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Special Relativity



Learning	Goals

Looking	forward	at	…
• why	different	observers	can	disagree	about	whether	two	events	are	
simultaneous.
• how	relativity	predicts	that	moving	clocks	run	slow,	and	what	
experimental	evidence	confirms	this.
• how	the	length	of	an	object	changes	due	to	the	object’s	motion.
• how	the	theory	of	relativity	modifies	the	relationship	between	
velocity	and	momentum.
• some	of	the	key	concepts	of	Einstein’s	general	theory	of	relativity.



Introduction

• At	Brookhaven	National	Laboratory	in	
New	York,	atomic	nuclei	are	accelerated	
to	99.995%	of	the	ultimate	speed	limit	
of	the	universe	— the	speed	of	light,	c.

• It	is	impossible	for	any	object	to	travel	at	or	beyond	c.
• We	shall	see	some	of	the	far-reaching	implications	of	relativity,	such	as	the	effect	
of	motion	on	time	and	length.

• We’ll	see	that	momentum	and	kinetic	energy	must	be	redefined.



Einstein’s	first	postulate

• Einstein’s	first	postulate,	known	as	the	principle of relativity,	states	
that	the	laws	of	physics	are	the	same	in	every	inertial	reference	
frame.	
• For	example,	the	same	emf	is	induced	
in	the	coil	whether	the	magnet	moves
relative	to	the	coil,	or	the	coil	moves	
relative	to	the	magnet.



Einstein’s	second	postulate

• Einstein’s	second	postulate	is	that	the	speed	of	light	in	vacuum	is	the	
same	in	all	inertial	frames	of	reference	and	is	independent	of	the	
motion	of	the	source.	
• Suppose	two	observers	measure	the	speed	of	light	in	vacuum.	
• One	is	at	rest	with	respect	to	the	light	source,	and	the	other	is	moving	
away	from	it.	
• According	to	the	principle	of	relativity,	the	two	observers	must	obtain	
the	same	result,	despite	the	fact	that	one	is	moving	with	respect	to	
the	other.



Michelson-Morley	experiment



Relative	velocity	of	slow-moving	objects



Relative	velocity	of	light



The	Galilean	transformation

• The	Galilean transformation
is	a	transformation	between	
two	inertial	frames	of	
reference.
• In	the	figure,	and	the	
equations	below,	the	
position	of	particle	P is	
described	in	two	frames	of	
reference.

u



• Imagine	a	train	moving	with	a	speed	comparable	to	c,	with	uniform	
velocity.	
• Two	lightning	bolts	strike	a	passenger	car,	one	near	each	end.	

A	thought	experiment	in	simultaneity:		Slide	1	of	4



• Stanley	is	stationary	on	the	ground	at	O,	midway	between	A and	B.
• Mavis	is	moving	with	the	train	at	O’ in	the	middle	of	the	passenger	
car,	midway	between	A’ and	B’.

A	thought	experiment	in	simultaneity:		Slide	2	of	4



• Mavis	runs	into	the	wave	front	from	B’ before	the	wave	front	from	A’
catches	up	to	her.	
• Thus	she	concludes	that	the	lightning	bolt	at	B’	struck	before the	one	
at A’

A	thought	experiment	in	simultaneity:		Slide	3	of	4



A	thought	experiment	in	simultaneity:		Slide	4	of	4

• The	two	wave	fronts	from	the	lightning	strikes	reach	Stanley	at	O
simultaneously,	so	Stanley	concludes	that	the	two	bolts	struck	B and	
A simultaneously.
• Whether	or	not	two	events	at	different	locations	are	simultaneous	
depends	on	the	state	of	motion	of	the	observer.



Relativity	of	time	intervals

• Let’s	consider	another	thought	experiment.	
• Mavis,	in	frame	S',	measures	the	time	interval	between	two	events.	
• Event	1	is	when	a	flash	of	light	from	a	light	source	leaves	O'.
• Event	2	is	when	the	flash	
returns	to	O',	having	been	
reflected	from	a	mirror	a	
distance	d away.
• The	flash	of	light	moves	a	total	
distance	2d,	so	the	time	
interval	is:



Relativity	of	time	intervals

• The	round-trip	time	measured	by	Stanley	in	frame	S is	a	longer	interval	Δt;	in	his	
frame	of	reference	the	two	events	occur	at	different	points	in	space.
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The round-trip time measured by Stanley in frame is a different interval in
his frame of reference the two events occur at different points in space. During
the time the source moves relative to a distance (Fig. 37.6b). In the
round-trip distance is perpendicular to the relative velocity, but the round-trip
distance in is the longer distance where

In writing this expression, we have assumed that both observers measure the
same distance We will justify this assumption in the next section. The speed of
light is the same for both observers, so the round-trip time measured in is

(37.4)

We would like to have a relationship between and that is independent of 
To get this, we solve Eq. (37.3) for and substitute the result into Eq. (37.4),
obtaining

(37.5)

Now we square this and solve for the result is

Since the quantity is less than is greater than Thus
Stanley measures a longer round-trip time for the light pulse than does Mavis.

Time Dilation
We may generalize this important result. In a particular frame of reference, sup-
pose that two events occur at the same point in space. The time interval between
these events, as measured by an observer at rest in this same frame (which we
call the rest frame of this observer), is Then an observer in a second frame
moving with constant speed relative to the rest frame will measure the time
interval to be where¢t,
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Stanley measures a longer time interval Dt:
The light pulse travels at same speed as in Sr,
but travels a greater distance than in Sr.

Mavis observes a light pulse
emitted from a source at Or and
reflected back along the same line.

Stanley observes
the same light
pulse following a diagonal path.

37.6 (a) Mavis, in frame of reference observes a light pulse emitted from a source at and reflected back along the same line. 
(b) How Stanley (in frame of reference and Mavis observe the same light pulse. The positions of at the times of departure and
return of the pulse are shown.
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Relativity	of	time	intervals

• Stanley	in	frame	S	will	observe	the	light	propagate	along	the	
diagonal	with	the	same	speed	of	light.

• the	time	for	the	light	pulse	return	to	the	source	is:



Time	dilation	and	proper	time

• Let	Δt0 be	the	proper time between	two	events.
• An	observer	moving	with	constant	speed	u will	measure	the	time	interval	to	be	
Δt,	where

where	the	Lorentz	factor	𝛄 is	defined	as:



The	Lorentz	factor

• When	u is	very	small	compared	
to	c,	𝛄 is	very	nearly	equal	
to	1.	
• If	the	relative	speed	u is	great	
enough	that	𝛄 is	appreciably	
greater	than	1,	the	speed	is	said	
to	be	relativistic.	



Proper	time

• Proper time is	the	time	interval	
between	two	events	that	occur	
at	the	same point.	
• A	frame	of	reference	can	be	
pictured	as	a	coordinate	system	
with	a	grid	of	synchronized	
clocks,	as	in	the	figure	at	the	
right.
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In thought experiments, it’s often helpful to imagine many observers with syn-
chronized clocks at rest at various points in a particular frame of reference. We
can picture a frame of reference as a coordinate grid with lots of synchronized
clocks distributed around it, as suggested by Fig. 37.9. Only when a clock is
moving relative to a given frame of reference do we have to watch for ambigui-
ties of synchronization or simultaneity.

Throughout this chapter we will frequently use phrases like “Stanley observes
that Mavis passes the point at time 2.00 s.” This
means that Stanley is using a grid of clocks in his frame of reference, like the grid
shown in Fig. 37.9, to record the time of an event. We could restate the phrase as
“When Mavis passes the point at the clock at that
location in Stanley’s frame of reference reads 2.00 s.” We will avoid using
phrases like “Stanley sees that Mavis is a certain point at a certain time,” because
there is a time delay for light to travel to Stanley’s eye from the position of an
event.

z = 0,y = 0,x = 5.00 m,

z = 0y = 0,x = 5.00 m,

x

S

y

The grid is three dimensional; identical planes
of clocks lie in front of and behind the page,
connected by grid lines perpendicular to the
page.

37.9 A frame of reference pictured as a
coordinate system with a grid of synchro-
nized clocks.

Problem-Solving Strategy 37.1 Time Dilation

IDENTIFY the relevant concepts: The concept of time dilation is
used whenever we compare the time intervals between events as
measured by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. First decide what two events define the beginning and the end

of the time interval. Then identify the two frames of reference
in which the time interval is measured.

2. Identify the target variable.

EXECUTE the solution as follows:
1. In many problems, the time interval as measured in one frame

of reference is the proper time This is the time interval¢t0.

between two events in a frame of reference in which the two
events occur at the same point in space. In a second frame of
reference that has a speed relative to that first frame, there is a
longer time interval between the same two events. In this
second frame the two events occur at different points. You will
need to decide in which frame the time interval is and in
which frame it is 

2. Use Eq. (37.6) or (37.8) to relate and and then solve for
the target variable.

EVALUATE your answer: Note that is never smaller than 
and is never greater than If your results suggest otherwise, you
need to rethink your calculation.

c.u
¢t0,¢t

¢t,¢t0

¢t.
¢t0

¢t
u

Example 37.1 Time dilation at 0.990c

High-energy subatomic particles coming from space interact with
atoms in the earth’s upper atmosphere, in some cases producing
unstable particles called muons. A muon decays into other particles
with a mean lifetime of as measured in a
reference frame in which it is at rest. If a muon is moving at 0.990
relative to the earth, what will an observer on earth measure its
mean lifetime to be?

