Special Relativity



Learning Goals

Looking forward at ...

* why different observers can disagree about whether two events are
simultaneous.

* how relativity predicts that moving clocks run slow, and what
experimental evidence confirms this.

* how the length of an object changes due to the object’s motion.

* how the theory of relativity modifies the relationship between
velocity and momentum.

* some of the key concepts of Einstein’s general theory of relativity.
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Introduction o Hﬂ]

* At Brookhaven National Laboratory in
New York, atomic nuclei are accelerated
t0 99.995% of the ultimate speed limit
of the universe — the speed of light, c.

* |t is impossible for any object to travel at or beyond c.

* We shall see some of the far-reaching implications of relativity, such as the effect
of motion on time and length.

* We’ll see that momentum and kinetic energy must be redefined.



Einstein’s first postulate

* Einstein’s first postulate, known as the principle of relativity, states

that the laws of physics are the same in every inertial reference
frame.

* For example, the same emf is induced
in the coil whether the magnet moves
relative to the coil, or the coil moves
relative to the magnet.

... same result



Einstein’s second postulate

* Einstein’s second postulate is that the speed of light in vacuum is the
same in all inertial frames of reference and is independent of the
motion of the source.

» Suppose two observers measure the speed of light in vacuum.

* One is at rest with respect to the light source, and the other is moving
away from it.

* According to the principle of relativity, the two observers must obtain
the same result, despite the fact that one is moving with respect to

the other.



Michelson-Morley experiment
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Relative velocity of slow-moving objects

A spaceship (S") moves with A missile (M) is fired with
speed vgyg = 1000 m/s relative  speed vy = 2000 m/s
to an observer on earth (). relative to the spaceship.

Missile (M)
P
vgys = 1000 m/s Uy = 2000 m/s
Uyys = 2000 m/s + 1000 m/s

Earth

NEWTONIAN MECHANICS HOLDS: Newtonian mechanics tells us
correctly that the missile moves with speed v);/s = 3000 m/s relative
to the observer on earth.



Relative velocity of light

A light beam (L) is emitted
from the spaceship at speed c.

Light beam (L)

Upjgr = €

vL/S‘ ¢ + 1000 m/s

NEWTONIAN MECHANICS FAILS: Newt;)nian mechanics tells us

incorrectly that the light moves at a speed greater than c relative to the
observer on earth ... which would contradict Einstein’s second postulate.



The Galilean transformation

Frame S’ moves relative to frame S with constant
velocity u along the common x-x’-axis.

* The Galilean transformation ,
is a transformation between 4

|
two inertial frames of Ji % Ji
reference. % [ :: \

* In the figure, and the e e s e ————— P
equations below, the %
position of particle P is Y Y
described in two frames of 0, v i ’ r
reference. s - '

Origins O and O’ coincide attime t = 0 = ',

' i (Galilean coordinate
transformation)

x=x"+ ut y
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A thought experiment in simultaneity: Slide 1 of 4

* Imagine a train moving with a speed comparable to ¢, with uniform
velocity.

* Two lightning bolts strike a passenger car, one near each end.

Mavis B’ Lightning hits the front and back
of a train (points A" and B") and hits

A Y
A/I
the ground at points A and B.
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A thought experiment in simultaneity: Slide 2 of 4

 Stanley is stationary on the ground at O, midway between A and B.

* Mavis is moving with the train at O’ in the middle of the passenger
car, midway between A’ and B'.

Inside the train, Mavis moves toward

AI
” the light coming from the front of the
, train and away from the light coming
o= : , )i from the back of the train.
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A thought experiment in simultaneity: Slide 3 of 4

* Mavis runs into the wave front from B’ before the wave front from A’
catches up to her.

* Thus she concludes that the lightning bolt at B’ struck before the one
at A’

Mavis sees the light from the front of
the train first, so she believes that the
lightning hit the front of the train first.




A thought experiment in simultaneity: Slide 4 of 4

* The two wave fronts from the lightning strikes reach Stanley at O
simultaneously, so Stanley concludes that the two bolts struck B and
A simultaneously.

e Whether or not two events at different locations are simultaneous
depends on the state of motion of the observer.

Stanley sees the lightning hit the two
points at the same time, so he believes
that the lightning hit the two ends of
the train simultaneously.

|
(The light from the rear of the train
has not reached Mavis yet.)




