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Interference



Learning Goals
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In this lecture, you will learn:

�What happens when two waves meet in space.

�How to understand the interference pattern formed by 
the interference of two coherent light waves. 

�How to calculate the light intensity at various points in 
an interference pattern.

�How interference occurs when light reflects from the 
two surfaces of a thin film.



Soapy water is colorless, 
but when blown into 
bubbles it shows vibrant 
colors. How does the 
thickness of the bubble 
walls determine the 
particular colors that 
appear?
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Interference
� Interference refers to any situation in which two or 

more waves meet in space.
�The principle of superposition: When there are two or 

more waves in the same place in space, the resultant 
displacement at that place and at any time is found by 
adding the instantaneous “displacements” that would 
be produced at the point by individual waves if each 
were present alone.

�Reason: suppose both 𝐸"(𝑟, 𝑡( and 𝐸)(𝑟, 𝑡( satisfy the 
Maxwell’s equation because they are two EM waves, 
then it is easy to show that 𝐸(𝑟, 𝑡) = 𝐸"(𝑟, 𝑡) + 𝐸)(𝑟, 𝑡(
also satisfies the Maxwell’s equation.

Reason:	suppose	both	E1(r,t) and	E2(r,t) satisfy	the	
Maxwell’s	equation	because	they	are	two	EM	
waves,	then	it	is	easy	to	show	that	
E(r,t)=E1(r,t)+E2(r,t) also	satisfies	the	Maxwell’s	
equation.
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�“Displacement” means:
§ Actual displacement of liquid surface above or 

below its normal level for waves on liquid surface.
§ Air pressure variation around its stationary value 

in sound waves.
§ Electric or magnetic field in EM waves.
§ …….

Interference
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Amplitude in Two-Source Interference

� E1 and E2 are the horizontal 
components of the phasors 
representing the wave from 
sources S1 and S2, 
respectively.

� The sum of the projections 
on the horizontal axis at 
any time gives the 
instantaneous value of the 
total E field at point P.

E
1
(t)= E cos(ωt +φ),

E
2
(t)= E cosωt.
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Amplitude in Two-Source Interference

� The amplitude EP of the 
resultant sinusoidal wave at P
is the vector sum of the other 
two phasors:
EP

2 = E 2 + E 2 − 2E 2 cos(π −φ)

= E 2 + E 2 + 2E 2 cosφ

= 2E 2 (1+ cosφ)

= 4E 2 cos2 φ / 2( ).
EP = 2E cos φ / 2( ) .

[φ = 0,  EP = 2E;  φ = π ,  EP = 0.]
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Intensity in Two-Source Interference

� The total energy output from the two sources remains 
unchanged by the interference effects, but the energy is 
redistributed in space.
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The	(spherical	)EM	wave	generated	by	a	point	source


E(r ) =


E0 cos(


k ⋅ (r − rs )−ωt)

rs

r

O
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Phase	difference	and	Path	difference

E1 ~ cos(kr1 −ωt)
E2 ~ cos(kr2 −ωt)
Eb = E1 + E2

where the phase difference can be written as:

φ = k r2 − r1( ) = 2π
λ

(r2 − r1)

If	two	sources	are	in	phase,	then	the	waves	that	arrive	at	b	differ	in	
phase	by	an	amount	φ that	is	proportional	to	the	difference	in	
their	path	lengths,	r2-r1.	The	electric	fields	superposed	at	b	
become:	

EP ∝ cos φ / 2( ) = cos π
λ
(r2 − r1)

#

$
%

&

'
(
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� Constructive (for sources: same 
wavelength & in phase):

e.g., at point b, m = +2.
� Destructive (for sources: same 

wavelength & in phase):

e.g., at point c, m = -3.

Constructive and
Destructive Interference

Path difference  r
2
−r

1
=mλ

(m = 0,  ±1,  ± 2,  ± 3,  ...)

Path difference  r
2
−r

1
= (m +

1
2
)λ

(m = 0,  ±1,  ± 2,  ± 3,  ...)
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� Anti-nodal curves (red) show all 
positions where constructive
interference occurs.

� Nodal curves (not shown) show 
all positions where destructive
interference occurs.