SOLUTION

IDENTIFY and SET UP: The muon’s lifetime is the time interval
between two events: the production of the muon and its subsequent
decay. Our target variable is the lifetime in your frame of reference
on earth, which we call frame S. We are given the lifetime in a
frame in which the muon is at rest; this is its proper lifetime,

The relative speed of these two frames is2.20 ms .¢t0 =
S¿

c
2.20 ms = 2.20 * 10-6 s

c. We use Eq. (37.6) to relate the lifetimes in the two
frames.

EXECUTE: The muon moves relative to the earth between the two
events, so the two events occur at different positions as measured
in S and the time interval in that frame is (the target variable).
From Eq. (37.6),

EVALUATE: Our result predicts that the mean lifetime of the muon
in the earth frame is about seven times longer than in the
muon’s frame This prediction has been verified experimen-
tally; indeed, this was the first experimental confirmation of the
time dilation formula, Eq. (37.6).

1¢t02.1¢t2
¢t =

¢t021 - u2>c2
=

2.20 ms21 - 10.99022 = 15.6 ms

¢t

u = 0.990
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Example 37.2 Time dilation at airliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or ) at a steady speed of (about 
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?

SOLUTION

IDENTIFY and SET UP: Here we’re interested in the time interval
between the airplane departing from San Francisco and landing in
New York. The target variables are the time intervals as measured
in the frame of reference of the ground and in the frame of refer-
ence of the airplane 

EXECUTE: As measured in S the two events occur at different posi-
tions (San Francisco and New York), so the time interval measured
by ground observers corresponds to in Eq. (37.6). To find it, we
simply divide the distance by the speed s:

In the airplane’s frame San Francisco and New York passing
under the plane occur at the same point (the position of the plane).
Hence the time interval in the airplane is a proper time, correspon-
ding to in Eq. (37.6). We have¢t0

S¿,

¢t = 4.80 * 106 m
300 m>s = 1.60 * 104 s 1about 4 1

2 hours2u = 300 m>¢t

S¿.
S

670 mi>h).300 m>s4.80 * 106 m

From Eq. (37.6),

The square root can’t be evaluated with adequate precision with an
ordinary calculator. But we can approximate it using the binomial
theorem (see Appendix B):

The remaining terms are of the order of or smaller and can
be discarded. The approximate result for is

The proper time measured in the airplane, is very slightly less
(by less than one part in ) than the time measured on the ground.

EVALUATE: We don’t notice such effects in everyday life. But
present-day atomic clocks (see Section 1.3) can attain a precision
of about one part in A cesium clock traveling a long distance
in an airliner has been used to measure this effect and thereby ver-
ify Eq. (37.6) even at speeds much less than c.

1013.

1012
¢t0,

¢t0 = 11.60 * 104 s211 - 0.50 * 10-122¢t0

10-24

11 - 1.00 * 10-1221>2 = 1 - A12 B11.00 * 10-122 + Á

¢t0 = 11.60 * 104 s221 - 1.00 * 10-12

u2

c2
=

1300 m>s2213.00 * 108 m>s22 = 1.00 * 10-12

Example 37.3 Just when is it proper?

Mavis boards a spaceship and then zips past Stanley on earth at a
relative speed of 0.600 At the instant she passes him, they both
start timers. (a) A short time later Stanley measures that Mavis has
traveled beyond him and is passing a space station.
What does Stanley’s timer read as she passes the space station?
What does Mavis’s timer read? (b) Stanley starts to blink just as
Mavis flies past him, and Mavis measures that the blink takes
0.400 s from beginning to end. According to Stanley, what is the
duration of his blink?

SOLUTION

IDENTIFY and SET UP: This problem involves time dilation for
two different sets of events measured in Stanley’s frame of refer-
ence (which we call ) and in Mavis’s frame of reference (which
we call ). The two events of interest in part (a) are when Mavis
passes Stanley and when Mavis passes the space station; the target
variables are the time intervals between these two events as meas-
ured in and in The two events in part (b) are the start and finish
of Stanley’s blink; the target variable is the time interval between
these two events as measured in 

EXECUTE: (a) The two events, Mavis passing the earth and Mavis
passing the space station, occur at different positions in Stanley’s
frame but at the same position in Mavis’s frame. Hence Stanley

S.

S¿.S

S¿
S

9.00 * 107 m

c.
measures time interval while Mavis measures the proper
time As measured by Stanley, Mavis moves at 

and travels 
in time 

From Eq. (37.6), Mavis’s timer reads an elapsed time of

(b) It is tempting to answer that Stanley’s blink lasts 0.500 s in
his frame. But this is wrong, because we are now considering a
different pair of events than in part (a). The start and finish of 
Stanley’s blink occur at the same point in his frame but at different
positions in Mavis’s frame so the time interval of 0.400 s that she
measures between these events is equal to The duration of the
blink measured on Stanley’s timer is the proper time 

EVALUATE: This example illustrates the relativity of simultaneity.
In Mavis’s frame she passes the space station at the same instant
that Stanley finishes his blink, 0.400 s after she passed Stanley.
Hence these two events are simultaneous to Mavis in frame But
these two events are not simultaneous to Stanley in his frame S:
According to his timer, he finishes his blink after 0.320 s and
Mavis passes the space station after 0.500 s.

S¿.

¢t0 = ¢t 21 - u2>c2 = 0.400 s 21 - 10.60022 = 0.320 s

¢t0:
¢t.

S¿,
S

¢t0 = ¢t 21 - u2>c2 = 0.500 s 21 - 10.60022 = 0.400 s

0.500 s.¢t = 19.00 * 107 m2>11.80 * 108 m>s2 =107 m
9.00 *0.60013.00 * 108 m>s2 = 1.80 * 108 m>s 0.600c =¢t0.

¢t,

The Twin Paradox
Equations (37.6) and (37.8) for time dilation suggest an apparent paradox called
the twin paradox. Consider identical twin astronauts named Eartha and Astrid.



Twin	paradox
• Consider	identical	twin	astronauts	names	Eartha	and	Astrid.	
• Eartha	remains	on	earth	while	her	twin	Astrid	takes	off	on	a	high-speed	trip	through	the	
galaxy

• Because	of	time	dilation,	Earth	observes	Astrid’s	ages	more	slowly	and	younger	when	
Astrid	returns	to	earth

• All	inertia	frames	are	equivalent.
• Astrid	can	make	the	same	arguments	to	conclude	that	Eartha	is	younger

• Astrid	must	accelerate	with	respect	to	Earth	and	
her	reference	frame	is	not	inertial

• Correct	answer:	Astrid	is	younger	than	Eartha

37.4 Relativity of Length 1233

Eartha remains on earth while her twin Astrid takes off on a high-speed trip
through the galaxy. Because of time dilation, Eartha observes Astrid’s heartbeat
and all other life processes proceeding more slowly than her own. Thus to Eartha,
Astrid ages more slowly; when Astrid returns to earth she is younger (has aged
less) than Eartha.

Now here is the paradox: All inertial frames are equivalent. Can’t Astrid make
exactly the same arguments to conclude that Eartha is in fact the younger? Then
each twin measures the other to be younger when they’re back together, and
that’s a paradox.

To resolve the paradox, we recognize that the twins are not identical in all
respects. While Eartha remains in an approximately inertial frame at all times,
Astrid must accelerate with respect to that inertial frame during parts of her trip
in order to leave, turn around, and return to earth. Eartha’s reference frame is
always approximately inertial; Astrid’s is often far from inertial. Thus there is a
real physical difference between the circumstances of the two twins. Careful
analysis shows that Eartha is correct; when Astrid returns, she is younger than
Eartha.

Application Who’s the
Grandmother?
The answer to this question may seem obvi-
ous, but it could depend on which person had
traveled to a distant planet at relativistic
speeds. Imagine that a 20-year-old woman
had given birth to a child and then immediately
left on a 100-light-year trip (50 light-years out
and 50 light-years back) at 99.5% the speed
of light. Because of time dilation for the trav-
eler, only 10 years would pass, and she would
be 30 years old when she returned, even
though 100 years had passed by for 
people on earth. Meanwhile, the child she 
left behind at home could have had a baby 
20 years after her departure, and this grand-
child would now be 80 years old!

Test Your Understanding of Section 37.3 Samir (who is standing 
on the ground) starts his stopwatch at the instant that Maria flies past him in her
spaceship at a speed of 0.600 At the same instant, Maria starts her stopwatch. 
(a) As measured in Samir’s frame of reference, what is the reading on Maria’s stopwatch
at the instant that Samir’s stopwatch reads 10.0 s? (i) 10.0 s; (ii) less than 10.0 s; (iii)
more than 10.0 s. (b) As measured in Maria’s frame of reference, what is the reading on
Samir’s stopwatch at the instant that Maria’s stopwatch reads 10.0 s? (i) 10.0 s; (ii) less
than 10.0 s; (iii) more than 10.0 s. ❙

c.

37.4 Relativity of Length
Not only does the time interval between two events depend on the observer’s
frame of reference, but the distance between two points may also depend on the
observer’s frame of reference. The concept of simultaneity is involved. Suppose
you want to measure the length of a moving car. One way is to have two assis-
tants make marks on the pavement at the positions of the front and rear bumpers.
Then you measure the distance between the marks. But your assistants have to
make their marks at the same time. If one marks the position of the front bumper
at one time and the other marks the position of the rear bumper half a second
later, you won’t get the car’s true length. Since we’ve learned that simultaneity
isn’t an absolute concept, we have to proceed with caution.

