
1. Frictional force



Some particular Forces – Friction

If we either slide or attempt to slide a body over a surface, the motion is 
resisted by a bonding between the body and the surface. The resistance 
is considered to be a single force Ff , called either the frictional force or 
simply friction. This force is directed along the surface, opposite the 
direction of the intended motion



Properties of Friction

1. If the body does not move, then 

the static frictional force Fs and 

the component of F that is 

parallel to the surface balance 

each other. They are equal in 

magnitude, and Fs is directed 

opposite that component of F.

2. The maximum value of the static 

friction is given by, Fs,max=μsFN

where μs is the coefficient of 

static friction.

3. If the body begins to slide along 

the surface, the magnitude of the 

frictional force rapidly decreases 

to a value Fk given by, Fk=μkFN

where μk is the coefficient of 

kinetic friction.
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Intended Learning Outcomes – after this lecture you will learn: 

1. to describe friction in a macroscopic picture and solve problems involving it. 

2. to contrast fluid resistance to friction. 

3. uniform circular motion and centripetal acceleration 

4. to solve problems involving uniform circular motion 

 

 

Frictional Forces 

Microscopic: due to interactions between molecules of surfaces in contact 

Macroscopic (phenomenological): ignore microscopic level and look at the outcome only 

 

Can be classified into two types: static friction, and dynamic (or kinetic) friction 

 

 
 

Interpretation: easier to keep the 

block moving than to start it moving 



Static & Kinetic Friction Coefficients

Material Coefficient of 

Static Friction S

Coefficient of 

Kinetic Friction S

Rubber on Glass 2.0+ 2.0

Rubber on Concrete 1.0 0.8

Steel on Steel 0.74 0.57

Wood on Wood 0.25 – 0.5 0.2

Metal on Metal 0.15 0.06

Paper on paper 0.28

Synovial Joints in 

Humans

0.01 0.003



Example 2 

The pulley is frictionless and weightless. The block of mass m1 is 

on the plane, inclined at an angle β with the horizontal. The block 

of mass m2 is connected to m1 by a string.

1. Assuming there is no friction, show a formula for the 

acceleration of the system in terms of m1, m2, β and g.

2. What condition is required for m1 to go up the incline?

3. Assume that the coefficient of kinetic friction between m1 and 

the plane is 0.2, m1=2kg, m2=2.5kg and the angle β=30o. 

Calculate the acceleration of m1 and m2.

4. What is the maximum value of friction

coefficient so the system can still move.



Free Body diagram

Free Body Diagram - In every problem where the Second Newton's 

Law applies it is fundamental to draw what is called the Free Body 

Diagram. This diagram must show all the external forces acting on a 

body. We isolate the body and the forces due to that strings and 

surfaces are replaced by arrows; of course, the friction forces and the 

force of gravity must be included. If there are several bodies, a 

separate diagram should be drawn for each one.



Free Body diagram

Key Observations:

• The (tension) force that m1 exerts on m2 through the rope has 

the same magnitude T. This is so because a rope only changes 

the direction of a force, not its magnitude assuming a 

weightless rope.

• The magnitude of the acceleration is the same at both ends of 

the rope assuming an inextensible rope.



Components of forces

1) Let's assume the direction of the acceleration makes m
1
 to go upward.

Sum of forces on m
1
 in the dirction of the incline plane: T -m

1
g sin b =m

1
a

Sum of verticeal forces on m
2

:m
2
g -T =m

2
a

Adding both equations we get m
2
g -m

1
g sin b = a(m

1
+m

2
)

a = g
m

2
-m

1
sin b

m
1
+m

2

Notice from the diagram the weight 

of m1 has been split into the 

components m1gsinβ parallel to the 

incline, and m1gcosβ perpendicular 

to it.

Without friction

Free Body diagram

+ve

+ve



Free Body diagram

+ve

+ve

2) For a to be positive (i.e. m
1
 going up): m

2
>m

1
sin b

    For a to be negative (i.e. m
1
 going down): m

2
<m

1
sin b

a = g
m

2
-m

1
sin b

m
1
+m

2

The acceleration of the masses is:



3) Now appears a friction force, 

always in an opposite direction to 

the movement. The magnitude of 

this friction force is Ff = μFN. 

Where μ is the coefficient of kinetic 

friction.

FN -m1gcosb = 0  OR FN =m1gcosb

The friction force is then Ff = mm1gcosb.

Hence the sum of forces on m1  on the incline plane is now:

T -m1gsinb -mm1gcosb =m1a

The sume of vertical forces on m2  is:

m2g-T =m2a

\a =
m2g-m1g(sinb + m cosb)

m1 +m2

Replacing values, we have a=2.51m/s2

Free Body diagram

+ve

+ve

Ff



Free Body diagram

+ve

+ve

Ff

a =
m2g-m1g(sinb +m cosb)

m1 +m2

The acceleration of the masses is:

As the coefficient of friction μ 

increases, the acceleration 

decreases until the acceleration 

becomes zero. The condition is 

obtained when:

m2g-m1g(sinb +m cosb) = 0

Þ m =
m2g-m1gsinb

m1 cosb

Replacing values we get m=0.87.