Relativity of time intervals

* Let’s consider another thought experiment.
* Mavis, in frame S’, measures the time interval between two events.
* Event 1 is when a flash of light from a light source leaves O'.

* Event 2 is when the flash
returns to O', having been

reflected from a mirror a Mirror mm
distance d away.
* The flash of light moves a total Y
distance 2d, so the time | d
interval is: o
Aty = 2d Source = “ /
C O’ Mavis measures

time interval At



Relativity of time intervals

* The round-trip time measured by Stanley in frame S is a longer interval At; in his
frame of reference the two events occur at different points in space.

Mavis observes a light pulse
emitted from a source at O" and
reflected back along the same line.
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S Stanley measures a longer time interval Az:
7 The light pulse travels at same speed as in S,
Stanley observes but travels a greater distance than in S’.

the same light
pulse following a diagonal path.



Relativity of time intervals

e Stanley in frame S will observe the light propagate along the
diagonal with the same speed of light.

* the time for the light pulse return to the source is:

2
At = g = %\/d2 + (M2At> = \/d T ( 2 ) Mavis observes a light pulse

emitted from a source at O and
reflected back along the same line.
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S Stanley measures a longer time interval At:
The light pulse travels at same speed as in ',
Stanley observes but travels a greater distance than in S'.

the same light 0
pulse following a diagonal path.



Time dilation and proper time

* Let At, be the proper time between two events.

* An observer moving with constant speed u will measure the time interval to be
At, where

Proper time between two events (measured in rest frame)

U
......

Time dilation: Ar =y Arg

Lorentz factor relating
. the two frames

.....
........
.............

Time interval between same events
measured in second frame of reference

where the Lorentz factor y is defined as:

Speed of light

Afy =
2.2 in vacuum
V1 — u/cs -

*
.
---------

...........

Lorentz factor

Speed of one frame of reference relative to another



The Lorentz factor

As speed u approaches the speed of light c,
v approaches infinity.

* When u is very small compared
to ¢, y is very nearly equal
to 1.

* If the relative speed u is great
enough that y is appreciably
greater than 1, the speed is said

|
|
|
|
[
|
|
|
to be relativistic. :
|

| 1 |
0.25¢  0.50c 0.75¢ 1.00c

Speed u
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Proper time

* Proper time is the time interval
between two events that occur
at the same point.

* A frame of reference can be
pictured as a coordinate system
with a grid of synchronized
clocks, as in the figure at the
right.

The grid is three dimensional; identical planes
of clocks lie in front of and behind the page,
connected by grid lines perpendicular to the
page.



m Time dilation at 0.990¢

High-energy subatomic particles coming from space interact with
atoms in the earth’s upper atmosphere, in some cases producing
unstable particles called muons. A muon decays into other particles
with a mean lifetime of 2.20 us = 2.20 X 1076 s as measured in a
reference frame in which it is at rest. If a muon is moving at 0.990¢
relative to the earth, what will an observer on earth measure its
mean lifetime to be?

IDENTIFY and SET UP: The muon’s lifetime is the time interval
between two events: the production of the muon and its subsequent
decay. Our target variable is the lifetime in your frame of reference
on earth, which we call frame S. We are given the lifetime in a
frame S’ in which the muon is at rest; this is its proper lifetime,
Aty = 2.20 us. The relative speed of these two frames is

u = 0.990c. We use Eq. (37.6) to relate the lifetimes in the two
frames.

EXECUTE: The muon moves relative to the earth between the two
events, so the two events occur at different positions as measured
in S and the time interval in that frame is Ar (the target variable).
From Eq. (37.6),

AIO _
V1 - u/c?

2.20 s
V1 — (0.990)2

Ar = = 15.6 us

EVALUATE: Our result predicts that the mean lifetime of the muon
in the earth frame (Af) is about seven times longer than in the
muon’s frame (Azg). This prediction has been verified experimen-
tally; indeed, this was the first experimental confirmation of the
time dilation formula, Eq. (37.6).



m Time dilation at airliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or 4.80 X 10%m) at a steady speed of 300 m/s (about 670 mi/h).
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?

IDENTIFY and SET UP: Here we’re interested in the time interval
between the airplane departing from San Francisco and landing in
New York. The target variables are the time intervals as measured
in the frame of reference of the ground S and in the frame of refer-
ence of the airplane S’.