Lengths Parallel to the Relative Motion
To develop a relationship between lengths that are measured parallel to the direc-
tion of motion in various coordinate systems, we consider another thought exper-
iment. We attach a light source to one end of a ruler and a mirror to the other end.
The ruler is at rest in reference frame and its length in this frame is (Fig.
37.10a). Then the time required for a light pulse to make the round trip from
source to mirror and back is

(37.9)

This is a proper time interval because departure and return occur at the same
point in 

In reference frame the ruler is moving to the right with speed during this
travel of the light pulse (Fig. 37.10b). The length of the ruler in is and the
time of travel from source to mirror, as measured in is During this interval¢t1.S,

l,S
uS

S¿.

¢t0 =
2l0

c

¢t0

l0S¿,

ActivPhysics 17.2: Relativity of Length



• We	attach	a	light	source	to	one	end	of	a	ruler	and	a	mirror	to	the	
other	end.	
• The	ruler	is	at	rest	in	reference	frame	S',	and	its	length	in	this	frame	is	
l0.

Relativity	of	length



Relativity	of	length

• In	reference	frame	S the	ruler	is	moving	to	the	right	with	speed	u.	
• The	length	of	the	ruler	is	shorter	in	S.



Relativity	of	length
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The	total	length	of	path	d	from	source	
to	mirror	is:

Eliminate	d,	we	get

Similarly,	the	return	trip	(mirror	to	source)	takes	the	time

The	total	time	is:
We	measure	the	distance	l by	measuring	
the	time	taken	for	light	to	make	a	round	
trip.



Length	contraction	and	proper	length

• A	length	measured	in	the	frame	in	which	the	body	is	at	rest	(the	rest	frame	of	the	
body)	is	called	a	proper length.

• Thus	l0 is	a	proper	length	in	S',	and	the	length	measured	in	any	other	frame	
moving	relative	to	S is	less	than	l0.	

• This	effect	is	called	length	contraction.



Example	of	length	contraction

• The	speed	at	which	electrons	traverse	the	3-
km	beam	line	of	the	SLAC	National	
Accelerator	Laboratory	is	slower	than	c by	
less	than	1	cm/s.	

• As	measured	in	the	reference	frame	of	such	
an	electron,	the	beam	line	(which	extends	
from	the	top	to	the	bottom	of	this	
photograph)	is	only	about	15	cm	long!



Lengths	perpendicular	to	the	direction	of	motion

• There	is	no	length	contraction	for	lengths	perpendicular	to	the	
direction	of	relative	motion.	
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Example 37.4 How long is the spaceship?

A spaceship flies past earth at a speed of 0.990 A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

SOLUTION

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length l measured
in the earth frame, relative to which the spaceship is moving at

c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length l,
two earth observers with synchronized clocks could measure the

l = l0B1 - u2

c2
= 1400 m2 21 - 10.99022 = 56.4 m

u = 0.990

l0

c.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)

For example, suppose a moving rod of length makes an angle with the
direction of relative motion (the as measured in its rest frame. Its length
component in that frame parallel to the motion, is contracted to

However, its length component perpendicular to the motion,
remains the same.l0 sinu0,

1l0 cosu02>g.
l0 cosu0,

x-axis2 u0l0

The two observers on earth (S ) must measure x2 and x1 simultaneously
to obtain the correct length l = x2 – x1 in their frame of reference. 

x
O

y

0.990c

S
x2

x1

O1 O2

l

l0 ! 400 m

37.13 Measuring the length of a moving spaceship.

Problem-Solving Strategy 37.2 Length Contraction

IDENTIFY the relevant concepts: The concept of length contraction
is used whenever we compare the length of an object as measured
by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. Decide what defines the length in question. If the problem

describes an object such as a ruler, it is just the distance between
the ends of the object. If the problem is about a distance between
two points in space, it helps to envision an object like a ruler that
extends from one point to the other.

2. Identify the target variable.

EXECUTE the solution as follows:
1. Determine the reference frame in which the object in question

is at rest. In this frame, the length of the object is its proper

length In a second reference frame moving at speed rela-
tive to the first frame, the object has contracted length 

2. Keep in mind that length contraction occurs only for lengths
parallel to the direction of relative motion of the two frames.
Any length that is perpendicular to the relative motion is the
same in both frames.

3. Use Eq. (37.16) to relate and and then solve for the target
variable.

EVALUATE your answer: Check that your answers make sense: is
never larger than and is never greater than c.ul0,

l

l0,l

l.
ul0.

Example 37.5 How far apart are the observers?

Observers and in Fig. 37.13 are 56.4 m apart on the earth.
How far apart does the spaceship crew measure them to be?

SOLUTION

IDENTIFY and SET UP: In this example the 56.4-m distance is the
proper length . It represents the length of a ruler that extendsl0

O2O1 from to and is at rest in the earth frame in which the
observers are at rest. Our target variable is the length l of this ruler
measured in the spaceship frame, in which the earth and ruler are
moving at c.u = 0.990

O2O1
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How an Object Moving Near Would Appear
Let’s think a little about the visual appearance of a moving three-dimensional
body. If we could see the positions of all points of the body simultaneously, it
would appear to shrink only in the direction of motion. But we don’t see all the
points simultaneously; light from points farther from us takes longer to reach us
than does light from points near to us, so we see the farther points at the positions
they had at earlier times.

Suppose we have a rectangular rod with its faces parallel to the coordinate
planes. When we look end-on at the center of the closest face of such a rod at rest,
we see only that face. (See the center rod in computer-generated Fig. 37.14a.) But
when that rod is moving past us toward the right at an appreciable fraction of the
speed of light, we may also see its left side because of the earlier-time effect just
described. That is, we can see some points that we couldn’t see when the rod was
at rest because the rod moves out of the way of the light rays from those points to
us. Conversely, some light that can get to us when the rod is at rest is blocked by
the moving rod. Because of all this, the rods in Figs. 37.14b and 37.14c appear
rotated and distorted.

c

EXECUTE: As in Example 37.4, but with ,

EVALUATE: This answer does not say that the crew measures their
spaceship to be both 400 m long and 7.96 m long. As measured on

l = l0B1 - u2

c2
= 156.4 m2 21 - 10.99022 = 7.96 m

l0 = 56.4 m earth, the tail of the spacecraft is at the position of at the same
instant that the nose of the spacecraft is at the position of .
Hence the length of the spaceship measured on earth equals the
56.4-m distance between and . But in the spaceship frame 
and are only 7.96 m apart, and the nose (which is 400 m in front
of the tail) passes before the tail passes .O1O2

O2

O1O2O1

O2

O1

Test Your Understanding of Section 37.4 A miniature spaceship is
flying past you, moving horizontally at a substantial fraction of the speed of light.
At a certain instant, you observe that the nose and tail of the spaceship align
exactly with the two ends of a meter stick that you hold in your hands. Rank the follow-
ing distances in order from longest to shortest: (i) the proper length of the meter stick; 
(ii) the proper length of the spaceship; (iii) the length of the spaceship measured in your
frame of reference; (iv) the length of the meter stick measured in the spaceship’s frame 
of reference. ❙

37.5 The Lorentz Transformations
In Section 37.1 we discussed the Galilean coordinate transformation equations,
Eqs. (37.1). They relate the coordinates of a point in frame of reference 
to the coordinates of the point in a second frame The second frame
moves with constant speed relative to in the positive direction along the com-
mon This transformation also assumes that the time scale is the same in
the two frames of reference, as expressed by the additional relationship 
This Galilean transformation, as we have seen, is valid only in the limit when 
approaches zero. We are now ready to derive more general transformations that
are consistent with the principle of relativity. The more general relationships are
called the Lorentz transformations.

The Lorentz Coordinate Transformation
Our first question is this: When an event occurs at point at time as
observed in a frame of reference what are the coordinates and time

of the event as observed in a second frame moving relative to with con-
stant speed in the 

To derive the coordinate transformation, we refer to Fig. 37.15 (next page),
which is the same as Fig. 37.3. As before, we assume that the origins coincide at
the initial time Then in the distance from to at time is tO¿OSt = 0 = t¿.
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37.14 Computer simulation of the
appearance of an array of 25 rods with
square cross section. The center rod is
viewed end-on. The simulation ignores
color changes in the array caused by the
Doppler effect (see Section 37.6).
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The	Lorentz	transformations

• This	Galilean	transformation,	as	we	
have	seen,	is	valid	only	in	the	limit	
when	u approaches	zero.
• The	more	general	relationships	are	
called	the	Lorentz transformations.



The	Lorentz	transformations	for	coordinates

• The	Lorentz transformations relate	the	coordinates	and	
velocities	in	two	inertial	reference	frames.	
• They	are	more	general	than	the	Galilean	transformations	
and	are	consistent	with	the	principle	of	relativity.		



The	Lorentz	transformations	for	velocities

• The	Lorentz	velocity	transformations	show	us	that	a	body	moving	with	a	
speed	less	than	c in	one	frame	of	reference	always	has	a	speed	less	than	
c in	every other frame	of	reference.

≡
dx′
dt′

≡
dx
dt
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Problem-Solving Strategy 37.3 Lorentz Transformations

IDENTIFY the relevant concepts: The Lorentz coordinate transfor-
mation equations relate the spacetime coordinates of an event in
one inertial reference frame to the coordinates of the same event in
a second inertial frame. The Lorentz velocity transformation equa-
tions relate the velocity of an object in one inertial reference frame
to its velocity in a second inertial frame.