Constructive and
Destructive Interference

r
2
−r

1
=mλ.

r
2
−r

1
= (m +

1
2
)λ.
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The	concepts	of	constructive	
interference	and	destructive	
interference	apply	to	water	
waves	as	well	as	to	light	
waves	and	sound	waves,	in	
fact	to	waves	of	any	kind.

Two-Source	Interference	of	Light
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Two-Source Interference of Light: 
Young’s Experiment

Emissions from 
different parts of 
an ordinary source 
are not 
synchronized

≈ 1 µm

≈ 1 µm

≈ 1 µmReaching 
S1 & S2
in phase

When a laser is used as a 
coherent light source, S0
isn’t needed

Always 
in phase



15

Assume that the distance R
from the slits to the screen is 
much larger than the 
distance d between the slits 
(R>>d), then the lines from 
S1 and S2 to P are very 
nearly parallel.

Two-Source Interference of Light: 
Young’s Experiment
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Constructive Two-Slit Interference

d sinθ =mλ.
(m = 0,±1,±2,±3,...)

Constructive interference 
(reinforcement, bright 
regions) occurs at points 
where the path difference is
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Destructive Two-Slit Interference

d sinθ = (m +
1
2
)λ.

(m = 0,±1,±2,±3,...)

Destructive interference 
(cancellation, dark regions) 
occurs at points where the 
path difference is

Young’s experiment was the first direct measurement of 
wavelengths of light.
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ç Photograph of 
interference fringes 
produced on a screen 
in Young’s double-slit 
experiment.

d sinθ = (m +
1
2
)λ.

(m = 0,±1,±2,±3,...)

d sinθ =mλ.
(m = 0,±1,±2,±3,...)

Constructive and Destructive Two-Slit Interference

Center of pattern 
is a bright band: 
m = 0.



Example 35.1
Two-slit interference
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Example 35.1 Two-slit interference
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Example 35.2
Broadcast pattern of a radio station

21



Example 35.2
Broadcast pattern of a radio station

22



Example 35.2
Broadcast pattern of a radio station
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Interference in Thin Films

The complex shapes of the 
colored rings result from 
variations in the thickness 
of the film.
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Thin-Film Interference and Phase Shifts at 
Reflection

� Monochromatic light reflects 
from two nearly parallel surfaces 
at nearly normal incidence.

� Along the line where the plates 
are in contact (with no path 
difference), we find a dark fringe, 
not a bright one.

� This suggests that one of the 
reflected waves has undergone a 
half-cycle phase shift during 
reflection.
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Thin-Film Interference and Phase Shifts at 
Reflection
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� In order for two waves to cause a steady interference 
pattern, the waves must be coherent, with a definite and 
constant phase relationship è Thin film

� The sun and light bulbs emit light in a stream of short 
bursts with only a few micrometers long

Thin-Film Interference and Wave Coherence



Example 35.4
Thin-film interference I
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Example 35.4
Thin-film interference I
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Example 35.4
Thin-film interference I
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Example 35.5
Thin-film interference II
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Example 35.6
Thin-film interference III
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Newton’s Rings

�Air gap between a convex lens and a plane surface. 
The thickness of the film t increases from zero as we 
move out from the center, giving a series of alternating 
dark and bright rings for monochromatic light:
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Non-reflective and Reflective Coatings

In both reflections, 
the light is reflected 
from a medium of 
greater index than 
that in which it is 
traveling, so the same 
phase change occurs 
in both reflections.



Example 35.7
A non-reflective coating
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Example 35.7
A non-reflective coating
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Diffraction
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I0 =
1
2
ε0cE

2

I = 1
2
ε0cEP

2 =
1
2
ε0c 4E

2 cos2 φ
2

!

"
#

$

%
&

= 4I0 cos
2 φ
2
.

E1(t) = E cos(ωt +φ),     φ=kdsinϑ

E2 (t) = E cosωt.

2-Slit	Interference	– slits	width	a	->	0

EP
2 = E 2 + E 2 − 2E 2 cos(π −φ)

= E 2 + E 2 + 2E 2 cosφ
= 2E 2 (1+ cosφ)
= 4E 2 cos2 φ / 2( ).

EP = 2E cos φ / 2( ) .

Alternatively, we have

EP = E(1+ eiφ )

EP = E 1+ eiφ = E (2+ 2cosφ) = 2E cosφ
2

x

0

d

q



Learning	Goals
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In	this	lecture,	you	will	learn:
�What	happens	when	light	shines	on	an	object	with	
an	edge	or	aperture.

