Interference



Learning Goals

In this lecture, you will learn:
What happens when two waves meet in space.

How to understand the interference pattern formed by
the interference of two coherent light waves.

How to calculate the light intensity at various points in
an interference pattern.

How interference occurs when light reflects from the
two surfaces of a thin film.



Soapy water is colorless,
but when blown into
bubbles it shows vibrant
colors. How does the
thickness of the bubble
walls determine the
particular colors that
appear?




Interference

Interference refers to any situation in which two or
more waves meet in space.

The principle of superposition: When there are two or
more waves in the same place in space, the resultant
displacement at that place and at any time is found by
adding the instantaneous “displacements” that would
be produced at the point by individual waves if each
were present alone.

Reason: suppose both E,(r,t) and E,(r,t) satisfy the
Maxwell’s equation because they are two EM
waves, then it is easy to show that
E(r,t)=E,(r,t)+E,(r,t) also satisfies the Maxwell’s
equation.



Interference

“Displacement” means:

Actual displacement of liquid surface above or
below its normal level for waves on liquid surface.

Air pressure variation around its stationary value
in sound waves.

Electric or magnetic field in EM waves.



Amplitude in Two-Source Interference

o E, and E, are the horizontal AU phasors rotate counlercloc..kwise
components of the phasors with angular speed w. X
representing the wave from The resultant wave ”
sources S, and S,, has amplitude Ep
respectively. E, = 2E|cos _2/3‘

O The sum of the projections
on the horizontal axis at
any time gives the
instantaneous value of the
total E field at point P.

— e - —
B O| E, =E cos ot /
E (t) = Ecos(wt + 9), E, = E cos (wf + ¢)
Ez(t) — F cos wit.




Amplitude in Two-Source Interference

O The amplitude E, of the All phasors rotate counterclockwise
resultant sinusoidal wave at P W' angularspeed o. 3
is the vector sum of the other 1, P A g
two phasors: has amplitude Ep

2 2 2 2 = | D '
E. =E"+E° -2E"cos( - ¢) Ep __-E LOSZI- |
% I
=E*+E>+2E*cos¢ |
|
=2E*(1+cos¢) s |
I
=4E2cosz(¢/2). |
I
|
EP=2E‘COS(¢/2)‘. 9 E2=ECOS(1)f /

] E, = Ecos (ot + ¢)
[¢p=0, E,=2E; ¢=m, E,=0.] |



Intensity in Two-Source Interference

1
[0 = EgOCEz

I :lgOcEjf 1 (4E cos’ ¢)
2 2
(2500E2)cos2 / =41, cos2 ¢

I, (41 cos’ ¢j :410(%) =21,

The total energy output from the two sources remains
unchanged by the interference effects, but the energy is
redistributed in space.



The (spherical )EM wave generated by a point source

E(F)=E, cos(k - (7 =) - ot)




Phase difference and Path difference

If two sources are in phase, then the waves that arrive at b differ in
phase by an amount ¢ that is proportional to the difference in
their path lengths, r,-r,. The electric fields superposed at b

become:

E, ~ cos(kr, —wt)
E, ~ cos(kr, - wt)
E =E+E,

where the phase difference can be written as:

6= k(r-1) =205 -1)

E, m‘cos(¢/2)‘=

T
cos E(r2

)

(b) Conditions for constructive interference:
Waves interfere constructively if their path
engths differ by an integral number of
wavelengths: ry — r; = mA. .

BL)) b
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Constructive and
Destructive Interference

(b) Conditions for constructive interference:
Waves interfere constructively if their path
engths differ by an integral number of

o Constructive (for sources: same ..., —, ..
wavelength & in phase):

_1\N b

Path difference n—T = mA
(m=0, £1, £2, +3, ..)

. - /\
e.g., at point b, m = +2. e e
o) Destructive (for sources: same (¢) Conditions for destructive interference:
* Waves interfere destructively if their path
Wavelength & in phase): engths differ by a half-integral number of
wavelengths: ry — ry (m l\ JA.

Path difference r, —r, = (m + l)A
2
(m=0, +1, £2, +3, ..)

e.g., at point ¢, m = -3.




Constructive and
Destructive Interference

O Anti-nodal curves (red) show all
positions where constructive
interference occurs.

n,—T = mA
o0 Nodal curves (not shown) show

all positions where destructive
interference occurs.

1
r2—7°1:(m—|—§))\.

Antinodal curves (red) mark positions where
the waves from S, and S, interfere

constructively. :
. At a and b, the waves

arrive in phase and
interfere constructively.

At ¢, the waves arrive
one-half cycle out of phase
and interfere destructively.

m = the number of wavelengths A by which
the path lengths from S, and S, differ.
12



Two-Source Interference of Light

The concepts of constructive
interference and destructive
interference apply to water
waves as well as to light
waves and sound waves, in
fact to waves of any kind.

13



Two-Source Interference of Light:
Young’s Experiment

(a) Interference of light waves passing through two slits

Coherent wave y

Cylindrical ~ fronts from two slits*\|
wave fronts |

Monochromatic
light

[

Emissions from

different parts of X S, &S, || " Always || g

an ordinary source . L= :
in phase in phase e
are not

synchronized

When a laser is used as a
coherent light source, S
1sn’t needed

Bright bands where
wave fronts arrive in

--:: phase and interfere

constructively

"+ Dark bands where
4 wave fronts arrive out

of phase and interfere
destructively
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Two-Source Interference of Light:
Young’s Experiment

Assume that the distance R

from the slits to the screen is
much larger than the 521 dsin6 Screen
distance d between the slits 7F =
(R>>d), then the lines from ¢
S, and S, to P are very v

(b) Actual geometry (seen from the side)

nearly parallel. S
P
g ...V R ”~
Ar =\/R2 +(y+é)2 —\/Rz +(y_i)2 In real situations, the distance R to the
2 2 screen 1s usually very much greater than
1 d 1 d the distance d between the slits ...
~ R[1+ +—)’]-R[1+ ——)
I+ Sz O+ 2V =R+ 5 (v =2)7]
d :
=22 ~ dsind
R

Path difference = Ar =7, —r;, =d sin 6.
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Constructive Two-Slit Interference

Constructive interference
(reinforcement, bright
regions) occurs at points

dsin @ = m\.
(m=0,£1,£2,43,...)

5
where the path difference is 7}:
v
Sl

(c) Approximate geometry

. dsinéf

To screen

S~

.. SO we can treat the rays as
parallel, in which case the path-length
difference 1s simply r, — r; = dsin 6.
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Destructive Two-Slit Interference

Destructive interference (¢) Approximate geometry
(cancellation, dark regions)
occurs at points where the
path difference is

S2_ dsin 6

dsinf = (m + %))\

(m=0,£1,+2 43,..)