SET UP the problem using the following steps:
1. Identify the target variable.
2. Define the two inertial frames and Remember that 

moves relative to at a constant velocity in the
3. If the coordinate transformation equations are needed, make a

list of spacetime coordinates in the two frames, such as 
and so on. Label carefully which of these you know and

which you don’t.
4. In velocity-transformation problems, clearly identify (the rel-

ative velocity of the two frames of reference), (the velocity
of the object relative to ), and (the velocity of the object
relative to ).S¿

v¿xS
vx

u

t¿1,t1,
x¿1,x1,

+x-direction.uS
S¿S¿.S

EXECUTE the solution as follows:
1. In a coordinate-transformation problem, use Eqs. (37.21) to

solve for the spacetime coordinates of the event as measured in
in terms of the corresponding values in (If you need to

solve for the spacetime coordinates in in terms of the corre-
sponding values in you can easily convert the expressions in
Eqs. (37.21): Replace all of the primed quantities with unprimed
ones, and vice versa, and replace with )

2. In a velocity-transformation problem, use either Eq. (37.22) or
Eq. (37.23), as appropriate, to solve for the target variable.

EVALUATE your answer: Don’t be discouraged if some of your
results don’t seem to make sense or if they disagree with “common
sense.” It takes time to develop intuition about relativity; you’ll
gain it with experience.

-u.u

S¿,
S

S.S¿

Example 37.6 Was it received before it was sent?

Winning an interstellar race, Mavis pilots her spaceship across a
finish line in space at a speed of 0.600 relative to that line. A
“hooray” message is sent from the back of her ship (event 2) at the
instant (in her frame of reference) that the front of her ship crosses
the line (event 1). She measures the length of her ship to be 300 m.
Stanley is at the finish line and is at rest relative to it. When and
where does he measure events 1 and 2 to occur?

SOLUTION

IDENTIFY and SET UP: This example involves the Lorentz coordi-
nate transformation. Our derivation of this transformation assumes
that the origins of frames and coincide at Thus for
simplicity we fix the origin of at the finish line and the origin of

at the front of the spaceship so that Stanley and Mavis measure
event 1 to be at and 

Mavis in measures her spaceship to be 300 m long, so she
has the “hooray” sent from 300 m behind her spaceship’s front at
the instant she measures the front to cross the finish line. That is,
she measures event 2 at and 

Our target variables are the coordinate and time of event 2
that Stanley measures in S.

tx
t¿ = 0.x¿ = -300 m

S¿
t = 0 = t¿.x = 0 = x¿

S¿
S

t = 0 = t¿.S¿S

c
EXECUTE: To solve for the target variables, we modify the first and
last of Eqs. (37.21) to give and as functions of and We do
so in the same way that we obtained Eq. (37.23) from Eq. (37.22).
We remove the primes from and add primes to and and
replace each with The results are

From Eq. (37.7), for 
We also substitute 
and in the equations for and to find

at for event 2.

EVALUATE: Mavis says that the events are simultaneous, but Stanley
says that the “hooray” was sent before Mavis crossed the finish
line. This does not mean that the effect preceded the cause. The
fastest that Mavis can send a signal the length of her ship is

She cannot send a signal
from the front at the instant it crosses the finish line that would
cause a “hooray” to be broadcast from the back at the same instant.
She would have to send that signal from the front at least 
before then, so she had to slightly anticipate her success.

1.00 ms

300 m>13.00 * 108 m>s2 = 1.00 ms.

t = -7.50 * 10-7 s = -0.750 msx = -375 m
txu = 1.80 * 108 m>s c = 3.00 * 108 m>s,t¿ = 0,x¿ = -300 m,

u = 0.600c = 1.80 * 108 m>s.g = 1.25

x = g1x¿ + ut¿2 and t = g1t¿ + ux¿>c22-u.u
t,xt¿,x¿

t¿.x¿tx

Example 37.7 Relative velocities

(a) A spaceship moving away from the earth at 0.900 fires a robot
space probe in the same direction as its motion at 0.700 relative to
the spaceship. What is the probe’s velocity relative to the earth? 
(b) A scoutship is sent to catch up with the spaceship by traveling
at 0.950 relative to the earth. What is the velocity of the scoutship
relative to the spaceship?

c

c
c SOLUTION

IDENTIFY and SET UP: This example uses the Lorentz velocity
transformation. Let the earth and spaceship reference frames be S
and respectively (Fig. 37.16); their relative velocity is

In part (a) we are given the probe velocity
with respect to , and the target variable is the velocity of thevxS¿

v¿x = 0.700cu = 0.900c.
S¿,
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Problem-Solving Strategy 37.3 Lorentz Transformations
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S¿,
S

S.S¿
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that Stanley measures in S.
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last of Eqs. (37.21) to give and as functions of and We do
so in the same way that we obtained Eq. (37.23) from Eq. (37.22).
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replace each with The results are

From Eq. (37.7), for 
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and in the equations for and to find
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EVALUATE: Mavis says that the events are simultaneous, but Stanley
says that the “hooray” was sent before Mavis crossed the finish
line. This does not mean that the effect preceded the cause. The
fastest that Mavis can send a signal the length of her ship is

She cannot send a signal
from the front at the instant it crosses the finish line that would
cause a “hooray” to be broadcast from the back at the same instant.
She would have to send that signal from the front at least 
before then, so she had to slightly anticipate her success.
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Example 37.7 Relative velocities

(a) A spaceship moving away from the earth at 0.900 fires a robot
space probe in the same direction as its motion at 0.700 relative to
the spaceship. What is the probe’s velocity relative to the earth? 
(b) A scoutship is sent to catch up with the spaceship by traveling
at 0.950 relative to the earth. What is the velocity of the scoutship
relative to the spaceship?

c

c
c SOLUTION

IDENTIFY and SET UP: This example uses the Lorentz velocity
transformation. Let the earth and spaceship reference frames be S
and respectively (Fig. 37.16); their relative velocity is

In part (a) we are given the probe velocity
with respect to , and the target variable is the velocity of thevxS¿

v¿x = 0.700cu = 0.900c.
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line. This does not mean that the effect preceded the cause. The
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Example 37.7 Relative velocities

(a) A spaceship moving away from the earth at 0.900 fires a robot
space probe in the same direction as its motion at 0.700 relative to
the spaceship. What is the probe’s velocity relative to the earth? 
(b) A scoutship is sent to catch up with the spaceship by traveling
at 0.950 relative to the earth. What is the velocity of the scoutship
relative to the spaceship?

c

c
c SOLUTION

IDENTIFY and SET UP: This example uses the Lorentz velocity
transformation. Let the earth and spaceship reference frames be S
and respectively (Fig. 37.16); their relative velocity is

In part (a) we are given the probe velocity
with respect to , and the target variable is the velocity of thevxS¿

v¿x = 0.700cu = 0.900c.
S¿,
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37.6 The Doppler Effect 
for Electromagnetic Waves

An additional important consequence of relativistic kinematics is the Doppler
effect for electromagnetic waves. In our previous discussion of the Doppler effect
(see Section 16.8) we quoted without proof the formula, Eq. (16.30), for the fre-
quency shift that results from motion of a source of electromagnetic waves rela-
tive to an observer. We can now derive that result.

Here’s a statement of the problem. A source of light is moving with constant
speed toward Stanley, who is stationary in an inertial frame (Fig. 37.17). As
measured in its rest frame, the source emits light waves with frequency and
period What is the frequency of these waves as received by Stanley?

Let be the time interval between emission of successive wave crests as
observed in Stanley’s reference frame. Note that this is not the interval between
the arrival of successive crests at his position, because the crests are emitted at
different points in Stanley’s frame. In measuring only the frequency he receives,
he does not take into account the difference in transit times for successive crests.
Therefore the frequency he receives is not What is the equation for 

During a time the crests ahead of the source move a distance and the
source moves a shorter distance in the same direction. The distance betweenluT

cT,T
ƒ?1>T.

ƒ

T
ƒT0 = 1>ƒ0.

ƒ0

u

probe relative to S. In part (b) we are given the velocity
of the scoutship relative to S, and the target variable

is its velocity relative to .

EXECUTE: (a) We use Eq. (37.23) to find the probe velocity relative
to the earth:

S¿vx
¿

vx = 0.950c

(b) We use Eq. (37.22) to find the scoutship velocity relative to
the spaceship:

EVALUATE: What would the Galilean velocity transformation for-
mula, Eq. (37.2), say? In part (a) we would have found the probe’s
velocity relative to the earth to be 

which is greater than c and hence impossible. In
part (b), we would have found the scoutship’s velocity relative to
the spaceship to be ;
the relativistically correct value, , is almost seven
times greater than the incorrect Galilean value.

v¿x = 0.345c
v¿x = vx - u = 0.950c - 0.900c = 0.050c

0.900c = 1.600c,
vx = v¿x + u = 0.700c +

v¿x =
vx - u

1 - uvx>c2
= 0.950c - 0.900c

1 - 10.900c210.950c2>c2
= 0.345c

vx =
v¿x + u

1 + uv¿x>c2
= 0.700c + 0.900c

1 + 10.900c210.700c2>c2
= 0.982c

SpaceshipScoutship Robot space
probe

vx! " 0.700c

u " 0.900c
vx " 0.950c

y!

O!
x!

S!
S

37.16 The spaceship, robot space probe, and scoutship.

Test Your Understanding of Section 37.5 (a) In frame events and 
occur at the same and but event occurs before event In frame

which event occurs first? (b) In frame events and occur at the same time and
the same and but event occurs at a less positive than
event In frame which event occurs first? ❙S¿,P4.

x-coordinateP3z-coordinates,y-
tP4P3SS¿,

P2.P1z-coordinates,x-, y-,
P2P1S

Moving source emits waves
of frequency f0. First wave
crest emitted here.