�How	to	understand	the	diffraction	pattern	formed	
when	waves	pass	through	a	narrow	slit.

�How	to	calculate	the	intensity	at	various	points	in	a	
single-slit	diffraction	pattern.

�What	happens	when	coherent	light	shines	on	an	
array	of	narrow,	closely	spaced	slits.



Learning	Goals
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In	this	lecture,	you	will	learn:
�Multiple-slit	diffraction
�How	to	use	diffraction	gratings	for	precise	
measurements	of	wavelength.

�How	x-ray	diffraction	reveals	the	arrangement	of	
atoms	in	a	crystal.

�How	diffraction	sets	limits	on	the	smallest	details	
that	can	be	seen	with	a	lens.



The	laser	used	to	read	a	DVD	
has	wavelength	of	650	nm,	
while	the	laser	used	a	Blu-ray	
disc	has	a	shorter	405-nm	
wavelength.	How	does	this	
make	it	possible	for	a	Blu-ray	
disc	to	hold	more	
information	than	a	DVD?

42
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Diffraction
�Diffraction:	Interference	
caused	by	bending	of	
waves	around	an	
obstacle.
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An	example	of	diffraction:

� We	don’t	often	observe	such	diffraction	patterns	shown	below	
in	everyday	life	because	most	ordinary	light	sources	are	neither	
monochromatic	nor	point	sources.

� If	a	white	light	bulb	is	used	,	each	wavelength	of	the	light	from	
every	point	of	the	bulb	forms	its	own	diffraction	pattern,	but	
the	patterns	overlap	so	much	that	we	can’t	see	any	individual	
pattern.

� Shadows	of	large	buildings	with	fuzzy	edges

Diffraction
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Fresnel	and	Fraunhofer	Diffraction

�Fresnel	diffraction:	Near-field	diffraction.	Both	
point	source	and	screen	are	relatively	close	to	
obstacle

�Fraunhofer	diffraction:	Far-field	diffraction.	
Point	source,	screen,	and	obstacle	are	far	
enough	apart.	(easier	to	solve)
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Diffraction	from	a	Single	Slit

� Diffraction	pattern	formed	by	plane-wave	(parallel-ray)	
monochromatic	light	when	it	emerges	from	a	long,	narrow	
slit:

� The	beam	spreads	out	vertically;	horizontal	spreading	is	
negligible	because	horizontal	dimension	of	slit	is	relatively	
large.
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Single	Slit	Diffraction:	Locating	Dark	Fringes
� According	to	Huygens’s	principle,	each	element	of	area	of	the	slit	

opening	can	be	considered	as	a	source	of	secondary	waves.
� Divide	the	slit	into	several	narrow	strips	of	equal	width,	and	

cylindrical	secondary	wavelets	spread	out	from	each	strip.
� The	resultant	intensity	at	point	P can	be	calculated	by	adding	the	

contributions	from	individual	wavelets	of	various	phases	and	
amplitudes.

� Can	be	shown	rigorously	by	Kirchhoff’s	theorem
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Single	Slit	Diffraction:	Locating	Dark	Fringes

Similarly, light from two 
strips immediately below 
the two in the figure also 
arrives at P a half-cycle 
out of phase.
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Single	Slit	Diffraction:	Locating	Dark	Fringes

� Divide	slit	into	halves:
� Divide	slit	into	quarters:	
� Divide	slit	into	sixths:

(a / 2)sinθ = ±(λ / 2)  or  sinθ = ±(λ /a);
(a / 4)sinθ = ±(λ / 2)  or  sinθ = ±(2λ /a);
(a / 6)sinθ = ±(λ / 2)  or  sinθ = ±(3λ /a).

A	dark	fringe	occurs	whenever:

For small angles ( sinθ ≈ θ) :



50

Single	Slit	Diffraction:	Locating	Dark	Fringes

For small angles (tanθ ≈ θ) :  

tanθ =
y
m

x
⇒ θ =

y
m

x
⇒
mλ
a
=
y
m

x
  or  y

m
= x
mλ
a

.

