OPTICS III

Derivations for Fresnel equations

香港科技大學
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Fresnel Equations:
Boundary Conditions:
Maxwell's equations must be satisfied at the interface as well as in the bulk materials.

$\phi_{E} \vec{E} / d \vec{A} \rho=\Sigma q$
$\phi_{\phi} \vec{E} \cdot d \vec{S}$

$$
\begin{aligned}
& \oiint \varepsilon \vec{E} \cdot d \vec{S}=\sum q=Q_{\text {end }} \quad \\
& \oiint \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \iint \vec{B} \cdot d \vec{S} \quad \text { (Gauss) } \\
& \text { (Faraday). } \\
& \oiint \vec{B} \cdot d \vec{S}=0 . \\
& \oint \frac{\vec{B}}{\mu} \cdot d \vec{l}=\iint \vec{J} \cdot d \vec{S}+\frac{d}{d t} \iint \vec{E} \cdot d \vec{S} \quad \text { (Amen). }
\end{aligned}
$$

(7).

$$
\begin{align*}
& \left(\varepsilon_{2} \vec{E}_{2}-\varepsilon_{1} \vec{E}_{1}\right) \cdot \vec{A}=0 \quad \overrightarrow{E_{2}} \cdot \overrightarrow{A_{2}}+\overrightarrow{E_{1}} \cdot \overrightarrow{A_{1}} \\
& \Rightarrow \varepsilon_{1} E_{11}=\varepsilon_{2} E_{21} \tag{1}
\end{align*}
$$

(2).

$$
\begin{gathered}
\oint \vec{E} \cdot d \vec{l}=\left(\overrightarrow{E_{2}}-\overrightarrow{E_{1}}\right) \vec{l}=-\frac{d}{d t} \iint \vec{B} \cdot d \vec{s}=0 . \\
E_{2 \prime \prime}=E_{1 \prime \prime}
\end{gathered}
$$

(3)

$$
B_{11}=B_{21}
$$

(4)

$$
\begin{aligned}
&\left.t, \frac{\vec{B}_{2}}{\mu_{2}}-\frac{\vec{B}_{1}}{\mu_{1}}\right) \cdot \vec{l}=0 \\
& \Rightarrow \frac{B_{1,11}}{\mu_{1}}=\frac{B_{2,1 \prime}}{\mu_{2}}
\end{aligned}
$$

Electromaguetur wave approach

$$
\begin{aligned}
& \vec{E}_{i}(\vec{r}, t)=\vec{E}_{i 0} \cos \left(\overrightarrow{k_{i}} \cdot \vec{r}-\omega_{i} t\right) \cdot \frac{c}{n_{1}}=v_{1}=\frac{\omega_{i}}{k_{i}}, n=\frac{c}{r} . \\
& \vec{E}_{r}(\vec{r}, t)=\vec{E}_{r o} \cos \left(\overrightarrow{k_{r}} \cdot \vec{r}-\omega_{r} t\right) \quad \text { (reflected) } \\
& \vec{E}_{t}(\vec{r}, t)=\vec{E}_{t 0} \cos \left(\overrightarrow{k_{t}} \cdot \vec{r}-\omega_{t} t\right) \text { (transmitted). }
\end{aligned}
$$

(0) E EAx>y $E_{1,11}=E_{2,11}$

$$
\begin{aligned}
&\left(\vec{E}_{i}+\vec{E}_{r}\right) \times \hat{u}_{n}=\vec{E}_{t} \times \hat{u}_{n} . \\
& \Rightarrow \underbrace{\left(\vec{E}_{i o} \times \hat{u}_{n}\right) \cos \left(\vec{k}_{i} \cdot \vec{r}-\omega_{i} t\right)+\underbrace{\left(\vec{E}_{r o} \times \hat{u}_{n}\right)} \cos \left(\vec{k}_{r} \cdot \vec{r}-\omega_{t} t\right) .} \\
& * \text { Tho equation fold for }=\left(\vec{E}_{t 0} \times \hat{u}_{n}\right) \cos \left(\vec{k}_{t} \cdot \vec{r}-\omega_{t} t\right)
\end{aligned}
$$