EXECUTE: As measured in S the two events occur at different posi-
tions (San Francisco and New York), so the time interval measured
by ground observers corresponds to At in Eq. (37.6). To find it, we
simply divide the distance by the speed u = 300 m/s:

480 X 10°m

At
300 m/s

= 1.60 X 10*s (about 4% hours)

In the airplane’s frame S’, San Francisco and New York passing
under the plane occur at the same point (the position of the plane).
Hence the time interval in the airplane is a proper time, correspon-
ding to At in Eq. (37.6). We have

2 300 m/s)?
L= ( /5) ~=1.00 X 1072
2 (3.00 X 103 m/s)

From Eq. (37.6),

Aty = (1.60 X 10*s)V1 — 1.00 x 1072

The square root can’t be evaluated with adequate precision with an
ordinary calculator. But we can approximate it using the binomial
theorem (see Appendix B):

(1= 1.00 X 1071212 =1 — (3)(1.00 X 10712) +--

The remaining terms are of the order of 107* or smaller and can
be discarded. The approximate result for Az is

Aty = (1.60 X 10*s)(1 — 0.50 X 107'2)

The proper time Az, measured in the airplane, is very slightly less
(by less than one part in 10'?) than the time measured on the ground.

EVALUATE: We don’t notice such effects in everyday life. But
present-day atomic clocks (see Section 1.3) can attain a precision
of about one part in 10'%. A cesium clock traveling a long distance
in an airliner has been used to measure this effect and thereby ver-
ify Eq. (37.6) even at speeds much less than c.



Twin paradox

* Consider identical twin astronauts names Eartha and Astrid.

* Eartha remains on earth while her twin Astrid takes off on a high-speed trip through the
galaxy

* Because of time dilation, Earth observes Astrid’s ages more slowly and younger when
Astrid returns to earth

e Allinertia frames are equivalent.

* Astrid can make the same arguments to conclude that Eartha is younger

e Astrid must accelerate with respect to Earth and
her reference frame is not inertial
* Correct answer: Astrid is younger than Eartha



Relativity of length

e We attach a light source to one end of a ruler and a mirror to the

other end.
* The ruler is at rest in reference frame S’, and its length in this frame is
-
(a) Mavis
W s
Source Mirror

] | ,
< W—IOJI ! 1 [ ] i S
a8

The ruler is stationary in Mavis’s frame of reference S'.
The light pulse travels a distance [/ from the light source
to the mirror.



Relativity of length

* In reference frame S the ruler is moving to the right with speed u.
* The length of the ruler is shorter in S.

Mavis

f ,
| o d >)
|

|

‘ ‘\/ - “ u
| ) ' '
\\ ' u Atl . )i

)i The ruler moves at speed u in Stanley’s frame of reference S.
The light pulse travels a distance [ (the length of the ruler
measured in S') plus an additional distance u At from the
Stanley light source to the mirror.




Relativity of length

The total length of path d from source
to mirror is:

d=1+u Atl The ruler moves at speed u in Stanley’s frame of reference S.
The light pulse travels a distance [ (the length of the ruler
d=c Atl measured in S') plus an additional distance u At from the

Stanley light source to the mirror.

Eliminate d, we get

c Aty =1+ ult; or
[

cC — Uu

Atl =

Similarly, the return trip (mirror to source) takes the time

[
c tu

Atz =

! / 9] We measure the distance / by measuring
The total time is: Ar = + = the time taken for light to make a round
trip.




Length contraction and proper length

* A length measured in the frame in which the body is at rest (the rest frame of the
body) is called a proper length.

* Thus /,is a proper length in S', and the length measured in any other frame
moving relative to S is less than /.

* This effect is called length contraction.

Proper length of object (measured in rest frame)

W Speed of second frame
Length ¥ 2 l e ot
; u 0 relative to rest frame
contraction: [ = lO ] ——=— ‘ _
R c? y 4 Lorentz factor relating
S Y, .
Length in second frame of reference - the two frames

‘e
-
e
.

moving parallel to object’s length Speed of light in vacuum



Example of length contraction

* The speed at which electrons traverse the 3-
km beam line of the SLAC National
Accelerator Laboratory is slower than c by
less than 1 cm/s.

* As measured in the reference frame of such
an electron, the beam line (which extends
from the top to the bottom of this
photograph) is only about 15 cm long!

Beam line




Lengths perpendicular to the direction of motion

* There is no length contraction for lengths perpendicular to the
direction of relative motion.

Mavis




e ILEY R How long is the spaceship?

