

EB.
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Electromagnetic	Energy	Flow	and	the	Poynting Vector


S(x,t)=

1
µ
0


E(x,t)×


B(x,t)

=
1
µ
0

ĵE
max
cos(kx −ωt)×k̂B

max
cos(kx −ωt)

=
1
µ
0

E
max
B
max
cos2(kx −ωt)

≥0
   ĵ×k̂

î
 .

S
x
(x,t)=

E
max
B
max

µ
0

cos2(kx −ωt)

=
E
max
B
max

2µ
0

1+ cos2(kx −ωt)⎡
⎣⎢

⎤
⎦⎥ .

Intensity	of	EM	wave	𝐼 =	time-average	Poynting vector	=	"#$%&	#$%
()*



29

Electromagnetic
Momentum	Flow	and	Radiation	Pressure
�EM	waves	carry	momentum	p,	with	a	corresponding	
momentum	density

�The	momentum	flow	rate	per	unit	area	is

dp
dV

=
EB
µ0c

2
= ε0EB =

S
c2
.

1
A
dp
dt
=
S
c
=
EB
µ
0
c
.


dp
dV
=
S
c2
⇒
dp
A/cdt

=
S
c/2
.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dV = Acdt

momentum Density = EB
µ0c

2
=
ε0E

2

c

Energy Density = ε0E
2 = c× (momentum Density)
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Electromagnetic
Momentum	Flow	and	Radiation	Pressure

�The	average	rate	of	momentum	transfer	per	unit	area	is	
Sav /c=	I/c.

�Notice	that	the	rate	of	momentum	transfer	is	the	force
�When	an	EM	wave	is	completely	absorbed	by	a	surface,	
the	wave’s	momentum	is	also	transferred	to	the	surface.	
The	radiation	pressure	prad (=Force/Area)		is

p
rad
=

1
A
dp
dt

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
av

=
S
c

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
av

or  p
rad
=
S

av

c
=
I
c

.
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Electromagnetic
Momentum	Flow	and	Radiation	Pressure
�When	an	EM	wave	is	totally	reflected,	the	
momentum	change	is	twice	as	great:

�For	example,	for	direct	sunlight,	I	=	1.4	kW/m2

(approx.),	average	pressure	on	a	completely	
absorbing	surface	is

p
rad
=
2S
av

c
=
2I
c
.

p
rad
=
I
c
=

1.4×103  W/m2

3.0×108  m/s
= 4.7×10−6  Pa.



Example	32.5
Power	and	pressure	from	sunlight
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Example	32.5
Power	and	pressure	from	sunlight
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Example	32.5
Power	and	pressure	from	sunlight
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The	Nature	and	propagation	of	light



Why	is	it	traverse?
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Laws	of	Reflection	and	Refraction

� Incident	angle	=
�Reflected	angle	=
�Refracted	angle	=	θ

b

θ
r

θ
a

Snell’s	law:
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Total	Internal	Reflection

�From	Snell’s	law,

sinθ
b
=
n
a

n
b

sinθ
a
.

When θ
b
= 90°,

θ
a
= θ

crit
:

sinθ
crit
=
n
b

n
a

.

https://youtu.be/Z9O5xY3Z1WE

Light	trapped	by	water	(~	optical	fiber)



1< nred < nyellow < nblue
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Huygens’s	Principle

� A	geometrical	method	for	finding,	
from	the	known	shape	of	a	wave	front	
at	some	instant,	the	shape	of	the	wave	
front	at	some	later	time.

� Assume	every	point	of	a	wave	front	
may	be	considered	the	source	of	
secondary	wavelets	that	spread	out	in	
all	directions	with	a	speed	equal	to	the	
speed	of	propagation	of	the	wave.

� The	new	wave	front	is	found	by	
constructing	a	surface	tangent	to	the	
secondary	wavelets	(envelope	of	
wavelets).

https://www.youtube.com/watch?v=wENZmBofwSw
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Reflection	and	Huygens’s	Principle

AP
 

= AO
 

cosθa ,

OQ
 

= AO
 

cosθr ,

Therefore θa =θr

ΔAOP = ΔOAQ⇒ AP =OQ
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Refraction	and	Huygens’s	Principle
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Refraction	and	Huygens’s	Principle

From ΔAOQ, sinθa =
vat
AO

From ΔAOB, sinθb =
vbt
AO

"

#
$$

%
$
$

   ⇒
sinθa
sinθb

=
va
vb
=
nb
na

           
nb
na
=
c / vb
c / va

=
va
vb

↑  

  or  na sinθa = nb sinθb.

� Derive	Snell’s	law	using	Huygens’s	principle:



Fermat’s	principle
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Principle	of	least	time	– path	taken	between	two	points	by	a	ray	
of	light	is	the	path	that	can	be	traveled	in	the	least	time.

T = dt
t0

t1∫ =
1
c

c
v
ds
dt
dt = 1

c
nds

A

B
∫t0

t1∫

A

B

->	Light	travels	in	a	straight	(shortest	path)	inside	any	
homogeneous	medium.
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Example:	(Law	of	Reflection)

ϑ i ϑ r
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Example:	(Law	of	Refraction)

ϑ i

ϑ r
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Exercise:

Design	a	planoconvex lens	such	that	all	light	which	are	parallel	to	
the	optical	axis	which	converge	to	a	single	point.