* This equation holds for all time and any pt. \vec{r} on the interface.
Remark: For a eqtu:

$$
a_{2} x^{2}+a_{1} x+a_{0}+b_{2} y^{2}+b_{1} y=0
$$

is valid for all x and y, then $a_{2}=a_{1}=a_{0}=b_{2}=b_{1}=0$.

$$
\Rightarrow \quad \cos \left(\vec{k}_{i} \cdot \vec{r}-\omega_{i} t\right)=\cos \left(\vec{k}_{r} \cdot \vec{r}-\omega_{r} t\right)=\cos \left(\overrightarrow{k_{t}} \cdot \vec{r}-\omega_{t} t\right) .
$$

and $\vec{E}_{i_{0}} \times \hat{u}_{n}+\vec{E}_{r_{0}} \times \hat{u}_{n}=\vec{E}_{t_{0}} \times \hat{u}_{n}$.
$\Rightarrow \frac{\overrightarrow{k_{i}}-\overrightarrow{k_{r}}}{}$ and $\stackrel{\overrightarrow{k_{i}}-\vec{k}_{t}}{\text { are parallel to } \hat{u}_{n}}$.

$$
\begin{aligned}
& \Rightarrow\left(\overrightarrow{k_{i}}-\overrightarrow{k_{r}}\right) \times \hat{u}_{n}=\left(\overrightarrow{k_{i}}-\vec{k}_{t}\right) \times \hat{u}_{n}=0 \\
& \Rightarrow k_{1} \sin \theta_{i}=\vec{k}_{r} \sin \theta_{r} . \quad \theta_{i}=\theta_{r} \quad \text { (law of Reflection) } \\
& \Rightarrow \frac{\omega_{i}}{v_{i}} \sin \theta_{i}=\frac{\omega_{r}}{v_{i}} \sin \theta_{r} \Rightarrow
\end{aligned}
$$

On the other band, $\quad\left(\overrightarrow{k_{i}}-\vec{k}_{t}\right) \times \hat{u}_{n}=0$

$$
\begin{aligned}
& \Rightarrow k_{i} \sin \theta_{i}=k_{t} \sin \theta_{t} \\
& \Rightarrow \frac{w_{i}}{v_{1}} \sin \theta_{i}=\frac{w_{t}}{v_{2}} \sin \theta_{t} . \\
& \Rightarrow \frac{c}{v_{1}} \sin \theta_{1}=\frac{c}{v_{2}} \sin \theta_{t} \\
& \Rightarrow n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t} . \quad \text { Snell law. }
\end{aligned}
$$

* we can derive the laws by matching the B.C. at the miterface.

Next, I wont to solve \vec{E}_{r}, \vec{E}_{t} from \vec{E}_{i}. by the B.C.s. But they depend on the polarization of the incident light.

1) $\vec{E}_{i} \perp$ to the plane of residence.
2) \vec{E}_{i} " to the plane of incidence
lase 1: $\vec{E}_{i} \perp$ to the plane-of-incidence.
Recall that $E_{0}=v B_{0}$ and $\vec{E}, \vec{B}, \vec{k}$ are othogonal to each other.

$$
\left.\Rightarrow \quad \begin{array}{rl}
\hat{k} \times \vec{E} & =v \vec{B} \\
\hat{k} \cdot \vec{E} & =0
\end{array}\right\}
$$

Now, from $B C$ (1): $\overrightarrow{E_{0 i}}+\overrightarrow{E_{r i}} \vec{E}_{i o}+\vec{E}_{r 0}=\vec{E}_{t 0}$.
We know that $\vec{E}_{r o}, \vec{E}_{\text {to }}$ are preependiculan to the plave-of-rverdent by symmetry. We how assume they are parallel to \bar{E} is is

$$
\begin{equation*}
E_{i o}+E_{r o}=E_{+0} \tag{a}
\end{equation*}
$$

Next, we apply B.C. (3).