A spaceship flies past earth at a speed of 0.990c. A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length [, because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length / measured
in the earth frame, relative to which the spaceship is moving at
u = 0.990c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

2
1= lg,[1 — % — (400m) V1 — (0.990)% = 56.4m

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length /,
two earth observers with synchronized clocks could measure the

37.13 Measuring the length of a moving spaceship.

™

lo=400 m

The two observers on earth (§') must measure x, and x; simultaneously
to obtain the correct length / = x, — x; in their frame of reference.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)



2
Observers O and O, in Fig. 37.13 are 56.4 m apart on the earth. I =1ly+|1 — u_z = (56.4 m) V1 - (0.990)> = 7.96 m
How far apart does the spaceship crew measure them to be? ¢

EVALUATE: This answer does not say that the crew measures their

m spaceship to be both 400 m long and 7.96 m long. As measured on
IDENTIFY and SET UP: In this example the 56.4-m distance is the earth, the tail of the spacecraft is at the position of O; at the same
proper length [. It represents the length of a ruler that extends instant that the nose of the spacecraft is at the position of O,.
from O; to O, and is at rest in the earth frame in which the Hence the length of the spaceship measured on earth equals the
observers are at rest. Our target variable is the length [ of this ruler 56.4-m distance between O and O,. But in the spaceship frame O,
measured in the spaceship frame, in which the earth and ruler are and O, are only 7.96 m apart, and the nose (which is 400 m in front

moving at u = 0.990c. of the tail) passes O, before the tail passes O;.



The Lorentz transformations

Frame S’ moves relative to frame S with constant
velocity u along the common x-x’-axis.

* This Galilean transformation, as we y )
have seen, is valid only in the limit s N s’
when u approaches zero. —x::‘

: T av wiaateaie ol nls == P
* The more general relationships are i K
called the Lorentz transformations. y Yoo
ol | 0 | }
x .3 X
: ut

Origins O and O’
coincide attimer = 0 = ¢'.

The Lorentz coordinate transformation relates
the spacetime coordinates of an event as
measured in the two frames: (x, y, z, f) in frame S
and (x', y’, z', t') in frame §’.



The Lorentz transformations for coordinates

* The Lorentz transformations relate the coordinates and
velocities in two inertial reference frames.

* They are more general than the Galilean transformations
and are consistent with the principle of relativity.

Velocity of S’ relative to S in positive direction along x-x’-axis

A
) ) X = Ul
Lorentz coordinate g ol — — y(x — ut)

‘ £ afti . 2 2 I 5 . .
transformation: \/1 —u /C *- Lorentz factor relating
Spacetime coordinates e y 5 the two frames
of an event are r— Speed of light in vacuum
X, y, Z, t in frame § and < <
Xy, 2t inframe S’ r — ux/cz

t = y(t — ux/c?)

B V1 — u?/c?



The Lorentz transformations for velocities

.

x-velocity of object in frame S’

Lorentz velocity . x

gk
transformation l'), _ Ux u
(velocity in S’ in terms i = uvx/c2
2

of velocity in §): g
Speed of light in vacuum

.

x-velocity of object in frame S
Lorentz velocity R
transformation

(velocity in S in terms

of velocity in §"):

v —
1+ wvl/c?
D

Speed of light in vacuum

--------

x-velocity of object in frame §

Velocity of S’
relative to S in
positive direction
along x-x'-axis

x-velocity of object in frame S’

Velocity of S’
relative to S in
positive direction
along x-x'-axis

dx’
dt’

dx
dt

* The Lorentz velocity transformations show us that a body moving with a
speed less than c in one frame of reference always has a speed less than

c in every other frame of reference.



(FEL YA as it received hefore it was sent?

Winning an interstellar race, Mavis pilots her spaceship across a
finish line in space at a speed of 0.600c relative to that line. A
“hooray” message is sent from the back of her ship (event 2) at the
instant (in her frame of reference) that the front of her ship crosses
the line (event 1). She measures the length of her ship to be 300 m.
Stanley is at the finish line and is at rest relative to it. When and
where does he measure events 1 and 2 to occur?

IDENTIFY and SET UP: This example involves the Lorentz coordi-
nate transformation. Our derivation of this transformation assumes
that the origins of frames S and S’ coincide at # = 0 = ¢’. Thus for
simplicity we fix the origin of S at the finish line and the origin of
S’ at the front of the spaceship so that Stanley and Mavis measure
event ltobeatx = 0 =x"andt =0 = ¢

Mavis in S’ measures her spaceship to be 300 m long, so she
has the “hooray” sent from 300 m behind her spaceship’s front at
the instant she measures the front to cross the finish line. That is,
she measures event 2 at x’ = —300m and ¢’ = 0.