To screen
.. SO we can treat the rays as
parallel, in which case the path-length
difference 1s simply r, — r; = dsin 6.
Young’s experiment was the first direct measurement of
wavelengths of light.
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Constructive and Destructive Two-Slit Interference

m m+ 1/2
(constructive (destructive
interference, interference,

bright regions) dark regions)
<1172

5> R

<-9/2

Center of pattern 1> L
is a bright band: g I <sp  interference fringes

m=0. 2> ] <3 produced on a screen
\ 1> L - in Young’s double-slit
0-> [ experiment.
dsinf = m. _1_>€—”2

(m=04+1+243. )= 1 |
el T dsinf=(m+ O

< -2 2

—4-> K < -9 (m — 07:':17:':27:|:3"")

<72 €= Photograph of
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Example 35.1
Two-slit interference

Figure 35.7 shows a two-slit interference experiment in which the
slits are 0.200 mm apart and the screen is 1.00 m from the slits.
The m = 3 bright fringe in the figure is 9.49 mm from the central
fringe. Find the wavelength of the light.

b

- m 3
Slits 9.49 mm m =
\ m=1
Y =
-d = 0.200 mm|— X
m=-—2
| m -3
_/
<——R = 1.00m

Screen
19



Example 35.1 Two-slit interference

EXECUTE: We solve Eq. (35.6) for A for the case m = 3:
yd (949 X 107 m)(0.200 X 107 m)

A
mR (3)(1.00 m)
=633 X 107 m = 633 nm
i [ m=3
Slits 9.49 m =2
49 mm
\ m=1
Y =
-d = 0.200 mm|— X
B m= —1
m= —2
e ——
==
<——R = 1.00m

Screen
20



Example 35.2

Broadcast pattern of a radio station

It is often desirable to radiate most of the energy from a radio
transmitter in particular directions rather than uniformly in all
directions. Pairs or rows of antennas are often used to produce the
desired radiation pattern. As an example, consider two identical ver-
tical antennas 400 m apart, operating at 1500 kHz = 1.5 X 10° Hz
(near the top end of the AM broadcast band) and oscillating in
phase. At distances much greater than 400 m, in what directions is

the intensity from the two antennas greatest?

m

=0

m= —1 g = 0° m= +1

0 = —30°

\ 6 = +30°

30°
m= —2 90e! m= +2
6= —%)° .r—: ® 0¥= +90°
< 5 s, 3

400 m
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Example 35.2
Broadcast pattern of a radio station
EXECUTE: The wavelength is A = ¢/f = 200 m. From Eq. (35.4)

with m = 0, =1, and £2, the intensity maxima are given by

A m(200 m
mh _ m20m) _m oo, 2300, 2900
d 400 m 2

sin @ =

In this example, values of m greater than 2 or less than —2 give
values of sin@ greater than 1 or less than —1, which 1s impossible.
There is no direction for which the path difference is three or more
wavelengths, so values of m of =3 or beyond have no meaning in

this example. m=0
m= —1 9 =0° m= +1
6 = —-30° A 0 = +30°
300 30
m_— —20 903! m_— +2(
= —90 v 6 = +90
= -@ @- >
8 S

400 m



Example 35.2
Broadcast pattern of a radio station

EVALUATE: We can check our result by calculating the angles for
minimum intensity, using Eq. (35.5). There should be one intensity
minimum between each pair of intensity maxima, just as in Fig. 35.6.
From Eq. (35.5), withm = =2, — 1,0, and 1,

(m+DX m + 2
d 2

sinf = 0 = =14.5° *£48.6°
These angles fall between the angles for intensity maxima, as they
should. The angles are not small, so the angles for the minima are
not exactly halfway between the angles for the maxima.

m =0
m= —1 0 =0° m= +1
o = —-30° A 0 = +30°
30° 30
m= —2 90°! m= +2
= —9()° g |_4 g = +90¢
= -0 —1—@- =
S Hsz

400 m



Interference in Thin Films

(a) Interference between rays reflected from the

two surfaces of a thin film (b) The rainbow fringes of an oil slick on water

Light reflected from the upper and lower
surfaces of the film comes together in the eye at
P and undergoes interference.

Some colors interfere constructively and others
destructively, creating '
the color bands we see. \g

The complex shapes of the
colored rings result from
variations in the thickness
of the film.
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Thin-Film Interference and Phase Shifts at
Reflection

2 3
Monochromatic light reflects \%
from two nearly parallel surfaces ‘
at nearly normal incidence. Gliise

Along the line where the plates Air
are in contact (with no path T
difference), we find a dark fringe,
not a bright one. < ,

i &

This suggests that one of the
reflected waves has undergone a
half-cycle phase shift during
reflection.



Thin-Film Interference and Phase Shifts at
Reflection

Electromagnetic
waves propagating
in optical
materials

Mechanical waves
propagating on
ropes

Predicted from
Maxwell’s
equations

BEFORE _”

(a) If the transmitted wave moves
Saster than the incident wave ...

Material @ (slow) | Material b (fast)

Ny > ny,

Incident
0

Reflected

... the reflected wave undergoes no
phase change. .,

(b) I the incident and transmitted
waves have the same speed ...

Materiala 1, = n, Material b

... there is no reflection.

>

(same as a)

Transmitted v%( Transmitted
Incident ~

same sign.

Incident } Incident |
i i >
AFTER < > i p=d
Reflected $ [+ Transmitted Transmitted
Waves travel slou."cr E;n thick ropes than on thin ropes.
na > nb D) na - nb’
n —n n —n
Eref = + : Einc Eref = b Einc
n a nb na + nb
- Eref & Einc : = Eref —

(€) If the transmitted wave moves
slower than the incident wave ...

Material « (fast)

N, < Ny,

Incident

Reflected

... the reflected wave undergoes a
half-cycle phase shift.
>

Material b (slow)

w

Incident
3 >

-
W— . S—

Reflected Transmitted

opposite signs.
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Thin-Film Interference and Phase Shifts at
Reflection

(constructive reflection
2t = mA (m=0,1,2,...) from thin film, no rela-
tive phase shift)

(destructive reflection
2t = (m + 5)/\ (m= 0,15 2550:) from thin film, no rela-
tive phase shift)

(constructive reflection
2t=(m+3)A (m=0,1,2...) from thin film, half-cycle
relative phase shift)

(destructive reflection
2t = mA (i =0,1:2; 50) from thin film, half-cycle
relative phase shift)

27



Thin-Film Interference and Wave Coherence

In order for two waves to cause a steady interference
pattern, the waves must be coherent, with a definite and
constant phase relationship = Thin film

The sun and light bulbs emit light in a stream of short
bursts with only a few micrometers long

(a) Light reflecting from a thin film (b) Light reflecting from a thick film
Z%\ The waves reflected from
. Y s the two surfaces are from
S~ Bursts of light a different bursts and are
not coherent.

z%\ few pum long ;
The waves reflected Zég &7y
= from the two surfaces

" are part of the same

Zﬁ%( burst and are coherent. Thick film
Thin film

28



Example 35.4
Thin-film interference I

Suppose the two glass plates in Fig. 35.12 are two microscope
slides 10.0 cm long. At one end they are in contact; at the other end
they are separated by a piece of paper 0.0200 mm thick. What is
the spacing of the interference fringes seen by reflection? Is the
fringe at the line of contact bright or dark? Assume monochro-
matic light with a wavelength in air of A = Ay = 500 nm.