Source emits
second wave
crest here.

Position of first wave
crest at the instant that the
second crest is emitted.

Stationary observer
detects waves of
frequency f . f0.

S
cT

uT l Stanley

37.17 The Doppler effect for light. A
light source moving at speed relative to
Stanley emits a wave crest, then travels a
distance toward an observer and emits
the next crest. In Stanley’s reference frame

the second crest is a distance behind
the first crest.

lS,

uT

u
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Test Your Understanding of Section 37.5 (a) In frame events and 
occur at the same and but event occurs before event In frame

which event occurs first? (b) In frame events and occur at the same time and
the same and but event occurs at a less positive than
event In frame which event occurs first? ❙S¿,P4.

x-coordinateP3z-coordinates,y-
tP4P3SS¿,

P2.P1z-coordinates,x-, y-,
P2P1S

Moving source emits waves
of frequency f0. First wave
crest emitted here.

Source emits
second wave
crest here.

Position of first wave
crest at the instant that the
second crest is emitted.

Stationary observer
detects waves of
frequency f . f0.

S
cT

uT l Stanley

37.17 The Doppler effect for light. A
light source moving at speed relative to
Stanley emits a wave crest, then travels a
distance toward an observer and emits
the next crest. In Stanley’s reference frame

the second crest is a distance behind
the first crest.

lS,

uT

u



Doppler	effect	for	electromagnetic	waves

• When	a	source	moves	toward	the	observer,	the	observed	frequency	f is	greater	
than	the	emitted	frequency	f0.



Doppler	effect	for	electromagnetic	waves
• 𝜆 = 𝑐 − 𝑢 𝑇 and	f = .

/
• The	period	measured	in	the	rest	frame	of	the	source	(𝑇0) and	the	observer	S
(𝑇)	are	related	by:

successive crests—that is, the wavelength—is thus as measured
in Stanley’s frame. The frequency that he measures is Therefore

(37.24)

So far we have followed a pattern similar to that for the Doppler effect for
sound from a moving source (see Section 16.8). In that discussion our next step
was to equate to the time between emissions of successive wave crests by
the source. However, due to time dilation it is not relativistically correct to equate

to The time is measured in the rest frame of the source, so it is a proper
time. From Eq. (37.6), and are related by

or, since 

Remember, is not equal to We must substitute this expression for into
Eq. 37.24 to find :

Using gives

(Doppler effect, electromagnetic 
waves, source approaching observer)

(37.25)

This shows that when the source moves toward the observer, the observed fre-
quency is greater than the emitted frequency The difference 
is called the Doppler frequency shift. When is much smaller than 1, the frac-
tional shift is also small and is approximately equal to 

When the source moves away from the observer, we change the sign of in 
Eq. (37.25) to get

(Doppler effect, electromagnetic waves, 
source moving away from observer) (37.26)

This agrees with Eq. (16.30), which we quoted previously, with minor notation
changes.

With light, unlike sound, there is no distinction between motion of source and
motion of observer; only the relative velocity of the two is significant. The last
four paragraphs of Section 16.8 discuss several practical applications of the
Doppler effect with light and other electromagnetic radiation; we suggest you
review those paragraphs now. Figure 37.18 shows one common application.
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37.18 This handheld radar gun emits a
radio beam of frequency which in the
frame of reference of an approaching car
has a higher frequency given by Eq.
(37.25). The reflected beam also has fre-
quency in the car’s frame, but has an
even higher frequency in the police offi-
cer’s frame. The radar gun calculates the
car’s speed by comparing the frequencies
of the emitted beam and the doubly
Doppler-shifted reflected beam. (Compare
Example 16.18 in Section 16.8.)

ƒ ¿
ƒ

ƒ

ƒ0,

Example 37.8 A jet from a black hole

Many galaxies have supermassive black holes at their centers (see
Section 13.8). As material swirls around such a black hole, it is
heated, becomes ionized, and generates strong magnetic fields.

The resulting magnetic forces steer some of the material into high-
speed jets that blast out of the galaxy and into intergalactic space
(Fig. 37.19). The light we observe from the jet in Fig. 37.19 has a



Doppler	effect	for	electromagnetic	waves

• This	handheld	radar	gun	emits	a	radio	beam	of	frequency	f0,	which	in	the	frame	
of	reference	of	an	approaching	car	has	a	higher	frequency	f.	

• The	reflected	beam	also	has	frequency	f in	the	car’s	frame,	but	has	an	even	
higher	frequency	f ' in	the	police	officer’s	frame.

• The	radar	gun	calculates	the	car’s	speed	by	comparing	
the	frequencies	of	the	emitted	beam	and	the	doubly	
Doppler-shifted	reflected	beam.	
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With light, unlike sound, there is no distinction between motion of source and
motion of observer; only the relative velocity of the two is significant. The last
four paragraphs of Section 16.8 discuss several practical applications of the
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Example 37.8 A jet from a black hole

Many galaxies have supermassive black holes at their centers (see
Section 13.8). As material swirls around such a black hole, it is
heated, becomes ionized, and generates strong magnetic fields.

The resulting magnetic forces steer some of the material into high-
speed jets that blast out of the galaxy and into intergalactic space
(Fig. 37.19). The light we observe from the jet in Fig. 37.19 has a 37.7 Relativistic Momentum 1243

37.7 Relativistic Momentum
Newton’s laws of motion have the same form in all inertial frames of reference.
When we use transformations to change from one inertial frame to another, the
laws should be invariant (unchanging). But we have just learned that the princi-
ple of relativity forces us to replace the Galilean transformations with the more
general Lorentz transformations. As we will see, this requires corresponding gen-
eralizations in the laws of motion and the definitions of momentum and energy.

The principle of conservation of momentum states that when two bodies inter-
act, the total momentum is constant, provided that the net external force acting on
the bodies in an inertial reference frame is zero (for example, if they form an iso-
lated system, interacting only with each other). If conservation of momentum is a
valid physical law, it must be valid in all inertial frames of reference. Now, here’s
the problem: Suppose we look at a collision in one inertial coordinate system 
and find that momentum is conserved. Then we use the Lorentz transformation to
obtain the velocities in a second inertial system We find that if we use the
Newtonian definition of momentum momentum is not conserved in
the second system! If we are convinced that the principle of relativity and the
Lorentz transformation are correct, the only way to save momentum conservation
is to generalize the definition of momentum.

We won’t derive the correct relativistic generalization of momentum, but here
is the result. Suppose we measure the mass of a particle to be when it is at rest
relative to us: We often call the rest mass. We will use the term material parti-
cle for a particle that has a nonzero rest mass. When such a particle has a velocity

its relativistic momentum is

(37.27)pS !
mvS21 - v2>c2

   (relativistic momentum)

pSvS,

m
m

1pS ! mvS2, S¿.

S

frequency of (in the far ultraviolet region of the
electromagnetic spectrum; see Fig. 32.4), but in the reference
frame of the jet material the light has a frequency of 

(in the infrared). What is the speed of the jet material with
respect to us?
1013 Hz

5.55 *

6.66 * 1014 Hz

SOLUTION

IDENTIFY and SET UP: This problem involves the Doppler effect
for electromagnetic waves. The frequency we observe is

and the frequency in the frame of the source
is Since the jet is approaching us
and we use Eq. (37.25) to find the target variable 

EXECUTE: We need to solve Eq. (37.25) for u. We’ll leave it as an
exercise for you to show that the result is

We have so

EVALUATE: Because the frequency shift is quite substantial, it
would have been erroneous to use the approximate expression

. Had you done so, you would have found 

This result cannot be correct because the jet
material cannot travel faster than light.
1013 Hz2 = 11.0c.

c1¢ƒ>ƒ02 = c16.66 * 1014 Hz - 5.55 * 1013 Hz2>15.55 *u =
¢ƒ>ƒ = u>c

u =
112.022 - 1112.022 + 1

c = 0.986c

ƒ>ƒ0 = 16.66 * 1014 Hz2>15.55 * 1013 Hz2 = 12.0,

u =
1ƒ>ƒ022 - 11ƒ>ƒ022 + 1

c

u.
ƒ 7 ƒ0,ƒ0 = 5.55 * 1013 Hz.

ƒ = 6.66 * 1014 Hz,

37.19 This image shows a fast-moving jet 5000 light-years in
length emanating from the center of the galaxy M87. The light
from the jet is emitted by fast-moving electrons spiraling around
magnetic field lines (see Fig. 27.18).
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37.19 This image shows a fast-moving jet 5000 light-years in
length emanating from the center of the galaxy M87. The light
from the jet is emitted by fast-moving electrons spiraling around
magnetic field lines (see Fig. 27.18).
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• Principle	of	conservation	of	momentum	
should	valid	in	ALL inertia	frames
• From	the	Lorentz	transformation	of	relative	
velocities,	we	can	show	that	the	Newtonian	
prediction, p =	mv,	only	gives	correct	results	at	
speeds	much	less	than	c.
• Shown	is	a	graph	of	the	magnitude	of	the	
momentum	of	a	particle	of	rest	mass	m as	a	
function	of	speed	v.	

Relativistic	momentum



Relativistic	momentum

• Suppose	we	measure	the	mass	of	a	particle	to	be	m when	it	is	at	rest	relative	to	
us:	We	call	m the	rest mass.	