Photograph of 
the Fraunhofer 
diffraction 
pattern of a 
single slit à



Example	36.1
Single-slit	diffraction
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Example	36.1
Single-slit	diffraction
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Example	36.1
Single-slit	diffraction
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Intensity	in	the	Single-Slit	Pattern

� Imagine	a	plane	wave	front	at	
the	slit	subdivided	into	a	large	
number	of	strips.	The	Huygens	
wavelets	from	all	the	strips	are	
superposed	at	a	point	P.

� Using	phasor	diagrams	to	find	
the	amplitude	of	the	E	field	in	
single-slit	diffraction.	Each	
phasor	represents	the	E field	
from	a	single	strip	within	the	slit:

(e.g., 14 strips)
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� (b)	At	point	O,	the	phasors	
are	all	in	phase	(i.e.,	the	same	
direction).	EO =	resultant	
amplitude	at	O.

� (c)	At	point	P,	because	of	
differences	in	path	length,	
there	are	differences	
between	wavelets	from	
adjacent	strips.	EP =	resultant	
amplitude	at	P.

(e.g., 14 strips)

Intensity	in	the	Single-Slit	Pattern

Phase difference between the wavelets from two edges
β = kr1 − kr2 = (2π /λ)× path difference

⇒ β =
2πasinθ

λ
.

ei (ωt−kr1)

ei (ωt−kr2 )
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� (d)	Dividing	the	slit	into	narrower	and	
narrower	strips:

Intensity	in	the	Single-Slit	Pattern

AB = β ⋅ AC
 

⇒ AC
 

=
AB

β
=
E0

β

Ep = AB
 

= 2AC
 

sin β
2
!

"
#

$

%
&

= E0

sin β / 2( )
β / 2

I = I0
sin(β / 2)

(β / 2)
!

"
#

$

%
&

2

.  

(θ = β = 0,  I = I0 )

β =
2πasinθ

λ
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Single	Slit	Diffraction:	Alternative	Derivation

E(θ ) = E0
f
eikxsinθ dx

−a/2

a/2
∫ =

E0
ikf sinθ

e
ikasinθ

2 − e
−i kasinθ

2
#

$
%%

&

'
((=
2aE0
f

sinα
α

#

$
%

&

'
(

α ≡
1
2
kasinθ = π

λ
asinθ = β

2

I θ( ) = 12 | E |
2=
2a2E0

2

f 2
sinα
α

!

"
#

$

%
&

2

= I0
sinα
α

!

"
#

$

%
&

2

f	= The	distance	between	slit	and	screen
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� Dark	fringes	(I =	0):

Intensity	in	the	Single-Slit	Pattern

I = I0
sin πa sinθ( ) / λ!

"
#
$

πa sinθ( ) / λ

!
"
#

$#

%
&
#

'#

2

.

I = 0⇒ β
2
= πa sinθ( ) / λ =mπ

                 or  sinθ = mλ
a

.   

              (m = ±1,  ± 2,  ...)

(β → 0,  I → I
0
)

Most of the wave power goes 
into the central intensity peak:
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� Peak	or	intensity	maxima:

� Take	derivative	of	I w.r.t.	𝜷 to	find	maxima	and	minima	è
transcendental	equation	è solve	numerically.

� Side	maxima	intensities:

Intensity	Maxima	in	the	Single-Slit	Pattern

(β → 0,  I → I
0
)

I = I0
sin(β / 2)

(β / 2)

!

"
#

$

%
&

2

.

I = Im   (local maxima) when β ≈ ± 2m+1( )π .   (m = 0,  1,  2,  ...)

I
m
≈

I
0

m +
1
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

π2
.

Im is the intensity 
of the m-th side 
maximum

I0 is the 
intensity of 
the central 
maximum
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�Width	(angular	spread)	of	the	central	maximum:

Width	of	the		Single-Slit	Pattern

First minimum 
beside central 
maximum 

I = I
0

sin(β / 2)
(β / 2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= I
0

sin πa sinθ( )/λ⎡
⎣⎢

⎤
⎦⎥

πa sinθ( )/λ
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

2

.

β / 2 = π,  πa sinθ( )/λ = π
or  θ

1
≈ sinθ

1
= λ /a.