$$
\begin{align*}
& \frac{B_{11}}{\mu_{1}}=\frac{B_{2,11}}{\mu_{2}} \Rightarrow \frac{-B_{10} \cos \theta_{i}}{\mu_{1}}+\frac{B_{10} \cos \theta_{r}}{\mu_{1}}=-\frac{B_{t}}{\mu_{2}} \cos \theta_{t} . \\
& \Rightarrow \frac{1}{V_{1} \mu_{1}}\left(E_{t 0}-E_{i o}\right)= \\
& \frac{1}{v_{1} \mu_{1}}\left(E_{i 0}-E_{E_{0}}\right)^{\cos \theta_{i}}=\frac{1}{v_{2} \mu_{2}} E_{t 0} \cos \theta_{t} \\
& \Rightarrow \frac{n_{1}}{\mu_{1}}\left(E_{i o}-E_{r o}\right)^{\cos \theta_{i}}=\frac{n_{2}}{\mu_{2}} E_{t 0} \cos \theta_{t} \text {. } \tag{b}\\
& \begin{array}{l}
(a)+(b) \Rightarrow E / 0 /\left(\frac{\text { fro }}{E_{i 0}}\right)_{\perp}=\frac{\frac{\mu_{1}}{\mu_{1}} \cos \theta_{i}-\frac{n_{2}}{\mu_{2}} \cos \theta_{t}}{{\frac{n_{2}}{2}}^{\mu_{2}} \frac{n_{1}}{\mu_{1}} \cos \theta_{i}+\frac{n_{2}}{\mu_{2}} \cos \theta_{t}} \\
\begin{array}{l}
\text { amplitude of } \\
\text { reflection conf. }
\end{array}
\end{array} \\
& \begin{array}{l}
\text { amplitude } \\
\text { transmission } \\
\text { Coefficient. }
\end{array}=t_{\perp}=\left(\frac{E_{t 0}}{E_{i 0}}\right)_{\perp}=\frac{2 \frac{n_{1}}{\mu_{1}} \cos \theta_{i}}{\frac{n_{1}}{\mu_{1}} \cos \theta_{i}+\frac{n_{2}}{\mu_{2}} \cos \theta_{t}} .\left.\right|_{\text {, }} \\
& \vec{E} \text {-field } \perp \text { to the plane- of-incidence. }
\end{align*}
$$

Case 2: \vec{E} parallel to the plane-of-incidence.

$$
\begin{aligned}
& \text { B-C. 2 } \Rightarrow E_{111}=E_{211} \\
& \Rightarrow E_{i 0} \cos \theta_{i}-E_{r 0} \cos \theta_{t}=E_{t 0} \cos \theta_{t} \\
& \frac{B-C-4 \Rightarrow}{\mu_{1}}=\frac{B_{211}}{\mu_{2}} . \\
& \Rightarrow \frac{\overrightarrow{B_{10}}}{\mu_{1}}+\frac{\vec{B}_{r_{0}}}{\mu_{1}}=\frac{\vec{B}_{t_{0}}}{\mu_{2}} . \\
& \Rightarrow \frac{1}{v_{1} \mu_{1}}\left(\frac{E_{10}}{E_{i_{0}}}+E_{0 r}\right)=\frac{1}{v_{2} \mu_{2}} E_{t 0}-d \\
& \vec{E}_{E_{i}}^{\vec{E}_{r}} \\
& \Rightarrow r_{1 \prime} \equiv\left(\frac{E_{r 0}}{E_{i 0}}\right)_{\prime \prime}=\frac{\frac{n_{2}}{\mu_{2}} \cos \theta_{\pi}-\frac{n_{1}}{\mu_{1}} \cos \theta_{t}}{\frac{n_{7}}{\mu_{7}} \cos \theta_{t}+\frac{\mu_{2}}{\mu_{2}} \cos \theta_{i}} . \\
& t_{1 \prime}=\left(\frac{E_{t_{0}}}{E_{i 0}}\right)_{\|}=\frac{2 n_{1} \cos \theta_{i}}{\frac{\mu_{1}}{\mu_{1}} \cos \theta_{t}+\frac{n_{2}}{\mu_{2}} \cos \theta_{i}}
\end{aligned}
$$

In most cases, we Can assume $\mu_{1} \cong \mu_{2} \cong \mu_{0}$., and Sudls law.

$$
\begin{aligned}
& r_{\perp}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)} \\
& t_{\perp}=\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)} . \\
& \Gamma_{11}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)} \longleftarrow \\
& \text { if } \theta_{i}+\theta_{t}=\frac{\pi}{2} \\
& r_{1}=0 \\
& t_{11}=\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)} \\
& \text { Fresnel Equations }
\end{aligned}
$$

- These eqths are related to the specific field directions from which they were derived.

Some Application.