• When	such	a	particle	has	a	velocity	v,	its	relativistic	momentum	is:

• We can rewrite this in terms of the Lorentz factor of the particle’s rest frame with 
respect to the rest frame of the system: 
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We will use the abbreviation

We used this abbreviation in Section 37.3 with replaced by the relative speed
of two coordinate systems. Here is the speed of a particle in a particular coordi-
nate system—that is, the speed of the particle’s rest frame with respect to that
system. In terms of Eqs. (37.27) and (37.30) become

(37.31)

(37.32)

In linear accelerators (used in medicine as well as nuclear and elementary-
particle physics; see Fig. 37.11) the net force and the velocity of the acceler-
ated particle are along the same straight line. But for much of the path in most
circular accelerators the particle moves in uniform circular motion at constant
speed Then the net force and velocity are perpendicular, so the force can do no
work on the particle and the kinetic energy and speed remain constant. Thus the
denominator in Eq. (37.29) is constant, and we obtain

(37.33)

Recall from Section 3.4 that if the particle moves in a circle, the net force and
acceleration are directed inward along the radius and 

What about the general case in which and are neither along the same line
nor perpendicular? Then we can resolve the net force at any instant into com-
ponents parallel to and perpendicular to The resulting acceleration will have
corresponding components obtained from Eqs. (37.32) and (37.33). Because of
the different and factors, the acceleration components will not be propor-
tional to the net force components. That is, unless the net force on a relativistic
particle is either along the same line as the particle’s velocity or perpendicular to
it, the net force and acceleration vectors are not parallel.

gg3
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F
S

vSF
S

a = v2>r.r,

F = m11 - v2>c221>2 a = gma  1FS and vS perpendicular2
v.

vSF
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 and vS along the same line)

pS ! gmvS  (relativistic momentum)
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v
u,v

g = 121 - v2>c2

Example 37.9 Relativistic dynamics of an electron

An electron (rest mass charge
is moving opposite to an electric field of magnitude 

All other forces are negligible in comparison to
the electric-field force. (a) Find the magnitudes of momentum and
of acceleration at the instants when 0.90 and 0.99
(b) Find the corresponding accelerations if a net force of the same
magnitude is perpendicular to the velocity.

SOLUTION

IDENTIFY and SET UP: In addition to the expressions from this sec-
tion for relativistic momentum and acceleration, we need the rela-
tionship between electric force and electric field from Chapter 21.
In part (a) we use Eq. (37.31) to determine the magnitude of
momentum; the force acts along the same line as the velocity, so we
use Eq. (37.32) to determine the magnitude of acceleration. In part
(b) the force is perpendicular to the velocity, so we use Eq. (37.33)
rather than Eq. (37.32).

c.c,v = 0.010c,

5.00 * 105 N>C.
E =

-1.60 * 10-19 C29.11 * 10-31 kg, EXECUTE: (a) For and we have 
2.29, and 7.09, respectively. The values of

the momentum magnitude are

From Eq. (21.4), the magnitude of the force on the electron is

Continued

= 8.00 * 10-14 N

F = ƒ q ƒ E = 11.60 * 10-19 C215.00 * 105 N>C2
= 1.9 * 10-21 kg # m>s at v3 = 0.99c

p3 = 17.09219.11 * 10-31 kg210.99213.00 * 108 m>s2= 5.6 * 10-22 kg # m>s at v2 = 0.90c

p2 = 12.29219.11 * 10-31 kg210.90213.00 * 108 m>s2= 2.7 * 10-24 kg # m>s at v1 = 0.010c

p1 = 11.00219.11 * 10-31 kg210.010213.00 * 108m>s2p = gmv
1.00,21 - v2>c2 =

g =0.99c0.90c,v = 0.010c,
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tional to the net force components. That is, unless the net force on a relativistic
particle is either along the same line as the particle’s velocity or perpendicular to
it, the net force and acceleration vectors are not parallel.

gg3

vS.
F
S

vSF
S

a = v2>r.r,

F = m11 - v2>c221>2 a = gma  1FS and vS perpendicular2
v.

vSF
S

F = g3ma  (F
S

 and vS along the same line)

pS ! gmvS  (relativistic momentum)

g,

v
u,v

g = 121 - v2>c2

Example 37.9 Relativistic dynamics of an electron

An electron (rest mass charge
is moving opposite to an electric field of magnitude 

All other forces are negligible in comparison to
the electric-field force. (a) Find the magnitudes of momentum and
of acceleration at the instants when 0.90 and 0.99
(b) Find the corresponding accelerations if a net force of the same
magnitude is perpendicular to the velocity.

SOLUTION

IDENTIFY and SET UP: In addition to the expressions from this sec-
tion for relativistic momentum and acceleration, we need the rela-
tionship between electric force and electric field from Chapter 21.
In part (a) we use Eq. (37.31) to determine the magnitude of
momentum; the force acts along the same line as the velocity, so we
use Eq. (37.32) to determine the magnitude of acceleration. In part
(b) the force is perpendicular to the velocity, so we use Eq. (37.33)
rather than Eq. (37.32).

c.c,v = 0.010c,

5.00 * 105 N>C.
E =

-1.60 * 10-19 C29.11 * 10-31 kg, EXECUTE: (a) For and we have 
2.29, and 7.09, respectively. The values of

the momentum magnitude are

From Eq. (21.4), the magnitude of the force on the electron is

Continued

= 8.00 * 10-14 N

F = ƒ q ƒ E = 11.60 * 10-19 C215.00 * 105 N>C2
= 1.9 * 10-21 kg # m>s at v3 = 0.99c

p3 = 17.09219.11 * 10-31 kg210.99213.00 * 108 m>s2= 5.6 * 10-22 kg # m>s at v2 = 0.90c

p2 = 12.29219.11 * 10-31 kg210.90213.00 * 108 m>s2= 2.7 * 10-24 kg # m>s at v1 = 0.010c

p1 = 11.00219.11 * 10-31 kg210.010213.00 * 108m>s2p = gmv
1.00,21 - v2>c2 =

g =0.99c0.90c,v = 0.010c,

37.8 Relativistic Work and Energy
When we developed the relationship between work and kinetic energy in Chapter 6,
we used Newton’s laws of motion. When we generalize these laws according to
the principle of relativity, we need a corresponding generalization of the equation
for kinetic energy.

Relativistic Kinetic Energy
We use the work–energy theorem, beginning with the definition of work. When
the net force and displacement are in the same direction, the work done by that
force is We substitute the expression for from Eq. (37.30), the
applicable relativistic version of Newton’s second law. In moving a particle of
rest mass from point to point 

(37.34)

To derive the generalized expression for kinetic energy as a function of speed 
we would like to convert this to an integral on To do this, first remember that the
kinetic energy of a particle equals the net work done on it in moving it from rest to
the speed : Thus we let the speeds be zero at point and at point 
So as not to confuse the variable of integration with the final speed, we change 
to in Eq. 37.34. That is, is the varying of the velocity of the
particle as the net force accelerates it from rest to a speed We also realize that 
and are the infinitesimal changes in and respectively, in the time interval

Because and we can rewrite in Eq. (37.34) as

Making these substitutions gives us

(37.35)

We can evaluate this integral by a simple change of variable; the final result is

(relativistic kinetic
energy) (37.36)K = mc221 - v2>c2

- mc2 = 1g - 12mc2

K = W = L
v

0

mvx dvx11 - vx
2>c223>2

a dx =
dvx

dt
dx = dx

dvx

dt
= dx

dt
dvx = vx dvx

dxaa = dvx>dt,vx = dx>dtdt.
vx,xdvx

dxv.
x-componentvxvx

v
x2.vx1K = W.v

v.
v,K

W = L
x2

x1

F dx = L
x2

x1

ma dx11 - v2>c223>2
x2,x1m

FW = 1F dx.
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From Eq. (37.32), For and ,

The accelerations at the two higher speeds are smaller than the non-
relativistic value by factors of and 356, respectively:

(b) From Eq. (37.33), if and are perpendicular.
When and 

a1 = 8.00 * 10-14 N11.00219.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00,v = 0.010c
vSF

S
a = F>gm

a2 = 7.3 * 1015 m>s2  a3 = 2.5 * 1014 m>s2

g3 = 12.0

a1 = 8.00 * 10-14 N11.002319.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00v = 0.010ca = F>g3m. Now the accelerations at the two higher speeds are smaller by fac-
tors of and 7.09, respectively:

These accelerations are larger than the corresponding ones in part
(a) by factors of 

EVALUATE: Our results in part (a) show that at higher speeds, the
relativistic values of momentum differ more and more from the
nonrelativistic values calculated from The momentum at
0.99 is more than three times as great as at 0.90 because of the
increase in the factor Our results also show that the acceleration
drops off very quickly as approaches c.v

g.
cc

p = mv.

g2.

a2 = 3.8 * 1016 m>s2  a3 = 1.2 * 1016 m>s2

g = 2.29

Test Your Understanding of Section 37.7 According to relativistic mechan-
ics, when you double the speed of a particle, the magnitude of its momentum increases by
(i) a factor of 2; (ii) a factor greater than 2; (iii) a factor between 1 and 2 that depends on
the mass of the particle. ❙

37.8 Relativistic Work and Energy
When we developed the relationship between work and kinetic energy in Chapter 6,
we used Newton’s laws of motion. When we generalize these laws according to
the principle of relativity, we need a corresponding generalization of the equation
for kinetic energy.