Example	36.2
Single-slit	diffraction:	Intensity	I
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Example	36.2
Single-slit	diffraction:	Intensity	I
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Example	36.3
Single-slit	diffraction:	Intensity	II
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Example	36.3
Single-slit	diffraction:	Intensity	II
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Example	36.3
Single-slit	diffraction:	Intensity	II
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I0 =
1
2
ε0cE

2

I = 1
2
ε0cEP

2 =
1
2
ε0c 4E

2 cos2 φ
2

!

"
#

$

%
&

= 4I0 cos
2 φ
2
.

E1(t) = E cos(ωt +φ),     φ=kdsinϑ

E2 (t) = E cosωt.

2-Slit	Interference	– slits	width	a	->	0

EP
2 = E 2 + E 2 − 2E 2 cos(π −φ)

= E 2 + E 2 + 2E 2 cosφ
= 2E 2 (1+ cosφ)
= 4E 2 cos2 φ / 2( ).

EP = 2E cos φ / 2( ) .

Alternatively, we have

EP = E(1+ eiφ )

EP = E 1+ eiφ = E (2+ 2cosφ) = 2E cosφ
2

x

0

d

q
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Two	Slits	of	Finite	Width

I = I
0
cos2 φ

2
⋅

sin(β / 2)
β / 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

where

φ =
2πd
λ

sinθ,  β =
2πa
λ

sinθ.

sinβ / 2
β / 2

!

"
#

$

%
&

2

cos2(πd
2λ
sinθ )

d = 2b = separation between slits

β =
2πasinθ

λ
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Two	Slits	of	Finite	Width

β ≡ kasinθ = 2π
λ
asinθ

One slit centered at  x = b, the other at x = -b.

E(θ ) =
E0
f
eikxsinθ dx

d /2−a/2

d /2+a/2
∫ +

E0
f
eikxsinθ dx

−d /2−a/2

−d /2+a/2
∫

=
2aE0
f

sinβ / 2
β / 2

#

$
%

&

'
( e

ik d
2
sinθ

+ e
−ik d
2
sinθ#

$
%%

&

'
((=
4aE0
f

sinβ / 2
β / 2

#

$
%

&

'
(cos(

kb
2
sinθ )

I θ( ) = I0
sinβ / 2
β / 2

!

"
#

$

%
&

2

cos2(kd
2
sinθ )

Single Slit Diffraction
Double-Slit Interference

Slit-1 Slit-2

x

d/2-a/2

d/2+a/2

q

-d/2-a/2

-d/2+a/2

q

d = separation between slits
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Two	Slits	of	Finite	Width

For	d =	4a:	
� Every	4th	interference	
maximum	at	the	sides	is	
missing	because	these	
interference	maxima																				

coincide	with	diffraction	
minima	(																																).

� There	will	be	missing	
maxima	whenever	d is	an	
integer	multiple	of	a.					

m
i
= ±4,  ± 8,  ...

m
d
= ±1,  ± 2,  ...

I θ( ) = I0
sinβ / 2
β / 2

!

"
#

$

%
&

2

cos2(φ
2
)

4β = φ = 2miπ
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E(θ ) = E0 + E0e
ikd sinθ + E0e

ik 2d sinθ ++ E0e
ik (N−1)d sinϑ

        = E0 1+ eikd sinϑ + eik 2d sinϑ ++ eik (N−1)d sinϑ( )
= E0 1+ p+ p2 + ..+ pN−1( )     ,  p = eikd sinϑ = e

i2π
λ
d sinϑ

= ei2α

= E0

1− pN

1− p

"

#
$

%

&
'

E(ϑ ) = E0

1− pN

1− p
= E0

1− cos2Nα
1− cos2α

= E0

sinNα
sinα

I θ( ) = I0
sin(Nα)
sinα

!

"
#

$

%
&

2

N-Slit Interference

N-Slit	Interference	– slits	width	a	->	0

E(θ )



Generally, the intensity with 8 slits is 0 whenever φ is an integer multiple of π/4,
except when φ is a multiple of 2π. Thus 7 minima for every maximum.
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N-Slit	Interference	– slits	width	a	->	0

(m = 0,  ±1,  ± 2,  ...)

Phase diagrams (for 8 narrow slits):

φ =
2π
λ
d sinϑ
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I θ( ) = I0
sin(8α)
sinα

!