Example 3: Why banked curves in a racing track help?



Example 3: Why banked curves in a racing track help?

=



1. Hooke’s Law and
Simple harmonic motion (SHM)

The Force Law of Springs



F kx

x = distance that 

the spring is 

extended beyond 

its natural length

k = spring 

constant

For real springs, this is usually a good

approximation when x is not too large

Hooke’s Law for Springs



F kx

Example:

It takes 10 newtons to stretch a 

spring 2 cm beyond its natural 

length.

F=10 N

x=2 cm

10N 0.02mk 

500 N/mk  500F x



Now consider an object attached to a spring to move

along the x-axis

For simplicity, let us take the equilibrium position as

the origin, and take the direction at which the spring

is stretched as positive

+ve

O
x



Notice that x and F always have opposite directions

Hence we should write

F kx 



2
2

02

d x k
a x x

dt m
    

If the mass of the object is m, then the equation of motion
which leads to the simple harmonic motion (SHM) is

0

k

m
 Hence

k: the spring constant is the property of the string

m: mass of the object the spring attached to 

What happen as the acceleration is not a constant?



Simple Harmonic Motions

• When the acceleration of an object
– is in the opposite direction to its displacement from a 

certain position O

– has magnitude directly proportional to its distance from O

its motion is called Simple Harmonic Motion (SHM)

• At O, the acceleration is zero, and O is called the 
equilibrium position

• The equation of motion of SHM is

where 0 > 0 is called natural frequency



2
2

02

d x
x

dt
 

To study the motion, we need to solve the differential equation:

What function(s), when differentiated twice, equals           times itself?

0sin t0cos t

  0 0cos sinx t B t C t  

where B, C are arbitrary constants

2

0



Check:
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0 has unit s-1 = Hz and is called the natural frequency of the SHM

  0 0cos sinx t B t C t  

The general solution is:

Natural Frequency

Any values of B and C satisfy the differential equation.

How do we determine the values of B and C uniquely for a 

specific motion?



     0 0 0sin cos
d

v t x t B t C t
dt

     

B, C can be determined by initial conditions:
v(t0), x(t0)

For simplicity, take t0= 0

Given           v(0) = v0,  x(0) = x0

  0 00x x B x     0 0 00v v C v   

  0 0cos sinx t B t C t  

Initial Conditions



  0
0 0 0

0

cos sin
v

x t x t t 


 

  0 0 0 0 0sin cosv t x t v t    

   2 2

0 0 0 0 0 0 0cos sina t x t x t v t        

Summary
General Solution of SHM



The motion is sinusoidal oscillations
We can rewrite it in another form

     0
0 0 0

0

cos sin
v

x t x t t 


 



2

2 0
0

0

v
A x



 
  

 

   0

0 0

cos

      cos cos sin sin

x t A t

A t A t

 

   

 

 

0
0

0

,
v

x


 
 

 

A
we can find A and by locating
the point  0 0 0,x v 

Comparing this with

0

0 0

tan
v

x



 





   0cosx t A t  

   0 0sinv t A t    

   2

0 0cosa t A t    

0

0 0

cos

sin

A x

A v



 




 

where A and are obtained by solving

General Solution of SHM



A is called the amplitude of the SHM

The period of the SHM is given by
0

2
T






The natural frequency of the oscillation is given by

0
0

1

2
f

T




 

A

T

0 

+ve -ve

You are free to choose any
values of      which differ by
2n



t

Note: f0 and 0

are both called

the natural

frequency



Example: An object is attached to a spring so that it performs SHM
with 0 = 2 s-1 on a smooth table. The spring is initially compressed
by 10 cm, and the object has initial speed of 0.5 ms-1 (towards the
equilibrium position).
Find the period and frequency of the oscillation.

Solution:

0

2
 sT





 

1

0

1
 Hzf

T
  



Solution:
Let the equilibrium position be the origin and the direction at 
which the spring is stretched be positive, so that

x0 = 0.1 m, v0 = 0.5 ms-1

+ve

O0.1

0.5

Example: Following the last example, find the amplitude of the
oscillation and the phase angle 



Solution:
To find the amplitude, solve

 
22 2 2

0 0 0 0.1 0.25 0.27 mA x v     

0

0 0

cos 0.1

sin 0.5 / 2 0.25

A x

A v



 

  


     

+ve

O0.1

0.5



Solution:
To find the phase angle, solve

Obviously 1.19 should be rejected
Hence 

 

 

0

0 0

1

0.5
tan 2.5

2 0.1

tan 2.5 1.19 1.19  or  1.19

v

x

n n




   

    
 

      

0

0 0

cos 0.1

sin 0.5 / 2 0.25

A x

A v



 

  


     

1.19  

(0.1, 0.25)

(0.1, 0.25)

1.19



Example: Following the last example, find the position, velocity, and
acceleration of the object after 0.7 s

Solution:
   00.7 cos 0.7

          0.23 m

x A   



   0 0

1

0.7 sin 0.7

          0.28 ms

v A  



  



   2 2

00.7 0.7 0.92 msa x    



Example: A spring drives an object attached to it to
perform SHM with frequency 0 in the horizontal
direction. If now the spring is vertical and with the
same mass attached to it, what will be the motion
of the mass?