Our target variables are the coordinate x and time ¢ of event 2
that Stanley measures in S.

EXECUTE: To solve for the target variables, we modify the first and
last of Egs. (37.21) to give x and ¢ as functions of x" and #'. We do
so in the same way that we obtained Eq. (37.23) from Eq. (37.22).
We remove the primes from x" and #’, add primes to x and 7, and
replace each u with —u. The results are

x=1y(x' +ut') and 1= y(r + ux'/c?)

From Eq. (37.7), y = 1.25 foru = 0.600c = 1.80 X 108 m/s.
We also substitute x' = —300m, ¢ = 0, ¢ = 3.00 X 103 m/s,
and u = 1.80 X 103m/s in the equations for x and ¢ to find
x=—-375matt= —7.50 X 107 s = —0.750 us for event 2.

EVALUATE: Mavis says that the events are simultaneous, but Stanley
says that the “hooray” was sent before Mavis crossed the finish
line. This does not mean that the effect preceded the cause. The
fastest that Mavis can send a signal the length of her ship is
300 m/(3.00 X 108 m/s) = 1.00 us. She cannot send a signal
from the front at the instant it crosses the finish line that would
cause a “hooray” to be broadcast from the back at the same instant.
She would have to send that signal from the front at least 1.00 us
before then, so she had to slightly anticipate her success.



m Relative velocities

(a) A spaceship moving away from the earth at 0.900c fires a robot
space probe in the same direction as its motion at 0.700c¢ relative to
the spaceship. What is the probe’s velocity relative to the earth?
(b) A scoutship is sent to catch up with the spaceship by traveling
at 0.950c relative to the earth. What is the velocity of the scoutship
relative to the spaceship?

IDENTIFY and SET UP: This example uses the Lorentz velocity
transformation. Let the earth and spaceship reference frames be S
and S', respectively (Fig. 37.16); their relative velocity is
u = 0.900c. In part (a) we are given the probe velocity v}, = 0.700c¢
with respect to S’, and the target variable is the velocity v, of the

37.16 The spaceship, robot space probe, and scoutship.

'

y

S
S/
u = 0.900¢ )‘
—
v, = 0.950c
#
v, = 0.700c
AR, -
Scoutship 0’| Spaceship Robot space N
probe

probe relative to S. In part (b) we are given the velocity
v, = 0.950c of the scoutship relative to S, and the target variable
is its velocity v, relative to S'.

EXECUTE: (a) We use Eq. (37.23) to find the probe velocity relative
to the earth:

v, + u 0.700c + 0.900c¢
v, = — = S = 0.982¢
1 + uvi/c 1 + (0.900¢)(0.700¢)/c

(b) We use Eq. (37.22) to find the scoutship velocity relative to
the spaceship:

B, 0.950c — 0.900
Qe ¢ C____ 0345¢

Us =T A 2
1 — uv,/c 1 — (0.900¢)(0.950¢)/c

EVALUATE: What would the Galilean velocity transformation for-
mula, Eq. (37.2), say? In part (a) we would have found the probe’s
velocity relative to the earth to be v, = vy + u = 0.700c +
0.900c = 1.600c, which is greater than ¢ and hence impossible. In
part (b), we would have found the scoutship’s velocity relative to
the spaceship to be vy, = v, — u = 0.950c — 0.900c = 0.050c;
the relativistically correct value, v, = 0.345¢, is almost seven
times greater than the incorrect Galilean value.



Doppler effect for electromagnetic waves

 When a source moves toward the observer, the observed frequency f is greater
than the emitted frequency f,.

Moving source emits waves Source emits  Position of first wave
of frequency f,. First wave second wave  crest at the instant that the
crest emitted here. crest here.

second crest 1s emitted.

o Stationary observer
% detects waves of
-

.k
. frequency f > f,.
]
uT S<— A Stanley‘ g
cT

Frequency measured by observer

.......
,,,,,,
.
o

Doppler effect ‘ . Frequency measured
’ . .’ . ~
: : «" in rest frame of
electromagnetic waves, Af S + u f‘ -
source approaching c— U 0 ‘
observer: 5 Posasanes Speed of source

Speed of light in vacuum relative to observer



Doppler effect for electromagnetic waves

e A=(c—uw)Tandf =

> a

* The period measured in the rest frame of the source (Ty) and the observer S

(T') are related by:

Moving source emits waves
of frequency f,. First wave

crest emitted here.