1) Normal incidence $\left(\theta_{i}=0\right)$.

Snell's law $\Rightarrow \theta_{t}=0$.

$$
\left.\begin{array}{ll}
r_{1}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} \\
r_{\prime \prime}=\frac{n_{2}-n_{1}}{n_{2}+n_{1}}
\end{array}, \quad \begin{array}{l}
t_{1}=\frac{2 n_{1}}{n_{1}+n_{2}} . \\
t_{\prime \prime}=\frac{2 n_{1}}{n_{2}+n_{1}} .
\end{array}\right\} \begin{aligned}
r_{1}=-r_{11}
\end{aligned}
$$

(E "to plane of racidena)

$$
\begin{aligned}
& x_{2}>n_{1} \\
& \left(r_{11}>0\right)
\end{aligned} \quad E_{\Gamma, 01}>0
$$

$(E \perp$ to plane of incidence).

$$
\left(r_{\perp}<0\right)
$$

\Rightarrow The elector z field is flipped after reflection of $n_{2}>n_{1}$.
2) Brewster's law.
ω_{R} comider $r_{1 \prime}\left(\theta_{i}\right)$. At chem $\theta_{i}+\theta_{t}=0 \Rightarrow r_{11}=0$.

$$
\left(n_{2}>n_{1}\right) .
$$

\Rightarrow Thine it NO reflection for EM which parallel to the incident e plane.
$\theta_{i} \Rightarrow$ All ESY wave ED Will pans: through the interface without any reflection (Bresuter's laws)

$$
\left(n_{2}>n_{i}\right)
$$

(3). When $\theta_{i}=90^{\circ}$, HMM, 1

$$
r_{\prime \prime}, r_{\perp} \rightarrow-1
$$

-Hold the silicle near you eye and increasing θ_{1}, the amount of light reflected will increase and the slide will look like a perfect minor as $\theta_{i} \rightarrow 90^{\circ}$.

No Reflection at this ugh.

Reflectance and Transmittance
Recall that for a EM wave, the Paywting vector

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

And the internity $I=\langle S\rangle_{\substack{\text { in m } \\ \text { avenge }}}=\frac{1}{2 \mu_{0}} \sigma_{0}^{2} \cdot \frac{c \varepsilon_{0}}{2} \sigma_{0}^{2}$

$$
\vec{H} \longrightarrow \vec{s}
$$

the average energy per mit tim crossing a unit area ural to $\vec{S}^{\text {s }}$.

\Rightarrow Area cross-sectional area (normal to the polluting ventris are $A \cos \theta_{i}, A \cos \theta_{i}, A \cos \theta_{2}$.
\Rightarrow Incident Power $=I_{i} A \cos \theta_{i}=$
for incident beam
for reflected beam $=I_{r} A \cos \theta_{i}$
for transmitted beam $=I_{t} A \cos \theta_{t}$.
Reflectance $R \equiv \frac{I_{r} A \cos \theta_{i}}{I_{i} A \cos \theta_{i}}=\frac{I_{r}}{I_{i}}=\frac{E_{r o}^{2}}{E_{i 0}^{2}}=r^{2}$
Transmittance $T=\frac{I_{t} \cos \theta_{t}}{I_{i} \cos \theta_{i}}=\frac{n_{2} \cos \theta_{+} E_{t 0}^{2}}{n_{i} \cos \theta_{1}-E_{i 0}^{2}}=\left(\frac{n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}}\right) t^{2}$

Energy consenvation: Energy frowing into area $A=$ Energy flooing outward fromit.

$$
\begin{aligned}
& I_{i} A \cos \theta_{i}=I_{r} A \cos \theta_{r}+I_{l} A \cos \theta_{t} \\
\Rightarrow & n_{i} E_{i 0}^{2} \cos \theta_{i}=n_{i} E_{r 0}^{2} \cos \theta_{i}+n_{t} E_{t 0}^{2} \cos \theta_{t} . \\
\Rightarrow & 1=\frac{E_{r_{0}}^{2}}{E_{i 0}^{2}}+\frac{n_{t} E_{t 0}^{2} \cos \theta_{t}}{n_{i} E_{i 0}^{2} \cos \theta_{i}} \\
\Rightarrow & 1=R+T .
\end{aligned}
$$

- At normal incidemer, the reflectavee is very stmall