Ao= 500 hm
o et
S S T h = 0.0200 mm

RS OSSAINNNANN
< |= 10.0 cm >

29



Example 35.4
Thin-film interference I

EXECUTE: Since only one of the reflected waves undergoes a phase
shift, the condition for destructive interference (a dark fringe) is

Eq. (35.18b):
2t=mry (m=0,1,2,...)

Ao= 500 hm

RS
SAOSSNNN - T h = 0.0200 mm

N T
— \\ \X\\\\ \\ \>|l\\ \\ \ \\\
< |= 10.0 cm >




Example 35.4
Thin-film interference I

From similar triangles in Fig. 35.15 the thickness ¢ of the air wedge at
each point is proportional to the distance x from the line of contact:

L = ﬁ Ao=500nm
X [ _
I
Combining this with Eq. (35.18b), we find ANMUHUUEN . :I%
2xh A RN §
Y e < )—100m— 3
Ao (0.100 m)(500 X 10~ m)
=m—— =m = m(1.25 mm)
2h (2)(0.0200 X 10~% m)
Successive dark fringes, corresponding to m = 1,2,3,..., are

spaced 1.25 mm apart. Substituting m = 0 into this equation gives
x = 0, which 1s where the two slides touch (at the left-hand side of

Fig. 35.15). Hence there is a dark fringe at the line of contact.



Example 35.5
Thin-film interference 11

Suppose the glass plates of Example 35.4 have n = 1.52 and the
space between plates contains water (n = 1.33) instead of air.
What happens now?

EXECUTE: In the film of water (n = 1.33), the wavelength is
A = Ap/n = (500 nm)/(1.33) = 376 nm. When we replace A
by A in the expression from Example 35.4 for the position x of the
mth dark fringe, we find that the fringe spacing is reduced by the
same factor of 1.33 and is equal to 0.940 mm. There 1s still a dark
fringe at the line of contact.

Ao= 500 nm
o
\\\\\\\\ T\ T h = 0.0200 mm
*\\\\\X\\\\\\\ﬁ\\\\\\

k— )= 10.0ecn———
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Example 35.6
Thin-film interference 111

Suppose the upper of the two plates of Example 35.4 is a plastic with
n = 1.40, the wedge 1s filled with a silicone grease with n = 1.50,
and the bottom plate 1s a dense flint glass with n = 1.60. What
happens now?

EXECUTE: The value of A to use in Eq. (35.17b) is the wavelength in
the silicone grease, A = Ag/n = (500 nm)/1.50 = 333 nm. You
can readily show that the fringe spacing is 0.833 mm. Note that the
two reflected waves from the line of contact are in phase (they both
undergo the same phase shift), so the line of contact is at a bright

fringe.
Ao=500nhm

N
O LU H\ | h = 0.0200 mm
X OANNNNANN
k=)= 10.0crmn—
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Newton’s Rings

O Air gap between a convex lens and a plane surface.
The thickness of the film 7 increases from zero as we
move out from the center, giving a series of alternating
dark and bright rings for monochromatic light:

(a) A convex lens in contact with a glass plane (b) Newton’s rings: circular interference fringes

34



Non-reflective and Reflective Coatings

In both reﬂections, Destructive interference occurs when

the llght is reflected e the fjlll‘[l 1s about %/\ thick and
e the light undergoes a phase change at both

from a medium of reflecting surfaces,
greater index than so that the two reflected e
that in which it is waves emerge from the film

| 3
about = cycle out of phase.

traveling, so the same
phase change occurs

. . “Nonreflecting”
in both reflections. 5

> Rgim = Majr film

Air

f 2glass

Film

Glass \
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Example 35.7
A non-reflective coating

A common lens coating material is magnesium fluoride (MgF),
with n = 1.38. What thickness should a nonreflective coating have
for 550-nm light if it is applied to glass with n = 1.52?

EXECUTE: The wavelength in air is A; = 550 nm, so its wavelength
in the MgF, coating is A = Ag/n = (550 nm)/1.38 = 400 nm.
The coating thickness should be one-quarter of this, or A/4 =
100 nm.

36



Example 35.7
A non-reflective coating

EVALUATE: This is a very thin film, no more than a few hundred
molecules thick. Note that this coating 1s reflective for light
whose wavelength is twice the coating thickness; light of that
wavelength reflected from the coating’s lower surface travels one
wavelength farther than light reflected from the upper surface, so
the two waves are in phase and interfere constructively. This
occurs for light with a wavelength in MgF, of 200 nm and a
wavelength in air of (200 nm)(1.38) = 276 nm. This is an ultra-
violet wavelength (see Section 32.1), so designers of optical
lenses with nonreflective coatings need not worry about such
enhanced reflection.
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Diffraction



2-Slit Interference — slits widtha -> 0

X
E (1) = Ecos(wt+¢), ¢=kdsind} p
E. (t)= Ecoswt.
Z
E’=E>+E*-2E*cos(w - ¢)
=E*+E>+2E*cos¢ 0
1
= 2E2 (1 +COS ¢) IO = EgOCEZ All phasors rotate counterclockwise
_ 2 2 with angular speed w.
=4FE~ cos (¢/2). | o1 2
I= _€OCEP =—&C 4E° cos” — The resultant wave "
- 2 2 2 .y
EP = 2E‘COS(¢ / 2)‘ has amplitude Ep
= e '
_ 4]0 0082 ﬂ Ep —'-ZE COS—-|. :
2 \ E |
Alternatively, we have |
) |
E,=E(l+e") |
|
I |
_ |- . _ [4 . I
‘EP‘ E‘1+e E\(2+2cos¢) =2FE cosz‘ A E =i =

E, = E cos (wt + ¢)



Learning Goals

In this lecture, you will learn:

What happens when light shines on an object with
an edge or aperture.

How to understand the diffraction pattern formed
when waves pass through a narrow slit.

How to calculate the intensity at various points in a
single-slit diffraction pattern.

What happens when coherent light shines on an
array of narrow, closely spaced slits.



Learning Goals

In this lecture, you will learn:
Multiple-slit diffraction

How to use diffraction gratings for precise
measurements of wavelength.

How x-ray diffraction reveals the arrangement of
atoms in a crystal.

How diffraction sets limits on the smallest details
that can be seen with a lens.



The laser used to read a DVD
has wavelength of 650 nm,
while the laser used a Blu-ray
disc has a shorter 405-nm
wavelength. How does this
make it possible for a Blu-ray
disc to hold more
information than a DVD?
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Diffraction

Geometric optics predicts that this situation
O Diffraction: Interference should produce a sharp boundary between

caused by bending of illumination and

solid shadow. ,
waves around an DOESN'T

obstacle. That's NOT what HAPPEN
really happens!
Point Area of *
so;nrce illumination |
¢ > 2 &

tock et Line of sight (blocked)

N Geometric +
' ( (| b o / shadow
L[ (oo | 7& Straightedge 3

Jill I
Screen
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Diffraction

0 We don’t often observe such diffraction patterns shown below

in everyday life because most ordinary light sources are neither
monochromatic nor point sources.

o If a white light bulb is used , each wavelength of the light from
every point of the bulb forms its own diffraction pattern, but

the patterns overlap so much that we can’t see any individual
pattern.

o Shadows of large buildings with fuzzy edges
@) l (b) An example of diffraction:

. Photograph of a razor blade illuminated by
¥ monochromatic light from a point source (a
‘ pinhole). Notice the fringe around the

blade outline.