Source emits Position of first wave
second wave crest at the instant that the

crest here. second crest 1s emitted.
3§ ¥, Stationary observer
. Jh{ aF detects waves of
‘ — —
‘{, frequency f > f,.

ul

cT

Sl — A —>{ Stanley 1y




Doppler effect for electromagnetic waves

 This handheld radar gun emits a radio beam of frequency f,, which in the frame
of reference of an approaching car has a higher frequency f.

* The reflected beam also has frequency f in the car’s frame, but has an even
higher frequency f'in the police officer’s frame.

* The radar gun calculates the car’s speed by comparing
the frequencies of the emitted beam and the doubly
Doppler-shifted reflected beam.




2cLTICER A jet from a black hole

Many galaxies have supermassive black holes at their centers (see
Section 13.8). As material swirls around such a black hole, it is
heated, becomes ionized, and generates strong magnetic fields.

The resulting magnetic forces steer some of the material into high-
speed jets that blast out of the galaxy and into intergalactic space
(Fig. 37.19). The light we observe from the jet in Fig. 37.19 has a

37.19 This image shows a fast-moving jet 5000 light-years in
length emanating from the center of the galaxy M87. The light
from the jet is emitted by fast-moving electrons spiraling around
magnetic field lines (see Fig. 27.18).

frequency of 6.66 X 10" Hz (in the far ultraviolet region of the
electromagnetic spectrum; see Fig. 32.4), but in the reference
frame of the jet material the light has a frequency of 5.55 X
10'3 Hz (in the infrared). What is the speed of the jet material with
respect to us?

IDENTIFY and SET UP: This problem involves the Doppler effect
for electromagnetic waves. The frequency we observe is
f = 6.66 X 10'* Hz, and the frequency in the frame of the source
is fo = 5.55 X 10'® Hz. Since f > fo, the jet is approaching us
and we use Eq. (37.25) to find the target variable u.

EXECUTE: We need to solve Eq. (37.25) for u. We’ll leave it as an
exercise for you to show that the result is
(/fo)* = 1
u=-———c
(f/fo)” + 1

We have f/f, = (6.66 X 10'*Hz)/(5.55 X 10'* Hz) = 12.0, so
u=——""c = 0.986¢

EVALUATE: Because the frequency shift is quite substantial, it
would have been erroneous to use the approximate expression
Af/f = u/c. Had you done so, you would have found
u = c(Af/fy) = ¢(6.66 X 10 Hz — 5.55 x 103 Hz)/(5.55 X
1013 Hz) = 11.0c. This result cannot be correct because the jet
material cannot travel faster than light.



Relativistic momentum

Relativistic momentum becomes
infinite as v approaches c.

* Principle of conservation of momentum
should valid in ALL inertia frames 1

.
«
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Smc + >

* From the Lorentz transformation of relative e L HAPPENS! >
velocities, we can show that the Newtonian

|
I
|
|
. . . mc
prediction, p = mv, only gives correct results at | DOESN'T
2 -
speeds much less than c. e i “A;EE"
. . e 1~ I R
e Shown is a graph of the magnitude of the — 1
. a 1))
momentum of a particle of rest mass m as a O 0.2c04c 0.6c 08¢ ¢
function of SpEEd V. Newtonian mechanics.incorrectly

predicts that momentum becomes
infinite only if v becomes infinite.



Relativistic momentum

* Suppose we measure the mass of a particle to be m when it is at rest relative to
us: We call m the rest mass. N

* When such a particle has a velocity v, its relativistic momentum is:

Rest mass of particle
= ... Velocity of particle
muo <

U«
Relativistic momentum -****** rp =
1 — v?/c2.... Speed of light
|

Speed of particle - In vacuum

* We can rewrite this in terms of the Lorentz factor of the particle’s rest frame with
respect to the rest frame of the system:

Rest mass of particle .- Velocity of particle
0“ “

o e R e « - e T
Relativistic momentum - ‘p = ymv . Lorentz factor relating

o

LSO rest frame of particle
and frame of observer



ELCEYR N Relativistic dynamics of an electron

An electron (rest mass 9.11 X 1073! kg, charge —1.60 X 107" C)
is moving opposite to an electric field of magnitude E =
5.00 X 10° N/C. All other forces are negligible in comparison to
the electric-field force. (a) Find the magnitudes of momentum and
of acceleration at the instants when v = 0.010c¢, 0.90c¢, and 0.99c¢.
(b) Find the corresponding accelerations if a net force of the same
magnitude is perpendicular to the velocity.