Solution:
Let O be the origin equilibrium position without
gravity. Choose O as the origin of the vertical axis
and take downward as positive. When the object
is at x, its acceleration due to the spring is 
Now there is another downward acceleration g
due to gravity. Hence the acceleration of the mass
is

+ve

x

O

2

0 x

2
2

02

d x
a x g
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g

2

0 x



Solution:
Consider the position at which these two
accelerations cancel each other, leading to
zero total acceleration. This happens at 

Let’s call this new equilibrium position O’.

+ve

e

O

2

0

0

g x

a





2 2

0 0    e g e g   

O’



Solution:
Now if we shift the origin to O’, the new
coordinate of the mass becomes

The equation of motion becomes

+ve

e

O

O’

xx

2

0/x e x gx    

 

 

2 2 2
2
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2 2 2

0 0 0      /

d d d x
x e x g
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g g

x


 x   x

     

     



Solution:

The motion is still SHM but with new equilibrium 
position at

The equilibrium position shifts downwards to O’ O

O’

2
2

02

d

dt

x
 x 

2

00  /x gx   

2

0

g





Example: Bungee Jump

https://www.youtube.com/watch?v=zG22qQydPVQ

https://www.youtube.com/watch?v=zG22qQydPVQ


(Challenge) Example: A spring drives an object M attached to it to 
perform SHM with frequency 0 in the horizontal direction. Now the 
spring is glued to a plate so that it becomes a balance, which is put 
on a table.
The object M is now released at a height h above the balance. It is 
assumed that air resistance and the plate have no effect on the 
motions. Find the lowest position of the object.

h



Solution:
First let us find the velocity of the object when it hits the plate.
Take downward as positive

Afterwards, the motion will be SHM. The equilibrium position is
below the initial height of the plate.

Hence, the initial conditions of the SHM is

2 20 2   2v gh v gh   

O

2

0/g 

2v gh

2

0/g 

2

0 0 0/ ,  2x g v gh  



Solution:
The amplitude of the SHM motion is

The lowest position is at a distance

below the original position of the
plate

O

2

0/g 

2v gh

22 2 2 2

02 0
0 2 2

0 0 0 0

22 g ghghv g
A x



   

     
           

     

2 2 2 2

0 0

2 2 2

0 0 0

2 2g gh g g ghg 

  

  
 



2. Uniform Circular Motion

香港海洋公園



Centripetal acceleration: The acceleration towards the center
at which objects under circular motion are falling.

When Dt 0,
acceleration perpendicular to velocity

Centripetal Acceleration

To show this rigorously, and to obtain the formula 
of the acceleration, we need to use calculus



Consider an object moving along a circular path of radius r

The position is completely determined by the angle between the 
positive x-axis and the line joining it to the center, q

Angular velocity, : rate of change of
q w.r.t. t

q

d

dt

q
 

Counterclockwise angle: Positive
Clockwise angle: Negative

rq is a function of time

y

x

Uniform Circular Motion



0qq

When  is a constant, it is called
uniform circular motion

   0 0t t tq q   
   0 0 0x t x v t t  

cf.

2

T


 

If at t = t0, q = q0, then

Period of circular motion, T:
Time taken to complete one cycle

2   T  

r

  0t tq q  

For simplicity, hereafter, we shall take
t0 = 0:



q

   

   

0

0

cos cos

sin sin

x t r r t

y t r r t

q  q

q  q

  

  

y

x

r

The position of the object is

Then the velocity

   ˆ ˆ
x yv t v t v x y

   ˆ ˆx t y t r x y

where

is given by

   

   

0

0

sin

cos

x

y

dx
v t r t

dt

dy
v t r t

dt

  q

  q

   

  

r

v

Velocity



The object moves at a constant speed

2 2

x yv v v r  

Note: Not constant velocity
The direction of velocity is constantly changing

   

   

0

0

sin

cos

x

y

dx
v t r t
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dy
v t r t

dt

  q

  q

   

  

Speed



The velocity is always tangential

r

v

Direction of Velocity



To prove this, notice that the dot product

r

v
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r v x y x y

Direction of Velocity



The acceleration    ˆ ˆ
x ya t a t a x y

is given by

   

   

2

0

2

0

cos

sin

x
x

y

y

dv
a t r t

dt

dv
a t r t

dt

  q

  q

   

   

It is readily observed that

2 2

The magnitude of acceleration

    /a r v r v   

2 a r

Centripetal Acceleration



Notice that the speed is constant, although the velocity is
constantly changing under acceleration

This is because the acceleration is always perpendicular
to velocity

Instantaneous acceleration perpendicular to velocity will
not change speed, but only the direction of motion

Remark



Example: The orbital period of the moon around the Earth is about
27 days 8 hours. The orbit is approximately circular with a radius of
384000 km. Find (a) its orbital speed and (b) the magnitude of the 
centripetal acceleration.