"
#

$

%
&

2

N=8-Slit	Interference

α ≡
π
λ
d sinθ

8α = 0
8α = π 8α = 7π

a:	width	of	each	slit
d:	distance	between	two	slits
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N-Slit	Interference

A minimum occurs whenever Nα  = an integral
multiple of π  (except when α  is an integral
multiple of π , which gives a principal maximum.)

I θ( ) = I0
sin(Nα)
sinα

!

"
#

$

%
&

2

α = nπ ⇒ d sinθ = nλ   (constructive interference)

α ≡
π
λ
d sinθ
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N-Slit	interference	+	Diffraction	(slits	have	width	a)
Slits are centered at  x =0, d, 2d, 3d… (N-1)d.

E(θ ) =
E0
f
eikxsinθ dx

−a/2

a/2
∫ +

E0
f
eikxsinθ dx

d−a/2

d+a/2
∫ +

E0
f
eikxsinθ dx + ...

2d−a/2

2d+a/2
∫

=
2aE0
f

sinβ / 2
β / 2

#

$
%

&

'
( 1+ p+ p2 + ..+ pN−1( )

=
4aE0
f

sinβ / 2
β / 2

#

$
%

&

'
(
1− pN

1− p

#

$
%

&

'
(

I θ( ) = I0
sinβ / 2
β / 2

!

"
#

$

%
&

2
sin(Nα)
sinα

!

"
#

$

%
&

2

Single Slit Diffraction
N-Slit Interference

p ≡ eikd sinθ ,

β ≡
2π
λ
asinθ ,

α ≡
π
λ
d sinθ

2
2sin( ) Maximum occurs when sin

sin
mN N d ma pa q l

a
=æ ö ¾¾¾® Þ =ç ÷

è ø
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N-Slit	interference	+	Diffraction	(slits	have	width	a)

I θ( ) = I0
sinβ / 2
β / 2

!

"
#

$

%
&

2
sin(Nα)
sinα

!

"
#

$

%
&

2

Single Slit Diffraction

N-Slit Interference

β ≡
2π
λ
asinθ ,

α ≡
π
λ
d sinθ

d > a
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Diffraction	Gratings

�An	array	of	a	large	
number	of	parallel	slits,	
all	with	the	same	width	a
and	spaced	at	equal	
distances	d between	
centers,	is	called	a	
diffraction	gratings.

�e.g.,	a	transmission	
diffraction	gratings	à
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Diffraction	Grating
� Assume	far-field	conditions.
� Principal	intensity	maxima	
with	multiple	slits	occur	in	
the	same	directions	as	for	
the	two-slit	pattern.

� Positions	of	the	maxima	are:

d sinθ =mλ.
(m = 0,±1,±2,±3,  ...)

First-order	lines Second-order	lines

θ ↑⇔
λ ↑



Example	36.4
Width	of	a	grating	spectrum
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Example	36.4
Width	of	a	grating	spectrum
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Example	36.4
Width	of	a	grating	spectrum
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Example	36.4
Width	of	a	grating	spectrum
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Grating	Spectrographs

�Diffraction	gratings	are	widely	used	to	measure	the	
spectrum	of	light	emitted	by	a	source,	a	process	
called	spectroscopy	or	spectrometry.

�Light	incident	on	a	gratings	of	know	spacing	is	
dispersed	into	a	spectrum.	The	angles	of	deviation	of	
the	maxima	are	then	measured,	and	the	wavelength	
is	computed	from	the	equation:																																																																																															

d sinθ =mλ.
(m = 0,  ±1,  ± 2,  ± 3,  ...)
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Grating	Spectrographs

�Sunlight	is	dispersed	into	a	spectrum	by	a	diffraction	
grating.	Specific	wavelengths	are	absorbed	as	sunlight	
passes	through	the	sun’s	atmosphere,	leaving	dark	
lines	in	the	spectrum:
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Grating	Spectrographs
�A	schematic	diagram	of	a	diffraction-grating	
spectrograph:

White	Light

Narrow	Opening

Grating
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Grating	Spectrographs
�A	schematic	diagram	of	a	diffraction-grating	
spectrograph:
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Resolution	of	a		Grating	Spectrograph

� In	spectroscopy	it	is	often	important	to	distinguish	
slightly	different	wavelengths.