IDENTIFY and SET UP: In addition to the expressions from this sec-
tion for relativistic momentum and acceleration, we need the rela-
tionship between electric force and electric field from Chapter 21.
In part (a) we use Eq. (37.31) to determine the magnitude of
momentum; the force acts along the same line as the velocity, so we
use Eq. (37.32) to determine the magnitude of acceleration. In part
(b) the force is perpendicular to the velocity, so we use Eq. (37.33)

rather than Eq. (37.32).
EXECUTE: (a) For v = 0.010c¢, 0.90c, and 0.99¢ we have y =

V1 — 02/02 = 1.00, 2.29, and 7.09, respectively. The values of
the momentum magnitude p = ymv are

p1 = (1.00)(9.11 x 103! kg)(0.010)(3.00 X 103m/s)
=27 X 107%*kg-m/s atv; = 0.010¢

P> = (2.29)(9.11 X 1073 kg)(0.90)(3.00 X 108 m/s)
= 5.6 X 102 kg-m/s atv, = 0.90c

p3 = (7.09)(9.11 X 10731 kg)(0.99)(3.00 X 103 m/s)

1.9 X 1072 kg-m/s at vs = 0.99¢

From Eq. (21.4), the magnitude of the force on the electron is
F = |qlE = (1.60 X 10719 C)(5.00 X 10° N/C)
=8.00 X 107N

From Eq. (37.32),a = F/'y3m. Forv = 0.010c and y = 1.00,

8.00 X 107*N
a = . - = 88X 10"°m/s’
(1.00)3(9.11 x 1073 kg)

The accelerations at the two higher speeds are smaller than the non-
relativistic value by factors of y3 = 12.0 and 356, respectively:

a =173 X105 m/s> a3 =2.5 X 104 m/s?

(b) From Eq. (37.33), a = F/ym if F and © are perpendicular.
When v = 0.010c and vy = 1.00,
—14
a = 8.00 X 10 7N = 8.8 X 10" m/s?
(1.00)(9.11 X 103" kg)
Now the accelerations at the two higher speeds are smaller by fac-
tors of y = 2.29 and 7.09, respectively:

a, =38 X 10%m/s> a3 =1.2 X 10'° m/s?

These accelerations are larger than the corresponding ones in part
(a) by factors of Y.

EVALUATE: Our results in part (a) show that at higher speeds, the
relativistic values of momentum differ more and more from the
nonrelativistic values calculated from p = mv. The momentum at
0.99¢ is more than three times as great as at 0.90c¢ because of the
increase in the factor . Our results also show that the acceleration
drops off very quickly as v approaches c.



Relativistic work and energy

* Experiments show that the net force,

podr_d__ mv
dt— di\/1 = )2

* And we can re-derive the work-energy theorem:

2 2 ma dx R
W = Fdx = = change of kinetic energy
. . (1 . 1)2/02)3/2



Relativistic energy and rest energy

* The relativistic kinetic energy is:

Rest mass of particle
" Speed of light in vacuum

W e
Relativistic - &= MR — mel = (Y _ 1)m02
Kinetic energy \/1 _ 02/02 P
T Lorentz factor relating rest frame
Speed of particle of particle and frame of observer

* Note that the kinetic energy approaches infinity as the speed
approaches the speed of light.

* The rest energy is mc?.



Relativistic work and energy

* Graph of the kinetic energy of a
particle of rest mass m as a function
of speed v.

* Also shown is the Newtonian
prediction, which gives correct results
only at speeds much less than ¢

Relativistic kinetic energy becomes
infinite as v approaches c.
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Newtonian mechanics incorrectly
predicts that kinetic energy becomes
infinite only if v becomes infinite.