Solution:
The period is

Hence the angular velocity is

The radius is

Hence the orbital speed is

The centripetal acceleration is

 27 24 8 3600 2361600 sT     

6 12 / 2.66 10  sT     

83.84 10  mr  

1.02 km/ sv r 

2 20.0027 msa r  



 0cosA t 

Consider an object in constant speed circular motion
with angular velocity 0 and radius A

If at t = 0, the object starts at an angle     , then


q

  0t tq   

And its x-coordinate is

A

SHM can be visualized as
the projection of circular motion



SHM and Circular Motion





A

Circular motion

SHM



3. WORK AND KINETIC ENERGY



Scalar Product

𝑨 ⋅ 𝑩 = 𝐴𝐵cos𝜙

Recall



Special cases: 

(i) if  𝑨 ∥ 𝑩, 𝑨 ⋅ 𝑩 = 𝐴𝐵 , in particular, Ƹ𝑖 ⋅ Ƹ𝑖 = Ƹ𝑗 ⋅ Ƹ𝑗 = 𝑘 ⋅ 𝑘 = 1

(ii) if  𝑨 ⊥ 𝑩, 𝑨 ⋅ 𝑩 = 0 , in particular, Ƹ𝑖 ⋅ Ƹ𝑗 = Ƹ𝑗 ⋅ 𝑘 = 𝑘 ⋅ Ƹ𝑖 = 0

In analytical form, 𝑨 ⋅ 𝑩 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧

Recall



work done 𝑊 = 𝐹𝑠 cos𝜙 SI unit: joule  1 J = 1 Nm

𝑭 ∙ 𝒔, see how useful vector notation is!!

In general,  𝑊 = 𝑭 ∙ 𝒔 = 𝐹𝑥𝑠𝑥 + 𝐹𝑦𝑠𝑦 + 𝐹𝑧𝑠𝑧

From high school,



W can be +ve (work done on a body), -ve (work done by a body), or zero

In this example, a body does –ve work on a second body, the 

second body does an equal amount of +ve work on the first body

what does this mean?



Q6.1

A. The cable does positive work on the elevator, and 

the elevator does positive work on the cable.

v

Motor

Cable

Elevator

An elevator is being lifted at a constant speed by a 

steel cable attached to an electric motor. Which 

statement is correct?

B. The cable does positive work on the elevator, and the elevator does 

negative work on the cable.

C. The cable does negative work on the elevator, and the elevator does 

positive work on the cable.

D. The cable does negative work on the elevator, and the elevator does 

negative work on the cable.



A6.1

A. The cable does positive work on the elevator, and 

the elevator does positive work on the cable.

An elevator is being lifted at a constant speed by a 

steel cable attached to an electric motor. Which 

statement is correct?

B. The cable does positive work on the elevator, and the elevator does 

negative work on the cable.

C. The cable does negative work on the elevator, and the elevator does 

positive work on the cable.

D. The cable does negative work on the elevator, and the elevator does 

negative work on the cable.

v

Motor

Cable

Elevator



Three blocks are connected as shown. 

The ropes and pulleys are of negligible 

mass. When released, block C moves 

downward, block B moves up the ramp, 

and block A moves to the right. 

A. positive work on A, B, and C.

B. zero work on A, positive work on B, and negative work on C.

C. zero work on A, negative work on B, and positive work on C.

D. none of these 

Q6.8

After each block has moved a distance d, the force of gravity has done



Three blocks are connected as shown. 

The ropes and pulleys are of negligible 

mass. When released, block C moves 

downward, block B moves up the ramp, 

and block A moves to the right. 

A. positive work on A, B, and C.

B. zero work on A, positive work on B, and negative work on C.

C. zero work on A, negative work on B, and positive work on C.

D. none of these 

A6.8

After each block has moved a distance d, the force of gravity has done



Workdone by multiple forces:

𝑭1
𝑭2

𝑭3

𝑊 = σ𝑭 ∙ Ԧ𝑠 = σ 𝑭 ∙ Ԧ𝑠

work done by 

resultant force

sum of work done by 

individual forces



A tractor driving at a 

constant speed pulls a sled 

loaded with firewood. There 

is friction between the sled 

and the road.

A. positive.

B. negative.

C. zero.

D. not enough information given to decide 

Q6.4

The total work done on the sled after it has moved a distance d is



Also from high school:

•Definition of kinetic energy, 𝐾 =
1

2
𝑚𝑣2

•Work-energy theorem

Work done by the net external force = change in KE of the particle

When accelerating a particle, work done by an 

external force 𝑊 =
1

2
𝑚𝑣2

2 −
1

2
𝑚𝑣1

2 > 0,

i.e, work is done on the particle.

When decelerating a particle, 𝑊 < 0,

i.e, work is done by the particle.

The above results are easy to prove if you consider 1D motion under a constant

external force (as you have done in high school). 