Enlarged view of the area outside the

geometric shadow of the blade’s edge
e

¥ a e .
‘b— Position of geometric shadow

44



Fresnel and Fraunhofer Diffraction

Fresnel diffraction: Near-field diffraction. Both
point source and screen are relatively close to
obstacle

Fraunhofer diffraction: Far-field diffraction.
Point source, screen, and obstacle are far
enough apart. (easier to solve)



Diffraction from a Single Slit

Diffraction pattern formed by plane-wave (parallel-ray)
monochromatic light when it emerges from a long, narrow
slit:

(a) PREDICTED OUTCOME: (b) WHAT REALLY HAPPENS:

Geometric optics predicts that this - In reality, we see a diffraction === -\
p . . . . £2oA

setup will produce a single bright ==--f.._ - Screen pattern—a set of interference

band the same size as the slit. fringes.

//
/ - /
Parallel-ray monochromatic
light

The beam spreads out vertically; horizontal spreading is
negligible because horizontal dimension of slit is relatively
large.



Single Slit Diffraction: Locating Dark Fringes

o According to Huygens’s principle, each element of area of the slit
opening can be considered as a source of secondary waves.

o Divide the slit into several narrow strips of equal width, and
cylindrical secondary wavelets spread out from each strip.

O The resultant intensity at point P can be calculated by adding the
contributions from individual wavelets of various phases and

amplitudes.

O Can be shown rigorously by Kirchhoff’s theorem

() A slit as a source of wavelets

We divide the slit into

imaginary strips parallel

to the shit’s long axis.
Slit
width

Each strip is a source of
Huygens's wavelets.,

Plane waves

incident on the slit

(b) Fresnel (near-field) diffraction

If the screen is close,

different strips to a
point £ on the screen

“ the rays from the
are not parallel.

Screen

(c) Fraunhofer (far-field) diffraction

If the screen is distant,
the rays to P are
approximately parallel.

[——

N

(d) Imaging Fraunhofer diffraction

A converging lens imq

da ncurhy screen.

Fraunhofer pattern on
H Converging

a

cylindrical lens

12es a

Screen
47



Single Slit Diffraction: Locating Dark Fringes

(@)

e —

—_ ’\9
{ : x
[  For the two strips shown, the path difference to P is (a/2) sin 6.

When (af2) sin 6 = A/2, the light cancels at P. This is true for the
whole slit, so P represents a dark fringe.

(b) Enlarged view of the top half of the slit
Similarly, light from two
strips immediately below
the two in the figure also

arrives at P a half-cycle
ALY 1 ¢ out of phase
2 $: '
—{k- )
) sin 6
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Single Slit Diffraction: Locating Dark Fringes

A dark fringe occurs whenever:

o Divide slit into halves: (a/2)sinf =+(A/2) or sinf ==+(A\/a);
o Divide slit into quarters:  (a /4)sinf = +(\/2) or sinf ==+(2\/a);
o Divide slit into sixths: (a/6)sinfd =+(A/2) or sinf ==(3\/a).
. mA L e e (dark fringes in single-
sing = a (m = %1, £2, #3,...) slit diffraction)
: mA
For small angles (sinf ~60): 6 =— (=" =0 =8 SR
a
(a)
— -
— \9 Ty
a| ¢ X >®
L ;
[]  For the two strips shown, the path difference to P is (a/2) sin 6.
When (af2) sin & = A[2, the light cancels at P. This is true for the

whole slit, so P represents a dark fringe.
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Single Slit Diffraction: Locating Dark Fringes

(@)

QY

For small angles (tanf =~ 0):

tanﬁzy—méﬁzy—mém)\zym or ym:@’m_)\-
€T X a X Qa
(b) Enlarged view of the top half of the slit &
Photograph of B
the Fraunhofer .
diffraction
2 0 pattern of a -
5}{ 0 single slit > T

<m= -2
?“é ? <m= -3
Esin 0

= i 1o L
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Example 36.1
Single-slit diffraction

You pass 633-nm laser light through a narrow slit and observe the

diffraction pattern on a screen 6.0 m away. The distance on

the screen between the centers of the first minima on either side of

the central bright fringe is 32 mm (Fig. 36.7). How wide is the slit?
o

Slit width = ?

7

N

/\\

x=60m

Screen
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Example 36.1
Single-slit diffraction

EKECUTE: The first minimum corresponds to m = 1 in Eq. (36.3).
The distance y, from the central maximum to the first minimum on
either side 1s half the distance between the two first minima, so
y; = (32 mm)/2 = 16 mm. Solving Eq. (36.3) for a, we find

A (6.0m)(633 X 1077 m)

g = - =24 X10*m = 0.24 mm
i 16 X 1073 m
)
|
/Slit width = ?
// 32 mm x

HF%—————————-x'= 6.0 m

Screen
52



Example 36.1
Single-slit diffraction

EVALUATE: The angle 0 is small only if the wavelength is small
compared to the slit width. Since A = 633 nm = 6.33 X 107 ' m
and we have found ¢ = 0.24 mm = 2.4 X 1074 m, our result is
consistent with this: The wavelength is (6.33 X 107/ m)/(2.4 X
1074 m) = 0.0026 as large as the slit width. Can you show that
the distance between the second minima on either side is
2(32 mm) = 64 mm, and so on?

Slit width = ?

32 mm

HHx=6.Om

Screen
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Intensity in the Single-Slit Pattern

(a) H (B S
Strips within slit
Imagine a plane wave front at -
the slit subdivided into a large width e 90
a
number of strips. The Huygens H p
H Distant scree
wavelets from all the strips are s LS Istmksrreen
superposed at a point P. incident on the slit
. . . b) At the center of the diffraction patter:
USIng phasor dlagrams to flnd ((p())inll(l)]). lh:];)h;lm:‘: l'mlm ;:Ill.l\'lr;pls]:\l'ilh]in the
the amplitude of the E field in shtareinphase: o o 14 strips)
single-slit diffraction. Each Ey >
i el eh e el e o3 e el e el e e

phasor represents the E field

(€) Phasor diagram at a point slightly off the

frOm d Single Strip Within the SIit: center of the pattern: 8 = total phase difference

between the first and last phasors.
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Intensity in the Single-Slit Pattern

o (b) At point O, the phasors
are all in phase (i.e., the same
direction). E, = resultant
amplitude at O.

O (c) At point P, because of
differences in path length,
there are differences
between wavelets from
adjacent strips. E, = resultant
amplitude at P.

a
@) U Strips within slit
Slit kr,)
“"Id[h = o ————— . — — . — ‘ 0
a
1)
H o' (©i=k) reen

Plane waves

incident on the slit

(b) At the center of the diffraction pattern
(point O), the phasors from all strips within the

slit are in phase. (e.g., 14 strips)

< Ey >=
T I ——

() Phasor diagram at a point slightly off the
center of the pattern: 8 = total phase difference
between the first and last phasors.