�The	minimum	wavelength	difference		𝛥𝜆 that	can	be	
distinguished	by	a	spectrograph	is	described	by	the	
chromatic	resolving	power	R:

� For	example,	when	sodium	atoms	are	heated,	they	emit	
strongly	at	the	yellow	wavelengths	589.00	nm	and	
589.59	nm.	A	spectrograph	that	can	barely	distinguish	
these	two	lines	(sodium	doublet)	has	R =	(589.00	
nm)/(0.59	nm)	=	1000.

R =
λ
Δλ
.
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Resolution	of	a		Grating	Spectrograph

� The	m-th order	maximum	occurs	at:

� For	N slits,	the	first	minimum	beside	the	
maximum	occurs	at:	

� Angular	width	𝛥𝜃 of	maximum	peak	is

� Larger	N leads	to	narrower	peak	width

( cos ) /d Nq q lD =

sin .d mq l= ( ) 0

22
sin(s )
sin

in NI I b
b

a
a

q æ ö
ç ÷
è

ç
è ø

= ÷
ø

æ ö

sindpa q
l

º

Nα = (mN +1)λ⇒ d sin(θ +Δθ ) =mλ +λ / N

cosNd
lq

q
D =
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Resolution	of	a		Grating	Spectrograph
�Two	different	wavelengths	give	diffraction	maxima	at	
slightly	different	angles.

�Assume	that	we	can	distinguish	them	as	two	
separate	peaks	if	the	maximum of	one coincides	with	
the	first	minimum of	the	other.

� Suppose	the	maximum	for	wavelength	𝜆+𝛥𝜆 is	at	𝜃.	Then

� If	it	is	also	the	minimum	for	wavelength,	then

�Combining	the	two	equations:

sin ( )d mq l l= +D

sin /d m Nq l l= +

.R mNl
l

º =
D

l l+D

q

l

Min./Max.
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X-Ray Diffraction	(3-Dimensional	Diffraction)

Laue diffraction pattern for a thin 
section of quartz crystal à
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X-Ray	Diffraction

�These	experiments	
verified	that	x	rays	are	
waves	(have	wavelike	
properties),	and	that	
the	atoms	in	a	crystal	
are	arranged	in	a	
regular	pattern.
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A	Simple	Model	of	X-Ray	Diffraction

�Each	atom	acts	as	a	new	point	source	of	X-ray
�The	resulting	interference	pattern	is	the	superposition	
of	all	the	scattered	waves.

�The	scattered	waves	are	not	all	in	phase	because	their	
distances	from	the	source	are	different.	
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A	Simple	Model	of	X-Ray	Diffraction

• Note the angles here are measured relative to the atomic 
plane (not from the surface of the sample).
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A	Simple	Model	of	X-Ray	Diffraction

�The	conditions	for	radiation	from	the	entire	array	to	
reach	the	observer	in	phase	are:

(1) angle	of	incidence	=	angle	of	scattering,	and
(2) path	difference	for	adjacent	rows	=		𝑚𝜆:

2d sinθ =mλ   (m = 0,  1,  2,  3,  ...)
Bragg condition for constructive interference from an array.
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A	Simple	Model	of	X-Ray	Diffraction

�To	have	constructive	interference:

�e.g.,	for	NaCl crystal:

2d sinθ =mλ⇒
mλ
2d
= sinθ < 1

⇒mλ < 2d ⇒ λ <
2d
m
.

λ
m=1
<

2d
m
=

2(0.282 nm)
1

= 0.564 nm

λ
m=2
<

2d
m
=

2(0.282 nm)
2

= 0.282 nm

λ
m=3
<

2d
m
=

2(0.282 nm)
3

= 0.188 nm

x ray wavelengths
  



95

A	Simple	Model	of	X-Ray	Diffraction

� 2D	à 3D	(array):	Rows	à planes	(of	scatterers).
� (a)	&	(b)	A	cubic	crystal	and	two	different	families	of	
crystal	planes.	There	are	also	three	sets	of	planes	parallel	
to	the	cube	faces,	with	spacing	a:



96

A	Simple	Model	of	X-Ray	Diffraction

� Bragg	reflection:	Because	there	are	
many	different	sets	of	parallel	
planes,	there	are	also	many	values	of	
d and	many	sets	of	angles	that	give	
constructive	interference	for	the	
whole	crystal	lattice.	