Two iceboats (one of mass m, one of mass 

2m) hold a race on a frictionless, horizontal, 

frozen lake. Both iceboats start at rest, and 

the wind exerts the same constant force on 

both iceboats.

A. The iceboat of mass m: it has twice as much KE as the other.

B. The iceboat of mass m: it has 4 times as much KE as the other.

C. The iceboat of mass 2m: it has twice as much KE as the other.

D. The iceboat of mass 2m: it has 4 times as much KE as the other.

E. They both cross the finish line with the same kinetic energy. 

Q6.3

Which iceboat crosses the finish line with more kinetic energy (KE)?



Two iceboats (one of mass m, one of mass 

2m) hold a race on a frictionless, horizontal, 

frozen lake. Both iceboats start at rest, and 

the wind exerts the same constant force on 

both iceboats.

A. The iceboat of mass m: it has twice as much KE as the other.

B. The iceboat of mass m: it has 4 times as much KE as the other.

C. The iceboat of mass 2m: it has twice as much KE as the other.

D. The iceboat of mass 2m: it has 4 times as much KE as the other.

E. They both cross the finish line with the same kinetic energy. 

A6.3

Which iceboat crosses the finish line with more kinetic energy (KE)?



Question:

What if the force is not 

constant (but still in 1D)?



c.f. constant force

approximate each sub-interval by a constant force

𝑊 = 𝐹𝑎𝑥Δ𝑥𝑎 + 𝐹𝑏𝑥Δ𝑥𝑏 +⋯as Δ𝑥 → 0

𝑊 = area under curve

= 
𝑥1

𝑥2𝐹𝑥 𝑑𝑥



Work done by an external force (     not tension in 

the spring) in stretching a spring from 𝑥1 to 𝑥2

𝑊 = 𝑥1
𝑥2 𝐹 𝑑𝑥 = 𝑘 𝑥1

𝑥2 𝑥 𝑑𝑥 =
1

2
𝑘𝑥2

2 −
1

2
𝑘𝑥1

2

Hooke’s law (Robert Hooke, 1678)

– restoring force (i.e., tension in the spring) = −𝑘𝑥

F

F

force constant

unit: N/m

displacement from natural length

area under the line

direction opposite to 

displacement

Example: An ideal spring

Hooke’s law – restoring force (i.e., tension in the spring) = −𝑘𝑥

•on stretching, 𝑥2 >
𝑥1, 𝑊 > 0, work is 

done (on / by) the 

spring

•on releasing, 𝑥2 <
𝑥1, 𝑊 < 0, work is 

done (on / by) the 

spring



Example 6.7

A glider of mass m, and a spring with force constant k. Initially the spring is 

unstretched and the glider is moving with speed 𝑣1. What is the maximum 

displacement d to the right if the frictional coefficient is 𝜇𝑘?

By the work-energy theorem

−𝜇𝑘𝑚𝑔𝑑 −න
0

𝑑

𝑘𝑥𝑑𝑥 = 0 −
1

2
𝑚𝑣1

2

work done by 𝑓𝑘

work done by 
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1D motion with variable force,
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=
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∴ work done by an external force
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Work-energy theorem works for variable force!



work done in this small segment 𝑑𝑊 = 𝑭 ∙ 𝑑Ԧ𝒍 = 𝐹∥𝑑𝑙 = 𝑚𝑣
𝑑𝑣

𝑑𝑙
𝑑𝑙 = 𝑚𝑣𝑑𝑣

total work done = sum over all segments

𝑊𝑡𝑜𝑡 =𝑭 ∙ 𝑑Ԧ𝒍 → න
𝑃1
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𝑣 along 

tangential 

direction 

(why?)

3D motion with variable force

Idea: break up the path into very short segments so that in each segment,

𝑭 is approximately constant

Conclusion: work-energy theorem holds for motion along a curve under variable force.



σ𝐹𝑥 = 𝐹 − 𝑇 sin 𝜃 = 0

σ𝐹𝑦 = 𝑇 cos 𝜃 − 𝑤 = 0

⇒ 𝑇 = 𝑤 sec 𝜃

𝐹 = 𝑤 tan𝜃

Example 6.8

Apply a horizontal force 𝑭 to push the swing up from 𝜃 = 0 to 𝜃0
Assumption: 𝑭 is just enough to push it up so that the swing is in equilibrium any time

Work done by net force, Wnet = ____

Work done by 𝑻, WT = ______ (∵ 𝑻 ⊥ 𝑑Ԧ𝒍)