Phase difference between the wavelets from two edges

P = kr, — kr, = (27/A) x path difference

= =

2masinf
—)L )
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Intensity in the Single-Slit Pattern

(€) Phasor diagram at a point slightly off the
center of the pattern; 8 = total phase difference

o (d) D“"dlng the slit into narrower and between the first and last phasors.

narrower strips:

AB = AC

Ep = E = Z%Sin(ﬁ

_Esin(ﬁ/2)
Y B2
. [sin(/s/z)r
"l (B/2)
(6=p=0,1=1)

:

(d) As in (C), but in the limit that the slit is
subdivided into infinitely many strips

_2ma sin@

ﬁ_a
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Single Slit Diffraction: Alternative Derivation

f = The distance between slit and screen

a o ikasine _ikasine .
E(B) _ }2 ﬂelkxsmﬁ dx = i e 2 g 5 _ 2aE0 sina
~ai2 f ikf sin@ f a
1 2a°E? (si ? - 2
1(8)=—|E|2= 20 sSino 3 sino
2 f 04 o
1 T B

Ezkasinﬁ =—qgsinf ="—

(b) Enlarged view of the top half of the slit

(a) TR
Strips within slit
A
Slit
width i i i e i e 0
a a | 9
Y P EIg: 6
/ H Distant screen
Plane waves —>{ & 7\
incident on the slit gsin 0



Intensity in the Single-Slit Pattern
(a

I = 0.00831,

o Dark fringes (/ = 0): I = 0.0165]
— 0.01651,

2

sin[na(sin 9) / )L] I'=0.04721,

=1 na(sin@)/)t

I=0=>ﬁ=zm(sin8)/)t=mzr
2

. mA
or sinf =——.

a
(m==x1, £2, ..)

Most of the wave power goes
into the central intensity peak:
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Intensity Maxima in the Single-Slit Pattern

C)

(7]
I = 0.00831,
m=3
I = 0.01651,
m=2

Peak or intensity maxima:

I =0.04721,

:: m=1
] 2 —:\ - >
o[5BT =
(£/2) — (8 —=0, I —1)

m= —2

I'=1_(local maxima) when f§ = :(2m+1)n. (m=0,1,2,..)

m= —3

Take derivative of I w.r.t. 8 to find maxima and minima =
transcendental equation = solve numerically.

Side maxima intensities: T . —Iyisthe
| ~ 0 intensity of
m 2 " the central
. : : 1 9 maximum
[, 1s the intensity m-+ —|
of the m-th side )

maximum

59



Width of the Single-Slit Pattern

o Width (angular spread) of the central maximum:

sin(3 / 2) ? . Sin[ﬁa (Sin 9) / )\]
| (8/2) "1 ma(sing)/ A
2=m, W&(Siﬂ@)/)\:ﬂ'

beside central 16 /
maximum \
r- 0

o

First minimum

~sinf =\ /a.

@a=2A (b)a =5A () a =8\

If the slit width is equal to or narrower than the The wider the slit (or the shorter the
wavelength, only one broad maximum forms. . wavelength), the narrower and sharper
I I ¢ isthe central peak.

2

L 1 !
-20° —-10° 0° 10° 20° =20° -10° 0° 10° 20° =20° =100 0° 10°

20°
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Example 36.2

Single-slit diffraction: Intensity |

(a) The intensity at the center of a single-slit diffraction pattern is /.
What is the intensity at a point in the pattern where there is a
66-radian phase difference between wavelets from the two edges

of the slit? (b) If this point is 7.0° away from the central maximum,
how many wavelengths wide is the slit?

ENECUTE: (a) We have 8/2 = 33 rad, so from Eq. (36.5),
sin(33 rad)
33 rad

(b) From Eq. (36.6),

a_ B 66 rad _ e
A 2mwsing (27 rad)sin7.0°

2
1= 10{ J = (9.2 X 10791,

For example, for 550-nm light the slit width is @ = (86)(550 nm) =
4.7 X 107> m = 0.047 mm, or roughly 2—]0 mm.
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Example 36.2
Single-slit diffraction: Intensity |

EVALUATE: To what point in the diffraction pattern does this value
of B correspond? To find out, note that 8 = 66 rad is approxi-
mately equal to 217r. This is an odd multiple of 7, corresponding

to the form (2m + 1)m found in Eq. (36.9) for the intensity

maxima. Hence B = 66 rad corresponds to a point near the tenth
(m = 10) maximum. This is well beyond the range shown in
Fig. 36.9a, which shows only maxima out tom = *3.
(a) 0
I = 0.00831,

I = 0.0165I,

I = 0.04721,
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Example 36.3
Single-slit diffraction: Intensity

In the experiment described in Example 36.1 (Section 36.2), the
intensity at the center of the pattern i1s /. What is the intensity at a
point on the screen 3.0 mm from the center of the pattern?

>

Slit width = ?

/

A

x=60m
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Example 36.3

Single-slit diffraction: Intensity

EXECUTE: Referring to Fig. 36.5a, we have y = 3.0 mm and
x=6.0m, so tanf = y/x = (3.0 X 10> m)/(6.0m) = 5.0 X
10™*. This is so small that the values of tan 0, sinf, and 0 (in radi-
ans) are all nearly the same. Then, using Eq. (36.7),

masin @ 77'(24 X 10_4 m)(50 X 10_4)

= = 0.60
A 6.33 X 107" m y
sin 0.60\?
I =1 = ().89] Slit width = ?
0( 0.60 ) 0
_»‘ 32 mm X

T(— x=60m
- Screen l.

Vo
®

QY

64



Example 36.3
Single-slit diffraction: Intensity

EVALUATE: Figure 36.9a shows that an intensity this high can occur
only within the central intensity maximum. This checks out; from
Example 36.1, the first intensity minimum (m = 1 in Fig. 36.9a) is
(32 mm)/2 = 16 mm from the center of the pattern, so the point
in question here at y = 3 mm does, indeed, lie within the central

v

maximum.

7] Slit width = ?

e ‘ 32 mm X
e x=60m
(a) Screen P
e —
I
).‘
B 7 |
a F X >9
(0]
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2-Slit Interference — slits widtha -> 0

X
E (1) = Ecos(wt+¢), ¢=kdsind} p
E. (t)= Ecoswt.
Z
E’=E>+E*-2E*cos(w - ¢)
=E*+E>+2E*cos¢ 0
1
= 2E2 (1 +COS ¢) IO = EgOCEZ All phasors rotate counterclockwise
_ 2 2 with angular speed w.
=4FE~ cos (¢/2). | o1 2
I= _€OCEP =—&C 4E° cos” — The resultant wave "
- 2 2 2 .y
EP = 2E‘COS(¢ / 2)‘ has amplitude Ep
= e '
_ 4]0 0082 ﬂ Ep —'-ZE COS—-|. :
2 \ E |
Alternatively, we have |
) |
E,=E(l+e") |
|
I |
_ |- . _ [4 . I
‘EP‘ E‘1+e E\(2+2cos¢) =2FE cosz‘ A E =i =

E, = E cos (wt + ¢)



_memﬁ

B
(a) Single-slit diffraction pattern for a
slit width a
sin/2y
B2
. 0
mg=—2 mg=—1 0 mg=1 my=2

(b) Two-slit interference pattern for narrow
slits whose separation d is four times the
width of the slit in (a)

, ad .
cos (—sinéf
Iy (2/1 )

0
m=—8 m=—4 0 m=4 m=38

\

J

Two Slits of Finite Width

(c) Calculated intensity pattern for two slits
of width a and separation d = 4a, including
both interference and diffraction effects

Calculated
intensity

5 0
2
¢ |sin(B /2
[:]OCOSQ—- ( / )
2 B/2
where
27d . 27a

= ——sginf, § = ——siné.
b A b A

d = 2b = separation between slits o7



—————————————————————————————

Two Slits of Finite Width

One slit centered at x = b, the other at x = -b.