Relativistic Kinetic Energy
We use the work–energy theorem, beginning with the definition of work. When
the net force and displacement are in the same direction, the work done by that
force is We substitute the expression for from Eq. (37.30), the
applicable relativistic version of Newton’s second law. In moving a particle of
rest mass from point to point 

(37.34)

To derive the generalized expression for kinetic energy as a function of speed 
we would like to convert this to an integral on To do this, first remember that the
kinetic energy of a particle equals the net work done on it in moving it from rest to
the speed : Thus we let the speeds be zero at point and at point 
So as not to confuse the variable of integration with the final speed, we change 
to in Eq. 37.34. That is, is the varying of the velocity of the
particle as the net force accelerates it from rest to a speed We also realize that 
and are the infinitesimal changes in and respectively, in the time interval

Because and we can rewrite in Eq. (37.34) as

Making these substitutions gives us

(37.35)

We can evaluate this integral by a simple change of variable; the final result is

(relativistic kinetic
energy) (37.36)K = mc221 - v2>c2

- mc2 = 1g - 12mc2

K = W = L
v

0

mvx dvx11 - vx
2>c223>2

a dx =
dvx

dt
dx = dx

dvx

dt
= dx

dt
dvx = vx dvx

dxaa = dvx>dt,vx = dx>dtdt.
vx,xdvx

dxv.
x-componentvxvx

v
x2.vx1K = W.v

v.
v,K

W = L
x2

x1

F dx = L
x2

x1

ma dx11 - v2>c223>2
x2,x1m

FW = 1F dx.
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From Eq. (37.32), For and ,

The accelerations at the two higher speeds are smaller than the non-
relativistic value by factors of and 356, respectively:

(b) From Eq. (37.33), if and are perpendicular.
When and 

a1 = 8.00 * 10-14 N11.00219.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00,v = 0.010c
vSF

S
a = F>gm

a2 = 7.3 * 1015 m>s2  a3 = 2.5 * 1014 m>s2

g3 = 12.0

a1 = 8.00 * 10-14 N11.002319.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00v = 0.010ca = F>g3m. Now the accelerations at the two higher speeds are smaller by fac-
tors of and 7.09, respectively:

These accelerations are larger than the corresponding ones in part
(a) by factors of 

EVALUATE: Our results in part (a) show that at higher speeds, the
relativistic values of momentum differ more and more from the
nonrelativistic values calculated from The momentum at
0.99 is more than three times as great as at 0.90 because of the
increase in the factor Our results also show that the acceleration
drops off very quickly as approaches c.v

g.
cc

p = mv.

g2.

a2 = 3.8 * 1016 m>s2  a3 = 1.2 * 1016 m>s2

g = 2.29

Test Your Understanding of Section 37.7 According to relativistic mechan-
ics, when you double the speed of a particle, the magnitude of its momentum increases by
(i) a factor of 2; (ii) a factor greater than 2; (iii) a factor between 1 and 2 that depends on
the mass of the particle. ❙



Relativistic	work	and	energy
• Experiments	show	that	the	net	force,

• And	we	can	re-derive	the	work-energy	theorem:

When the particle’s speed is much less than this is approximately equal to the
Newtonian expression but in general the momentum is greater in mag-
nitude than (Fig. 37.20). In fact, as approaches the momentum approaches
infinity.

Relativity, Newton’s Second Law, and Relativistic Mass
What about the relativistic generalization of Newton’s second law? In Newtonian
mechanics the most general form of the second law is

(37.28)

That is, the net force on a particle equals the time rate of change of its momen-
tum. Experiments show that this result is still valid in relativistic mechanics, pro-
vided that we use the relativistic momentum given by Eq. 37.27. That is, the
relativistically correct generalization of Newton’s second law is

(37.29)

Because momentum is no longer directly proportional to velocity, the rate of
change of momentum is no longer directly proportional to the acceleration. As a
result, constant force does not cause constant acceleration. For example, when
the net force and the velocity are both along the Eq. 37.29 gives

(37.30)

where is the acceleration, also along the Solving Eq. (37.30) for the
acceleration gives

We see that as a particle’s speed increases, the acceleration caused by a given
force continuously decreases. As the speed approaches the acceleration
approaches zero, no matter how great a force is applied. Thus it is impossible to
accelerate a particle with nonzero rest mass to a speed equal to or greater than 
We again see that the speed of light in vacuum represents an ultimate speed limit.

Equation (37.27) for relativistic momentum is sometimes interpreted to mean
that a rapidly moving particle undergoes an increase in mass. If the mass at zero
velocity (the rest mass) is denoted by then the “relativistic mass” is
given by

Indeed, when we consider the motion of a system of particles (such as rapidly
moving ideal-gas molecules in a stationary container), the total rest mass of the
system is the sum of the relativistic masses of the particles, not the sum of their
rest masses.

However, if blindly applied, the concept of relativistic mass has its pitfalls. As
Eq. (37.29) shows, the relativistic generalization of Newton’s second law is not

and we will show in Section 37.8 that the relativistic kinetic energy
of a particle is not The use of relativistic mass has its supporters
and detractors, some quite strong in their opinions. We will mostly deal with indi-
vidual particles, so we will sidestep the controversy and use Eq. (37.27) as the
generalized definition of momentum with as a constant for each particle, inde-
pendent of its state of motion.

m

K = 1
2 m relv2.

F
S

! m rela
S,

m rel = m21 - v2>c2

m relm,

c.

c,

a = F
m
a1 - v2

c2 b3>2a
x-axis.a

F = m11 - v2>c223>2 a  1FS and vS along the same line)

x-axis,

F
S

!
d
dt

mvS21 - v2>c2

F
S

F
S

!
d pS

dt

c,vmv
pS ! mvS,

c,v
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p

v
0.2c 0.4c 0.6c

5mc

4mc

3mc

2mc

mc

Relativistic momentum becomes
infinite as v approaches c.

Newtonian mechanics incorrectly
predicts that momentum becomes
infinite only if v becomes infinite.

0.8c c

HAPPENS!

DOESN’T
HAPPEN

37.20 Graph of the magnitude of the
momentum of a particle of rest mass as
a function of speed Also shown is the
Newtonian prediction, which gives correct
results only at speeds much less than c.

v.
m

When the particle’s speed is much less than this is approximately equal to the
Newtonian expression but in general the momentum is greater in mag-
nitude than (Fig. 37.20). In fact, as approaches the momentum approaches
infinity.

Relativity, Newton’s Second Law, and Relativistic Mass
What about the relativistic generalization of Newton’s second law? In Newtonian
mechanics the most general form of the second law is

(37.28)

That is, the net force on a particle equals the time rate of change of its momen-
tum. Experiments show that this result is still valid in relativistic mechanics, pro-
vided that we use the relativistic momentum given by Eq. 37.27. That is, the
relativistically correct generalization of Newton’s second law is

(37.29)

Because momentum is no longer directly proportional to velocity, the rate of
change of momentum is no longer directly proportional to the acceleration. As a
result, constant force does not cause constant acceleration. For example, when
the net force and the velocity are both along the Eq. 37.29 gives

(37.30)

where is the acceleration, also along the Solving Eq. (37.30) for the
acceleration gives

We see that as a particle’s speed increases, the acceleration caused by a given
force continuously decreases. As the speed approaches the acceleration
approaches zero, no matter how great a force is applied. Thus it is impossible to
accelerate a particle with nonzero rest mass to a speed equal to or greater than 
We again see that the speed of light in vacuum represents an ultimate speed limit.

Equation (37.27) for relativistic momentum is sometimes interpreted to mean
that a rapidly moving particle undergoes an increase in mass. If the mass at zero
velocity (the rest mass) is denoted by then the “relativistic mass” is
given by

Indeed, when we consider the motion of a system of particles (such as rapidly
moving ideal-gas molecules in a stationary container), the total rest mass of the
system is the sum of the relativistic masses of the particles, not the sum of their
rest masses.

However, if blindly applied, the concept of relativistic mass has its pitfalls. As
Eq. (37.29) shows, the relativistic generalization of Newton’s second law is not

and we will show in Section 37.8 that the relativistic kinetic energy
of a particle is not The use of relativistic mass has its supporters
and detractors, some quite strong in their opinions. We will mostly deal with indi-
vidual particles, so we will sidestep the controversy and use Eq. (37.27) as the
generalized definition of momentum with as a constant for each particle, inde-
pendent of its state of motion.
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37.8 Relativistic Work and Energy
When we developed the relationship between work and kinetic energy in Chapter 6,
we used Newton’s laws of motion. When we generalize these laws according to
the principle of relativity, we need a corresponding generalization of the equation
for kinetic energy.