Work done by 𝑭,

𝑊𝐹 = න𝑭 ⋅ 𝑑Ԧ𝒍 = න
0

𝜃0

𝐹 cos 𝜃 𝑑𝑙 = න
0

𝜃0

𝑤 tan𝜃 cos 𝜃 𝑅𝑑𝜃 = 𝑤𝑅 1 − cos 𝜃0

Work done by 𝒘𝑊𝑤 = 𝒘 ⋅ 𝑑Ԧ𝒍 = 0
𝜃0𝑤 cos

𝜋

2
+ 𝜃 𝑑𝑙 =

− 0
𝜃0𝑤 sin 𝜃 𝑅𝑑𝜃 = −𝑤𝑅 1 − cos 𝜃0
Check that 𝑊net = 𝑊𝑇 +𝑊𝐹 +𝑊𝑤



Power

Average over a period Δ𝑡, 𝑃𝑎𝑣 =
Δ𝑊

Δ𝑡

Instantaneous power (Δ𝑡 → 0), 𝑃 = lim
Δ𝑡→0

Δ𝑊

Δ𝑡
=

𝑑𝑊

𝑑𝑡

SI unit: watt  1 W = 1 J/s

Another unit of energy besides J – kilowatt hour, 

common in electric bills

1 KWh = (103 J/s)(3600 s) = 3.6×106 J

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝑭 ⋅

𝑑𝒔

𝑑𝑡
= 𝑭 ⋅ 𝒗



An object is initially at rest. A net force (which always points in the 

same direction) is applied to the object so that the power of the net 

force is constant. As the object gains speed,

A. the magnitude of the net force remains constant.

B. the magnitude of the net force increases.

C. the magnitude of the net force decreases.

D. not enough information given to decide 

Q6.10



An object is initially at rest. A net force (which always points in the 

same direction) is applied to the object so that the power of the net 

force is constant. As the object gains speed,

A. the magnitude of the net force remains constant.

B. the magnitude of the net force increases.

C. the magnitude of the net force decreases.

D. not enough information given to decide 
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POTENTIAL ENERGY & ENERGY

CONSERVATION



Potential energy –

energy associated with the 

position of bodies in a 

system



Gravitational PE

Defined by  𝑈𝑔𝑟𝑎𝑣 = 𝑚𝑔𝑦

𝑊grav = 𝑚𝑔 𝑦1 − 𝑦2 > 0, 

𝒘 does +ve work

Δ𝑈grav = 𝑚𝑔 𝑦2 − 𝑦1 = −𝑊grav < 0

gravitational PE decreases

𝑊grav = −𝑚𝑔 𝑦2 − 𝑦1 < 0, 

𝒘 does –ve work

Δ𝑈grav = 𝑚𝑔 𝑦2 − 𝑦1 = −𝑊grav > 0

gravitational PE increases

Work done by the weight of the body



work done by the weight

𝑊grav = 𝒘 ∙ ∆𝒔 = −𝑚𝑔∆𝑦

= −∆𝑈grav
same as vertical motion!

Along a curved path



Conclusion: 𝑊𝑔𝑟𝑎𝑣= −∆𝑈𝑔𝑟𝑎𝑣

c.f. drawing money from the bank and spending it

Gravitational PE does not belong to the body only, it belongs to

both the body and the earth



A piece of fruit falls straight down. As it falls,

A. the gravitational force does positive work on it and the gravitational 

potential energy increases.

B. the gravitational force does positive work on it and the gravitational 

potential energy decreases.

C. the gravitational force does negative work on it and the gravitational 

potential energy increases.

D. the gravitational force does negative work on it and the gravitational 

potential energy decreases.

Q7.1



A piece of fruit falls straight down. As it falls,

A. the gravitational force does positive work on it and the gravitational 

potential energy increases.

B. the gravitational force does positive work on it and the gravitational 

potential energy decreases. 

C. the gravitational force does negative work on it and the gravitational 

potential energy increases.

D. the gravitational force does negative work on it and the gravitational 

potential energy decreases.
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Δ𝐾 = −Δ𝑈grav ⇒ Δ𝐾 + Δ𝑈grav = 0,

or 𝐾initial + 𝑈grav,initial = 𝐾final + 𝑈grav,final

Conservation of mechanical energy

By work-energy theorem

What if other forces also do work?

Work-energy theorem        ⇒ 𝑊𝑜𝑡ℎ𝑒𝑟 +𝑊𝑔𝑟𝑎𝑣 = ∆𝐾

⇒ 𝑊𝑜𝑡ℎ𝑒𝑟= ∆𝐾 + ∆𝑈𝑔𝑟𝑎𝑣



You toss a 0.150-kg baseball straight 

upward so that it leaves your hand moving 

at 20.0 m/s. The ball reaches a maximum 

height y2.

What is the speed of the ball when it is at 

a height of y2/2? Ignore air resistance.

A. 10.0 m/s

B. less than 10.0 m/s but greater than zero 

C. greater than 10.0 m/s

D. not enough information given to decide

Q7.2

m = 0.150 kg

v1 = 20.0 m/s

v2 = 0

y1 = 0

y2
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height y2.
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a height of y2/2? Ignore air resistance.
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Question
• The figure shows two different frictionless ramps. The 

heights 𝑦1 and 𝑦2 are the same for both ramps. If a 
block of mass m is released from rest at the left-hand 
end of each ramp, which block arrives at the right-hand 
end with the greater speed?
1) block I;

2) block II;

3) the speed is the same for both blocks.