Slit-1 Slit-2 i |
l l  d2+al2 :
di2+al2 F ~d/2+al2 F i E

E(0)= f _oeikxsinH dx+ f _oeilocsin(-) dx

-2 f ~di-ar2 f \9\\
1 R cin o an i \\\
_2aE,(sinf/2 T | S _4aE, (sinB/2 cos(@sine) \
f p/2 f p/2 2 \

d/2-a/2

B2

2
' ) 2 )
1(8)=10(Sm/3/2) cosz(%sinﬁ) /D’Ekasln9=7nasmﬁ

T Double-Slit Interference
Single Slit Diffraction

-d/2-a/2

d = separation between slits



Two Slits of Finite Width

Ford=4a: |4=¢=2mn

O Every 4th interference
maximum at the sides is
missing because these

interference maxima
m. = x4, £8, ...

coincide with diffraction

minima (;m = +1, £2)...

O There will be missing
maxima whenever d is an
integer multiple of a.

sinf/2) ¢
I(H)=IO( /2 )cos (E)

(c) Calculated intensity pattern for two slits
of width @ and separation d = 4a, including
both interference and diffraction effects

Calculated
intensity intensity function

(d) Actual photograph of the pattern
calculated in (c)

k. R
Ford = 4(1...cvcry fourth interference
maximum at the sides (m; = *4, =8, ...)
IS missing.
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N-Slit Interference — slits width a -> 0

E(H) — EO _I_Eoeikdsmﬁ +Eoeik2dsm6 +_”+Eoeik(N_1)dsm0

- E, (l_l_eikdsinﬂ 4 pik2dsind +_._+eik(N—1)dsin0)

27 dsin 9

_ 2 N-1 _ _ikdsin® _ " 5 _ i2a

=E |\l+p+p +..+p ) , p=e =e =e

N
]1-
-E|—£ |
1 - p Maxima occur where the path difference for
adjacent slits is a whole number of wavelengths:
. dsinf = mA.
1-p" 1-cos2Na sin Nt
E@®)|= E,|——|=E, - E |22
-p 1-cos2a sinQ

](0)=1 (sin(Na))2

sIn o

\

N-Slit Interference




N-Slit Interference — slits width a -> 0

Generally, the intensity with 8 slits is 0 whenever ¢ is an integer multiple of 7/4,

except when ¢ is a multiple of 27. Thus 7 minima for every maximum.
o= 2—”(1 sin
A

Phase diagrams (for 8 narrow slits):

~—— b=m=180°

v £ =
’rf\d sin 0 e,

>

Maxima occur where the path difference for
adjacent slits is a whole number of wavelengths:

dsin @ = mA. (m:() +1. +2 )
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=8-Slit Interference

'\ sina

1{6)-1 (sin(Sa))2

Eﬂdsinﬁ

a: width of each slit
d: distance between two slits

(b) N = 8: eight slits produce taller, narrower
maxima in the same locations, separated by
seven minima.

_-—_ﬂ-_——-g"‘—’o_ﬂ _______ |

N I\ Ao

m= —] m -
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N‘Slit Inte rfe rence (@) N = 2: two slits produce one minimum

between LiLUll('L‘Hl maxima.

A minimum occurs whenever No = an integral
multiple of 7 (except when « is an integral

multiple of 7, which gives a principal maximum.)

sin(Na) i

] 8 = I | 1 0
( ) 0 SinO{ m= —1I m=0 m=1
(b) N = 8: eight slits produce tallen, narrower (€) N = 16: with 16 slits, the maxima are even
JT . maxima in the same locations, separpted by taller and narrower, with more intervening
o= —d Sll’l@ seven minima. minima.
/i

-

m= —1 m=10 m=1 m= —I1

a=nm = dsinf =nA (constructive interference)
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N-Slit interference + Diffraction (slits have width a)
Slits are centered at x =0, d, 2d, 3d... (N-1)d.

E9) = “f ﬂeikxsine dx_l_dJrfa/zi(,)eikxsin(} dx_l_zd}a/zﬂeikxsinﬁ D+
—al2 d-al2 2d-al2
_ 24k, [sinf5/2 (1+p+p2 +..+pN‘1)
f B2
_4ak (sinf/2 (l—pN) p=e"™,
- B2 I-p = —"_qasind,

](8)=Io(sin[3’/2)2(sin(Na))2 = 7 dsing

sin o

B2

Maxima occur where the path difference for

Single Slit Diffraction

adjacent slits is a whole number of wavelengths:

N-Slit Interference dsin@ = mA.

SIN &

(sin(N Q)

Maximum occurs when d sin @ = mA

2
j a=mm )N2:>
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N-Slit interference + Diffraction (slits have width a)

Single
slit

N-Slit Interference ,_, '/: /

/

[(6) =1 (Sinﬁ / 2)2 (Sin(NOl) )2 N=3 /;/

p/2 sina

|

Single Slit Diffraction

2
I

2r . et
=—aqasind, =
" L]

H

}g \ \

; = | )
-~

T, . ]
az;dsm@ oy

d>a




Diffraction Gratings

O An array of a large
number of parallel slits,
all with the same width a
and spaced at equal
distances d between
centers, is called a
diffraction gratings.

0e.g., a transmission
diffraction gratings 2

< o Sk a sl a sk oSk a S

Gl
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Diffraction Grating

o Assume far-field conditions.

O Principal intensity maxima
with multiple slits occur in
the same directions as for
the two-slit pattern.

O Positions of the maxima are:

dsin 0 = m\.

1,

m = 0,
/

First-order lines

2
N\

3, ...)

Second-order lines

< Sk askaskaska

Gl

77



Example 36.4
Width of a grating spectrum

The wavelengths of the visible spectrum are approximately 380 nm
(violet) to 750 nm (red). (a) Find the angular limits of the first-
order visible spectrum produced by a plane grating with 600 slits
per millimeter when white light falls normally on the grating.