Relativistic energy and momentum

* The total energy of a particle is:

Kinetic  Rest Rest mass  ..--Speed of light
energy energy  of particle 5~ in vacuum
L)
Total energy = Ty mc )
“lll...} : : :
of a particle E K + mc ) ”ymc
ISt

Lorentz factor relating rest frame

Specd ot particie of particle and frame of observer

* The total energy, rest energy, and momentum are related by:

Total Rest Magnitude of
Total energy, energy  energy momentum
rest energy, ";2 """ 2 7 v 2
and momentum: LT = (Tck) + (pf)

Rest mass  Speed of light in vacuum



FelICEYALE Energetic electrons

(a) Find the rest energy of an electron (m = 9.109 X 1073 kg,
g=—e=—1602 %X 107 C) in joules and in electron volts.
(b) Find the speed of an electron that has been accelerated by an
electric field, from rest, through a potential increase of 20.0 kV or
of 5.00 MV (typical of a high-voltage x-ray machine).

IDENTIFY and SET UP: This problem uses the ideas of rest energy,
relativistic kinetic energy, and (from Chapter 23) electric potential
energy. We use £ = mc? to find the rest energy and Egs. (37.7) and
(37.38) to find the speed that gives the stated total energy.

EXECUTE: (a) The rest energy is

me? = (9.109 X 10731 kg)(2.998 X 103 m/s)?
= 8.187 X 1071*J

From the definition of the electron volt in Section 23.2, 1 eV =
1.602 X 10~'9J. Using this, we find
leV
1.602 X 10712
= 5.11 X 10°eV = 0.511 MeV

mc? = (8.187 X 1071417)

(b) In calculations such as this, it is often convenient to work
with the quantity y = 1/V1 — v?/c? from Eq. (37.38). Solving
this for v, we find

c V1= (1/y)?

The total energy E of the accelerated electron is the sum of its
rest energy mc? and the kinetic energy eVj,, that it gains from the

v

work done on it by the electric field in moving from point a to
point b:
E = 'ymcz = mc® + eV, or
eVba

y=1+
mc
An electron accelerated through a potential increase of V,, =
20.0 kV gains 20.0 keV of energy, so for this electron

20.0 X 103 eV
+

s —1.039
0.511 X 10%eV

y=1
and

v=cVI1-(1/1.039)* = 0.272¢ = 8.15 X 10" m/s

Repeating the calculation for V,, = 5.00 MV, we find
eVpo/mc* = 9.78,y = 10.78, and v = 0.996¢.

EVALUATE: With V,, = 20.0kV, the added kinetic energy of
20.0 keV is less than 4% of the rest energy of 0.511 MeV, and the
final speed is about one-fourth the speed of light. With V,, =
5.00 MV, the added kinetic energy of 5.00 MeV is much greater
than the rest energy and the speed is close to c.

CAUTION Three electron energies All electrons have rest
energy 0.511 MeV. An electron accelerated from rest through a
5.00-MeV potential increase has kinetic energy 5.00 MeV (we call
ita “5.00-MeV electron”) and total energy 5.51 MeV. Be careful to
distinguish these energies from one another.



m A relativistic collision

Two protons (each with mass M, = 1.67 X 107%7 kg) are initially
moving with equal speeds in opposite directions. They continue to

exist after a head-on collision that also produces a neutral pion of

mass M, = 2.40 X 10728 kg (Fig. 37.22). If all three particles are
at rest after the collision, find the initial speed of the protons.
Energy is conserved in the collision.

37.22 In this collision the kinetic energy of two protons is
transformed into the rest energy of a new particle, a pion.

1.67 X 1072 kg

v U

\
90O

Pion (2.40 X 10~ 2 kg)

BEFORE

Proton Proton

AFTER

IDENTIFY and SET UP: Relativistic total energy is conserved in the
collision, so we can equate the (unknown) total energy of the two
protons before the collision to the combined rest energies of the
two protons and the pion after the collision. We then use Eq.
(37.38) to find the speed of each proton.

EXECUTE: The total energy of each proton before the collision is

yMc?. By conservation of energy,

2(yMpc2) = 2(Mpc2) + M,c?
M

2.40 X 108 kg
=1+
2M,,

2(1.67 X 10 kg)
From Eq. (37.38), the initial proton speed is

cV1— (1/y)* = 0.360c

EVALUATE: The proton rest energy is 938 MeV, so the initial
kinetic energy of each proton is (y — 1)Mc? = 0.072Mc* =
(0.072)(938 MeV) = 67.5MeV. You can verify that the rest
energy M 7Tc2 of the pion is twice this, or 135 MeV. All the kinetic
energy “lost” in this completely inelastic collision is transformed
into the rest energy of the pion.

vy=1+

= 1.072

U