� Bragg	condition:
� X-ray	diffraction	is	by	far	the	most	
important	experimental	tool	in	the	
investigation	of	crystal	structure	of	
solids.	

2d sinθ =mλ.



Example	36.5
X-ray	diffraction
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Example	36.5
X-ray	diffraction
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Diffraction	from	a	single	slit

I = I0
sin(β / 2)
(β / 2)

!

"
#

$

%
&

2

.
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Circular	Apertures	and	Resolving	Power

� The	diffraction	pattern	formed	by	a	circular	aperture	
consists	of	a	central	bright	spot	surrounded	by	a	series	of	
bright	and	dark	rings.

(Central bright spot)

The intensities of the 
bright rings drop off 
very quickly with 
increasing angle: 
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15 

 
 
The light spot on the screen on the focal plane of the lens then has the radius of 
 

max max 0.61
fr f
a
OT   (14d) 

 
If two light beams with the incidence angles differing 
only by maxGM T� , then the two spots on the screen will 
overlap on top of one another and cannot be resolved. 
This sets the limit to distinguish two nearly parallel 
beams, or the resolution, of the lens. The smaller the maxT  
is, the better the resolution will be. Therefore, one should 
use lenses as large as possible to achieve high resolution. 
The same is true for mirrors. That is one of the two major 
reasons that the primary lenses or mirrors of astronomy 
telescopes are always very large. The other reason is to 
collect as much light from distant objects as possible. The 
collecting power is obviously proportional to the area of 
the primary mirror.  
 
2F) Fresnel Diffraction 
 
The problems we have studied so far are under the condition that the observation distance is 
much larger than the aperture size, i. e., far field diffraction. When such condition no longer 
holds, the diffraction theory has to be implemented with its exact form. Rather than giving a 
general formula, we study an example to illustrate how it works. Consider a circular aperture 
illuminated by a plane wave at normal incidence, as shown in the figure. We want to find the 
electric field at a position on the central axis of the aperture at distance d from the aperture. Each 
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Circular	Apertures	and	Resolving	Power

� If	the	aperture	diameter	is	D and	the	wavelength	is	𝜆,	the	
angular	radius	𝜃2of	the	i-th dark	ring	is:

1st:  sinθ
1
= 1.22

λ
D

2nd:  sinθ
2
= 2.23

λ
D

3rd:  sinθ
3
= 3.24

λ
D

The angular radius of the Airy disk 
is that of the first dark ring: θ

1
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Diffraction	and	Image	Resolution

� If	we	have	two	point	objects,	their	
images	are	not	two	points	but	two	
diffraction	patterns.

�When	the	objects	are	close	
enough,	their	diffraction	patterns	
overlap,	almost	completely	and	
cannot	be	distinguished.

� Larger	aperture	diameter	è
smaller	Airy	disks	è better	
resolved.
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� Rayleigh’s	criterion:	Two	point	
objects	are	just	barely	resolved	(i.e.,	
distinguishable)	if	the	center of	one
diffraction	pattern	coincides	with	
the	first	minimum of	the	other.

� In	that	case,	the	angular	separation	
of	the	image	centers	is	given	by:

Diffraction	and	Image	Resolution
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� The minimum separation of two 
objects that can just be 
resolved by an optical 
instrument is called the limit of 
resolution of the instrument.

� The smaller the limit of 
resolution, the greater the 
resolution, or resolving power, of 
the instrument.

� Resolution (resolving power) 
improves with larger diameter 
and shorter wavelengths.

sinθ
1
= 1.22

λ
D

Diffraction	and	Image	Resolution
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� Ultraviolet microscopes have higher resolution 
than visible-light microscopes.

� In electron microscopes, the wavelengths 
associated with electrons can be made 100,000 
times smaller than wavelengths of visible light è
gain in resolution.

� The blue scanning laser used in a Blu-ray player 
has a shorter wavelength (405 nm) than	the	650-nm	
red	laser	in	a	DVD	player	è better resolving power è
pits (information) in Blu-ray discs can be spaced 
closer together than in a DVD è more information 
can be stored.

Diffraction	and	Image	Resolution



Example	36.6
Resolving	power	of	a	camera	lens
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Example	36.6
Resolving	power	of	a	camera	lens
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Example	36.6
Resolving	power	of	a	camera	lens
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