EKECUTE: (a) The grating spacing is

1
d = = 1:67 X 107°
600 slits/mm -
We solve Eq. (36.13) for 6:
 mA

6 = arcsin—
d
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Example 36.4
Width of a grating spectrum

0  mA
= arcsin——
d

Then for m = 1, the angular deviations 6, and 6, for violet and
red light, respectively, are

380 X 1077
01 = arcsin( — m) = 13.2°
1.67 X 107 °m

750 X 107
50 0 m) —
1.67 X 10 ®m

0., = arcsin(

That 1s, the first-order visible spectrum appears with deflection
angles from 6,; = 13.2° (violet) to 8,; = 26.7° (red).
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Example 36.4
Width of a grating spectrum

(b) Do the first-order and second-order spectra overlap? What about
the second-order and third-order spectra? Do your answers depend

on the grating spacing?
(b) With m = 2 and m = 3, our equation 6 = arcsin(mA/d)

for 380-mm violet light yields

2(380 X 10~ m)

0., = arcsin , = 27.1°
.67 X 107°m
3(380 X 107 m)

0,3 = arcsin . = 43.0°
1.67 X 10 m

For 750-nm red light, this same equation gives

| (2(750 X 107 m)
arcsin

) = 63.9°

6., =
~ 1.67 X 10 m
3(750 X 10™° m)
6,3 = arcsin — = arcsin(1.35) = undefined
1.67 X 10 " m
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Example 36.4
Width of a grating spectrum

Hence the second-order spectrum extends from 27.1° to 63.9° and
the third-order spectrum extends from 43.0° to 90° (the largest
possible value of 0). The undefined value of 6,5 means that the
third-order spectrum reaches 6 = 90° = arcsin(l) at a wave-
length shorter than 750 nm; you should be able to show that this
happens for A = 557 nm. Hence the first-order spectrum (from
13.2° to 26.7°) does not overlap with the second-order spectrum,
but the second- and third-order spectra do overlap. You can con-
vince yourself that this is true for any value of the grating spacing d.

EVALUATE: The fundamental reason the first-order and second-
order visible spectra don’t overlap is that the human eye is sensi-
tive to only a narrow range of wavelengths. Can you show that if
the eye could detect wavelengths from 380 nm to 900 nm (in the
near-infrared range), the first and second orders would overlap?
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Grating Spectrographs

Diffraction gratings are widely used to measure the
spectrum of light emitted by a source, a process
called spectroscopy or spectrometry.

Light incident on a gratings of know spacing is
dispersed into a spectrum. The angles of deviation of
the maxima are then measured, and the wavelength
is computed from the equation:

dsin @ = m.
(m:(), ::1, ::2, ::3, )




Grating Spectrographs

o Sunlight is dispersed into a spectrum by a diffraction
grating. Specific wavelengths are absorbed as sunlight
passes through the sun’s atmosphere, leaving dark
lines in the spectrum:
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Grating Spectrographs

O A schematic diagram of a diffraction-grating
spectrograph:

l White Light

K | | Grating

<

== = Narrow Opening
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Grating Spectrographs

O A schematic diagram of a diffraction-grating
Spectrograph: @ Light from telescope

is sent along fiber-optic
cables (not shown) and
emerges here.

@ An clectronic detector
(like the one in

a digital camera)

records the spectrum.

@ Light strikes concave
mirror and emerges as a
beam of parallel rays.

@ Light passes through diffraction grating.

@ [enses direct @ Concave mirror
diffracted light onto a reflects light to a
second concave mirror, focus.
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Resolution of a Grating Spectrograph

In spectroscopy it is often important to distinguish
slightly different wavelengths.

The minimum wavelength difference A/ that can be
distinguished by a spectrograph is described by the
chromatic resolving power R:

R=2
AN

For example, when sodium atoms are heated, they emit
strongly at the yellow wavelengths 589.00 nm and
589.59 nm. A spectrograph that can barely distinguish
these two lines (sodium doublet) has R = (589.00
nm)/(0.59 nm) = 1000.



Resolution of a Grating Spectrograph

The m-th order maximum occurs at: sin £ (sin(Na) Y
: 1(0)=1, ( ; j
dsinf = mA. ( B j sina
For N slits, the first minimum beside the a="dsino

maximum occurs at:

(b) ¥ = 8: eight slits produce taller, narrower

Noa=(mN +1)A=dsin(0+AO0)=mA+A/N maxima in the same Jacations, separated by

seven minima.

Angular width 40 of maximum peak is

(dcosO)AG=A/N

AG = A
Nd cos @

Larger N leads to narrower peak width
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Resolution of a Grating Spectrograph

Two different wavelengths give diffraction maxima at
slightly different angles.

Assume that we can distinguish them as two
separate peaks if the maximum of one coincides with
the first minimum of the other.

Suppose the maximum for wavelength A+4 is at 6. Then
dsmf=m(L+ANL)
If it is also the minimum for wavelength, then

dsmO@=mA+A/N

Combining the two equations: 1 1+ Ad
A
R=—=mN.
AJ 0

Min./Max.




X-Ray Diffraction (3-Dimensional Diffraction)

(a) Basic setup for x-ray diffraction
Some x rays are scattered as they pass
through the crystal, forming an interference

pattern on the film. (Most of the x rays pass
straight through the crystal.) |
'.¥
- I
Thin [
Lead : :
crystal =
screen % ~g
X-ray beam
Film in
holder

Laue diffraction pattern for a thin
section of quartz crystal 2>

* Quarlz
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X-Ray Diffraction

O These experiments
verified that x rays are
waves (have wavelike
properties), and that
the atoms in a crystal
are arranged in a
regular pattern.

~ Sodium

ions

90



A Simple Model of X-Ray Diffraction

Each atom acts as a new point source of X-ray

The resulting interference pattern is the superposition
of all the scattered waves.

The scattered waves are not all in phase because their
distances from the source are different.

(a) Scattering of waves from a rectangular array

Incident plane waves
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A Simple Model of X-Ray Diffraction

(b) Scattering from adjacent atoms inarow  (C) Scattering from atoms in adjacent rows
Interference from adjacent atoms in arow is  Interference from atoms in adjacent rows is

constructive when the path lengths @ cos 6, constructive when the path difference
and a cos 6, are equal, so that the angle of 2d sin @ is an integral number of
incidence 0, equals the angle of reflection wavelengths, as in Eq. (36.16).

(scattering) 6,.

acosf, acosb,

* Note the angles here are measured relative to the atomic
plane (not from the surface of the sample).
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A Simple Model of X-Ray Diffraction

The conditions for radiation from the entire array to
reach the observer in phase are:

angle of incidence = angle of scattering, and

path difference for adjacent rows = mA:

2dsinf =mA (m=0, 1, 2, 3, ...)

J

Y

Bragg condition for constructive interference from an array.

acosf, acosé,
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A Simple Model of X-Ray Diffraction

To have constructive interference:

 gud
|
um

: mA :
2dsinf = m\ = — =sinf < 1
2d
2d
= mA<2d = \N< —.
m
e.g., for NaCl crystal:
A< 2d _ 2(0.282 nm) 0.564 nm
m=1 m 1
N < 2d _ 2(0.282 nm) _ 0.982 1m
m=2 m 2 \
A< 2(0'2832 M) _ 188 nm oY
m . — |
‘ / \ \%&sm

x ray wavelengths

ions
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A Simple Model of X-Ray Diffraction

0 2D = 3D (array): Rows = planes (of scatterers).

o (a) & (b) A cubic crystal and two different families of
crystal planes. There are also three sets of planes parallel
to the cube faces, with spacing a:

(@) Spacing of planes is d = af\/2. (b) Spacing of planes is d = af\/3,

O

T
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A Simple Model of X-Ray Diffraction

(@) Spacing of planes is d = af\/2.