Work done by restoring force in spring

𝑊el = න
𝑥1

𝑥2

−𝑘𝑥 𝑑𝑥 = 1
2𝑘𝑥1

2 − 1
2𝑘𝑥2

2

Define elastic PE of spring 𝑈el =
1

2
𝑘𝑥2

𝑊el = −∆𝑈el
c.f. gravitational PE

𝑈grav free to choose zero level position, but 

for 𝑈el, zero level position must correspond to 

unstretched position.

Elastic PE – spring 



In the presence of gravitational, elastic, and other forces

Work-energy theorem   ⇒ 𝑊grav +𝑊el +𝑊other = ∆𝐾

⇒ 𝑊other = ∆𝐾 + ∆ 𝑈grav + 𝑈el
= ∆𝐾 + ∆𝑃𝐸

If  𝑊other = 0,  Δ𝐾 + Δ𝑃𝐸 = 0 ,

or 𝐾initial + 𝑃𝐸initial = 𝐾final + 𝑃𝐸final

Conservation of mechanical energy



Q7.3

As a rock slides from A to B along the 

inside of this frictionless hemispherical 

bowl, mechanical energy is conserved. 

Why?

(Ignore air resistance.) 

A. The bowl is hemispherical.

B. The normal force is balanced by centrifugal force.

C. The normal force is balanced by centripetal force.

D. The normal force acts perpendicular to the bowl’s surface.

E. The rock’s acceleration is perpendicular to the bowl’s surface.



A. The bowl is hemispherical.

B. The normal force is balanced by centrifugal force.

C. The normal force is balanced by centripetal force.

D. The normal force acts perpendicular to the bowl’s surface.

E. The rock’s acceleration is perpendicular to the bowl’s surface.
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inside of this frictionless hemispherical 

bowl, mechanical energy is conserved. 

Why?

(Ignore air resistance.) 



Example

An elevator with a broken cable. Friction between the rail and the elevator is f. 

What is the spring constant k if the elevator has initial speed 𝑣1 when it just 

touches the spring, and comes to rest at a distance d= 2.00 m?

𝑑

work done by friction 𝑊other = −𝑓𝑑

∆𝐾 = 0 −
1

2
𝑚𝑣1

2

∆𝑃𝐸 = −𝑚𝑔𝑑 +
1

2
𝑘𝑑2

𝑊other = ∆𝐾 + ∆𝑃𝐸

⇒ −𝑓𝑑 = −1
2𝑚𝑣1

2 −𝑚𝑔𝑑 + 1
2𝑘𝑑

2

⇒ 𝑘 =
2 𝑚𝑔𝑑 + 1

2𝑚𝑣1
2 − 𝑓𝑑

𝑑2



A block is released from rest on a frictionless 

incline as shown. When the moving block is in 

contact with the spring and compressing it, what is 

happening to the gravitational potential energy 

Ugrav and the elastic potential energy Uel?

A. Ugrav and Uel are both increasing.

B. Ugrav and Uel are both decreasing.

C. Ugrav is increasing; Uel is decreasing.

D. Ugrav is decreasing; Uel is increasing.

E. The answer depends on how the block’s speed is changing. 

Q7.5



A block is released from rest on a frictionless 

incline as shown. When the moving block is in 

contact with the spring and compressing it, what is 

happening to the gravitational potential energy 

Ugrav and the elastic potential energy Uel?

A. Ugrav and Uel are both increasing.

B. Ugrav and Uel are both decreasing.

C. Ugrav is increasing; Uel is decreasing.

D. Ugrav is decreasing; Uel is increasing.

E. The answer depends on how the block’s speed is changing. 
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Properties of the work done by conservative 

forces:

1. It can be expressed as the difference 

between the initial and final values of a 

potential energy function.

2. It is reversible.

Consequences:

1. It is independent of the path of the body.

2. When the starting and ending points are 

the same (path forms a close loop), the 

total work is zero.



c.f. –ve work done by friction cannot be “reclaimed”, called non-conservative forces.

work done by friction in path (2) is more 

negative than in path (1).

(1)

(2)

Work done by non-conservative force is path dependent

The term PE is reserved for conservative forces only

To test whether a force is conservative – check if the work done is zero around 

a close loop.



Example

An electron goes counter clockwise around a square loop under a 

force 𝑭 = 𝐶𝑥 Ƹ𝑗, C constant

Leg 1, 𝑊1 = 𝑭 ∙ 𝑑Ԧ𝒍 = 0

Leg 2, 𝑊2 = 𝐶𝐿2

Leg 3, 𝑊3 = 0

Leg 4, 𝑊4 = 0

𝑭 is (conservative / non-conservative)



Work done by a conservative force 𝑊 = −∆𝑈(𝑥) in 1D

𝐹∆𝑥

⇒ 𝐹 = −
∆𝑈

∆𝑥

∆𝑥→0
𝐹 = −

𝑑𝑈

𝑑𝑥

To derive a conservative force 𝑭 from its potential energy function 𝑈:

Free to add a constant to 𝑈(𝑥) without changing the force

Check: 𝑈grav = 𝑚𝑔ℎ, 𝐹 = −𝑚𝑔

𝑈el =
1

2
𝑘𝑥2, 𝐹 = −𝑘𝑥

In 3D, 𝐹𝑥 = −
𝜕𝑈

𝜕𝑥
, 𝐹𝑦 = −

𝜕𝑈

𝜕𝑦
, 𝐹𝑧 = −

𝜕𝑈

𝜕𝑧



Example

x

y 𝐹𝑥 = −𝑘𝑥

𝐹𝑦 = −𝑘𝑦

𝑈 𝑥, 𝑦 = 1
2
𝑘 𝑥2 + 𝑦2

𝐹𝑥 = −
𝜕𝑈

𝜕𝑥
= −𝑘𝑥, 𝐹𝑦 = −

𝜕𝑈

𝜕𝑦
= −𝑘𝑦

𝒓



Question
• A particle moving along the x-axis is acted on by a 

conservative force 𝐹𝑥.
• At a certain point, the force is zero.
• At that point the value of the potential energy function 
𝑈(𝑥) is 
1) = 0
2) > 0
3) < 0
4) not enough information to decide

• 𝑑𝑈/𝑑𝑥 is
1) = 0
2) > 0
3) < 0
4) not enough information to decide



Interpretation of an energy diagram:

Note the meanings of stable and unstable equilibrium.



The graph shows the potential energy U 

for a particle that moves along the x-axis.

The particle is initially at x = d and 

moves in the negative x-direction. At 

which of the labeled x-coordinates does 

the particle have the greatest speed?

Q7.6

A. at x = a B. at x = b C. at x = c

D. at x = d

E. more than one of the above



The graph shows the potential energy U 

for a particle that moves along the x-axis.

The particle is initially at x = d and 

moves in the negative x-direction. At 

which of the labeled x-coordinates does 

the particle have the greatest speed?

A. at x = a B. at x = b C. at x = c
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The graph shows the potential energy U 

for a particle that moves along the x-axis.

The particle is initially at x = d and 

moves in the negative x-direction. At 

which of the labeled x-coordinates is the 

particle slowing down?

A. at x = a B. at x = b C. at x = c

D. at x = d

E. more than one of the above

Q7.7



The graph shows the potential energy U 

for a particle that moves along the x-axis.

The particle is initially at x = d and 

moves in the negative x-direction. At 

which of the labeled x-coordinates is the 

particle slowing down?

A. at x = a B. at x = b C. at x = c

D. at x = d

E. more than one of the above
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The graph shows the potential energy U 

for a particle that moves along the x-axis. 

At which of the labeled x-coordinates is 

there zero force on the particle?

A. at x = a and x = c

B. at x = b only

C. at x = d only

D. at x = b and d

E. misleading question—there is a force at all values of x

Q7.8



The graph shows the potential energy U 

for a particle that moves along the x-axis. 

At which of the labeled x-coordinates is 

there zero force on the particle?

A. at x = a and x = c

B. at x = b only

C. at x = d only

D. at x = b and d

E. misleading question—there is a force at all values of x
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The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx = 0 at x = 

a. Which statement about the associated potential energy

function U at x = a is correct?

A. U = 0 at x = a

B. U is a maximum at x = a.

C. U is a minimum at x = a.

D. U is neither a minimum or a maximum at x = a, and its value at 

x = a need not be zero.

Q7.9

x

Fx

0
a



The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx = 0 at x = 

a. Which statement about the associated potential energy

function U at x = a is correct?

A. U = 0 at x = a

B. U is a maximum at x = a.

C. U is a minimum at x = a.

D. U is neither a minimum or a maximum at x = a, and its value at 

x = a need not be zero.
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The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx = 0 at x = 

a. Which statement about the associated potential energy

function U at x = a is correct?

A. U = 0 at x = a

B. U is a maximum at x = a.

C. U is a minimum at x = a.

D. U is neither a minimum or a maximum at x = a, and its value at 

x = a need not be zero.
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The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx = 0 at x = 

a. Which statement about the associated potential energy

function U at x = a is correct?

A. U = 0 at x = a

B. U is a maximum at x = a.

C. U is a minimum at x = a.

D. U is neither a minimum or a maximum at x = a, and its value at 

x = a need not be zero.
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x

Fx

0
a



A. dU/dx > 0 at x = a

B. dU/dx < 0 at x = a

C. dU/dx = 0 at x = a

D. Any of the above could be correct.

Q7.11

x

Fx

0
a

The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx > 0 and 

dFx/dx < 0 at x = a. Which statement about the 

associated potential energy function U at x = a is correct?



The graph shows a conservative force Fx as a function of 

x in the vicinity of x = a. As the graph shows, Fx > 0 and 

dFx/dx < 0 at x = a. Which statement about the 

associated potential energy function U at x = a is correct?

A. dU/dx > 0 at x = a

B. dU/dx < 0 at x = a

C. dU/dx = 0 at x = a

D. Any of the above could be correct.

A7.11

x

Fx

0
a