Relativistic Kinetic Energy
We use the work–energy theorem, beginning with the definition of work. When
the net force and displacement are in the same direction, the work done by that
force is We substitute the expression for from Eq. (37.30), the
applicable relativistic version of Newton’s second law. In moving a particle of
rest mass from point to point 

(37.34)

To derive the generalized expression for kinetic energy as a function of speed 
we would like to convert this to an integral on To do this, first remember that the
kinetic energy of a particle equals the net work done on it in moving it from rest to
the speed : Thus we let the speeds be zero at point and at point 
So as not to confuse the variable of integration with the final speed, we change 
to in Eq. 37.34. That is, is the varying of the velocity of the
particle as the net force accelerates it from rest to a speed We also realize that 
and are the infinitesimal changes in and respectively, in the time interval

Because and we can rewrite in Eq. (37.34) as

Making these substitutions gives us

(37.35)

We can evaluate this integral by a simple change of variable; the final result is

(relativistic kinetic
energy) (37.36)K = mc221 - v2>c2

- mc2 = 1g - 12mc2

K = W = L
v

0

mvx dvx11 - vx
2>c223>2

a dx =
dvx

dt
dx = dx

dvx

dt
= dx

dt
dvx = vx dvx

dxaa = dvx>dt,vx = dx>dtdt.
vx,xdvx

dxv.
x-componentvxvx

v
x2.vx1K = W.v

v.
v,K
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x2

x1

F dx = L
x2

x1

ma dx11 - v2>c223>2
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FW = 1F dx.
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From Eq. (37.32), For and ,

The accelerations at the two higher speeds are smaller than the non-
relativistic value by factors of and 356, respectively:

(b) From Eq. (37.33), if and are perpendicular.
When and 

a1 = 8.00 * 10-14 N11.00219.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00,v = 0.010c
vSF

S
a = F>gm

a2 = 7.3 * 1015 m>s2  a3 = 2.5 * 1014 m>s2

g3 = 12.0

a1 = 8.00 * 10-14 N11.002319.11 * 10-31 kg2 = 8.8 * 1016 m>s2

g = 1.00v = 0.010ca = F>g3m. Now the accelerations at the two higher speeds are smaller by fac-
tors of and 7.09, respectively:

These accelerations are larger than the corresponding ones in part
(a) by factors of 

EVALUATE: Our results in part (a) show that at higher speeds, the
relativistic values of momentum differ more and more from the
nonrelativistic values calculated from The momentum at
0.99 is more than three times as great as at 0.90 because of the
increase in the factor Our results also show that the acceleration
drops off very quickly as approaches c.v

g.
cc

p = mv.

g2.

a2 = 3.8 * 1016 m>s2  a3 = 1.2 * 1016 m>s2

g = 2.29

Test Your Understanding of Section 37.7 According to relativistic mechan-
ics, when you double the speed of a particle, the magnitude of its momentum increases by
(i) a factor of 2; (ii) a factor greater than 2; (iii) a factor between 1 and 2 that depends on
the mass of the particle. ❙

=	change	of	kinetic	energy



Relativistic	energy	and	rest	energy

• The	relativistic	kinetic	energy	is:

• Note	that	the	kinetic	energy	approaches	infinity	as	the	speed	
approaches	the	speed	of	light.
• The	rest energy is	mc2.



Relativistic	work	and	energy

• Graph	of	the	kinetic	energy	of	a	
particle	of	rest	mass	m as	a	function	
of	speed	v.	
• Also	shown	is	the	Newtonian	
prediction,	which	gives	correct	results	
only	at	speeds	much	less	than	c



Relativistic	energy	and	momentum

• The	total energy of	a	particle	is:

• The	total	energy,	rest	energy,	and	momentum	are	related	by:



We can also relate the total energy of a particle (kinetic energy plus rest
energy) directly to its momentum by combining Eq. (37.27) for relativistic
momentum and Eq. (37.38) for total energy to eliminate the particle’s velocity.
The simplest procedure is to rewrite these equations in the following forms:

Subtracting the second of these from the first and rearranging, we find

(total energy, rest energy, 
and momentum) (37.39)

Again we see that for a particle at rest 
Equation (37.39) also suggests that a particle may have energy and momen-

tum even when it has no rest mass. In such a case, and

(37.40)

In fact, zero rest mass particles do exist. Such particles always travel at the speed
of light in vacuum. One example is the photon, the quantum of electromagnetic
radiation (to be discussed in Chapter 38). Photons are emitted and absorbed dur-
ing changes of state of an atomic or nuclear system when the energy and momen-
tum of the system change.

E = pc   (zero rest mass)

m = 0

E = mc2.1p = 02,
E2 = 1mc222 + 1pc22
a E

mc2 b2

= 1

1 - v2>c2 and a p
mc
b2

=
v2>c2

1 - v2>c2

E
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Example 37.10 Energetic electrons

(a) Find the rest energy of an electron 
in joules and in electron volts. 

(b) Find the speed of an electron that has been accelerated by an
electric field, from rest, through a potential increase of 20.0 kV or
of 5.00 MV (typical of a high-voltage x-ray machine).

SOLUTION

IDENTIFY and SET UP: This problem uses the ideas of rest energy,
relativistic kinetic energy, and (from Chapter 23) electric potential
energy. We use to find the rest energy and Eqs. (37.7) and
(37.38) to find the speed that gives the stated total energy.

EXECUTE: (a) The rest energy is

From the definition of the electron volt in Section 23.2, 
Using this, we find

(b) In calculations such as this, it is often convenient to work
with the quantity from Eq. (37.38). Solving
this for , we find

The total energy of the accelerated electron is the sum of its
rest energy and the kinetic energy that it gains from theeVbamc2

E

v = c 21 - 11>g22v
g = 1>21 - v2>c2

= 5.11 * 105 eV = 0.511 MeV

mc2 = 18.187 * 10-14 J2 1 eV

1.602 * 10-19 J

1.602 * 10-19 J.
1 eV =

= 8.187 * 10-14 J

mc2 = 19.109 * 10-31 kg212.998 * 108 m>s22
E = mc2

q = -e = -1.602 * 10-19 C2 1m = 9.109 * 10-31 kg, work done on it by the electric field in moving from point to
point :

An electron accelerated through a potential increase of 
gains 20.0 keV of energy, so for this electron

and

Repeating the calculation for we find
and

EVALUATE: With the added kinetic energy of 
20.0 keV is less than 4% of the rest energy of 0.511 MeV, and the
final speed is about one-fourth the speed of light. With 

the added kinetic energy of 5.00 MeV is much greater
than the rest energy and the speed is close to 

CAUTION Three electron energies All electrons have rest
energy 0.511 MeV. An electron accelerated from rest through a
5.00-MeV potential increase has kinetic energy 5.00 MeV (we call
it a “5.00-MeV electron”) and total energy 5.51 MeV. Be careful to
distinguish these energies from one another. ❙

c.
5.00 MV,

Vba =

Vba = 20.0 kV,

v = 0.996c.g = 10.78,eVba>mc2 = 9.78,
Vba = 5.00 MV,

v = c 21 - 11>1.03922 = 0.272c = 8.15 * 107 m>s
g = 1 + 20.0 * 103 eV

0.511 * 106 eV
= 1.039

20.0 kV
Vba =

E = gmc2 = mc2 + eVba or

g = 1 +
eVba

mc2

b
a
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37.9 Newtonian Mechanics and Relativity
The sweeping changes required by the principle of relativity go to the very roots
of Newtonian mechanics, including the concepts of length and time, the equa-
tions of motion, and the conservation principles. Thus it may appear that we have
destroyed the foundations on which Newtonian mechanics is built. In one sense
this is true, yet the Newtonian formulation is still accurate whenever speeds are
small in comparison with the speed of light in vacuum. In such cases, time dila-
tion, length contraction, and the modifications of the laws of motion are so small
that they are unobservable. In fact, every one of the principles of Newtonian
mechanics survives as a special case of the more general relativistic formulation.

The laws of Newtonian mechanics are not wrong; they are incomplete. They
are a limiting case of relativistic mechanics. They are approximately correct when
all speeds are small in comparison to and they become exactly correct in the
limit when all speeds approach zero. Thus relativity does not completely destroy
the laws of Newtonian mechanics but generalizes them. This is a common pattern
in the development of physical theory. Whenever a new theory is in partial conflict
with an older, established theory, the new must yield the same predictions as the
old in areas in which the old theory is supported by experimental evidence. Every
new physical theory must pass this test, called the correspondence principle.

The General Theory of Relativity
At this point we may ask whether the special theory of relativity gives the final
word on mechanics or whether further generalizations are possible or necessary.

c,

Example 37.11 A relativistic collision

Two protons (each with mass are initially
moving with equal speeds in opposite directions. They continue to
exist after a head-on collision that also produces a neutral pion of
mass (Fig. 37.22). If all three particles are
at rest after the collision, find the initial speed of the protons.
Energy is conserved in the collision.

Mp = 2.40 * 10-28 kg

Mp = 1.67 * 10-27 kg2 SOLUTION

IDENTIFY and SET UP: Relativistic total energy is conserved in the
collision, so we can equate the (unknown) total energy of the two
protons before the collision to the combined rest energies of the
two protons and the pion after the collision. We then use Eq.
(37.38) to find the speed of each proton.

EXECUTE: The total energy of each proton before the collision is
By conservation of energy,

From Eq. (37.38), the initial proton speed is

EVALUATE: The proton rest energy is 938 MeV, so the initial
kinetic energy of each proton is 

You can verify that the rest
energy of the pion is twice this, or 135 MeV. All the kinetic
energy “lost” in this completely inelastic collision is transformed
into the rest energy of the pion.

Mpc2
10.07221938 MeV2 = 67.5 MeV.

1g - 12Mc2 = 0.072Mc2 =

v = c 21 - 11>g22 = 0.360c

g = 1 +
Mp
2Mp

= 1 +
2.40 * 10-28 kg

211.67 * 10-27 kg2 = 1.072

21gMpc22 = 21Mpc22 + Mpc2

gMc2.

+ +

+ +

Proton

v v
BEFORE

AFTER

Proton

1.67 3 10227 kg

Pion (2.40 3 10228 kg)

37.22 In this collision the kinetic energy of two protons is
transformed into the rest energy of a new particle, a pion.

Test Your Understanding of Section 37.8 A proton is accelerated from rest
by a constant force that always points in the direction of the particle’s motion. Compared
to the amount of kinetic energy that the proton gains during the first meter of its travel,
how much kinetic energy does the proton gain during one meter of travel while it is
moving at 99% of the speed of light? (i) the same amount; (ii) a greater amount; 
(iii) a smaller amount. ❙