: » D
O Bragg reflection: Because there are { % ”/{U\Xf)/

many different sets of parallel

) — )
planes, there are also many values of | /J(SP_‘? \/)
C N

d and many sets of angles that give

éa% \\
constructive interference for the gL/ ;P\v},

whole crystal lattice. ©
o Bragg condition: 2d Sin 9 — m)\. (b) Spacing of planes is d = af\/3,

O X-ray diffraction is by far the most
important experimental tool in the
investigation of crystal structure of
solids.
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Example 36.5
X-ray diffraction

You direct a beam of 0.154-nm x rays at certain planes of a silicon
crystal. As you increase the angle of incidence of the beam from
zero, the first strong interference maximum occurs when the beam
makes an angle of 34.5° with the planes. (a) How far apart are the
planes? (b) Will you find other interference maxima from these
planes at greater angles of incidence?

EXECUTE: (a) We solve Eq. (36.16) for d and set m = 1:
mA (1)(0.154 nm)
d = = = (0.136
28Iin 6 2s1n34.5° fm

This is the distance between adjacent planes.
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Example 36.5
X-ray diffraction

(b) To calculate other angles, we solve Eq. (36.16) for siné:

mA 0.154 nm
sing = —— = = m(0.566
N0="0d = ®9(0.186mm),  T0200)

Values of m of 2 or greater give values of sinf greater than unity,
which is impossible. Hence there are no other angles for interfer-
ence maxima for this particular set of crystal planes.

EVALUATE: Our result in part (b) shows that there would be a sec-
ond interference maximum if the quantity 2A/2d = A/d were less
than 1. This would be the case if the wavelength of the x rays were
less than d = 0.136 nm. How short would the wavelength need to
be to have three interference maxima?
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Diffraction from a single slit

. 2 (a) 0
sin(f3/2) I = 0.0083/,
e | .
I = 0.01651,
m=2
I = 0.04721,
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Circular Apertures and Resolving Power

o The diffraction pattern formed by a circular aperture
consists of a central bright spot surrounded by a series of
bright and dark rings.

The intensities of the
_ bright rings drop off
0, is the angle between the center of . .
- - % very quickly with
the pattern and the first minimum. . .
/ increasing angle:

Airy disk_(Central bright spot)

®

/
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(a)

1/1(0)

1.0

3.83
514 7
7.02
8.42

Figure 10.23 (a) The Airy pattern. (b) Electric field created by
Fraunhofer diffraction at a circular aperture. (c) Irradiance resulting

from Fraunhofer diffraction at a circular aperture. (Photos courtesy R. G
Wilson, lllinois Wesleyan University.)
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Circular Apertures and Resolving Power

o If the aperture diameter is D and the wavelength is /A, the
angular radius 0;of the i-th dark ring is:

: A

The angular radius of the Airy disk 1st: sin 91 = 1.22—

is that of the first dark ring: (91 D

: A
2nd: sin 02 = 2235

f, is the angle between the center of )\
the pattern and the first minimum._‘ / Brd Sin 9 — 3 24 o
. 3 .
Airy D

\/

disk
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Diffraction and Image Resolution

(a) Small aperture

o If we have two point objects, their
images are not two points but two
diffraction patterns.

O When the objects are close
enough, their diffraction patterns
overlap, almost completely and
cannot be distinguished.

(b) Medium aperture

o Larger aperture diameter =
smaller Airy disks =» better
resolved.

(c) Large aperture
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Diffraction and Image Resolution

(a) Small aperture

O Rayleigh’s criterion: Two point
objects are just barely resolved (i.e.,
distinguishable) if the center of one
diffraction pattern coincides with

. . . (b) Medium aperture
the first minimum of the other.

O In that case, the angular separation
of the image centers is given by:

A
sinfy = 1.225

(c) Large aperture

(diffraction by a circular aperture)
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Diffraction and Image Resolution

(a) Small aperture

o The minimum separation of two
objects that can just be
resolved by an optical
instfrument is called the limit of
resolution of the instrument.

o The smaller the limit of
resolution, the greater the
resolution, or resolving power, of
the instrument.

o Resolution (resolving power)’
improves with larger diameter
and shorter wavelengths.

|sinf = 1990
: D!

(b) Medium aperture

(c) Large aperture
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Diffraction and Image Resolution

Uliraviolet microscopes have higher resolution
than visible-light microscopes.

In eleciron microscopes, the wavelengths
associated with elecirons can be made 100,000
times smaller than wavelengths of visible light =
gain in resolution.

The blue scanning laser used in a Blu-ray player
has a shorter wavelength (405 nm) than the 650-nm
red laser in a DVD player = better resolving power =
pits (information) in Blu-ray discs can be spaced
closer together than in a DVD = more information
can be stored.



Example 36.6
Resolving power of a camera lens

A camera lens with focal length f = 50 mm and maximum aper-
ture f/2 forms an image of an object 9.0 m away. (a) If the resolu-
tion is limited by diffraction, what is the minimum distance
between two points on the object that are barely resolved? What is
the corresponding distance between image points? (b) How does
the situation change if the lens is “stopped down” to f/16? Use
A = 500 nm 1n both cases.

EXECUTE: (a) The aperture diameter is D = f/(f-number) =
(50 mm)/2 = 25 mm = 25 X 10 m. From Eq. (36.17) the
angular separation 6 of two object points that are barely resolved is

A 500 X 107
sin6 = 1,227 = 122 2 — 24 X 1075 rad

0 -3
25 X 10 " m

Q
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Example 36.6
Resolving power of a camera lens

We know from our thin-lens analysis in Section 34.4 that, apart
from sign, y/s = y'/s’ [see Eq. (34.14)]. Thus the angular separa-
tions of the object points and the corresponding image points are
both equal to 6. Because the object distance s is much greater than
the focal length f = 50 mm, the image distance s’ is approxi-
mately equal to f. Thus

2 —24x%x 105  y=22X10"m=022mm
9.0 m
Y 24%107° y =12x10mm
50 mm

= 0.0012 mm = -gj) mm
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Example 36.6
Resolving power of a camera lens

(b) The aperture diameter is now (50 mm)/16, or one-eighth as
large as before. The angular separation between barely resolved
points is eight times as great, and the values of y and y’ are also
eight times as great as before:

y = 1.8 mm y" = 0.0096 mm = T(l)a mm

Only the best camera lenses can approach this resolving power.

EVALUATE: Many photographers use the smallest possible aperture
for maximum sharpness, since lens aberrations cause light rays
that are far from the optic axis to converge to a different image
point than do rays near the axis. But as this example shows, dif-
fraction effects become more significant at small apertures. One
cause of fuzzy images has to be balanced against another.
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