


Looking forward at …

• how Einstein’s photon picture of light explains the 
photoelectric effect.

• how experiments with x-ray production provided evidence 
that light is emitted in the form of photons.

• how the scattering of gamma rays helped confirm the photon 
picture of light.

• how the Heisenberg uncertainty principle imposes 
fundamental limits on what can be measured.



Introduction
• This plastic surgeon is using 

two light sources: a headlamp 
that emits a beam of visible 
light and a handheld laser that
emits infrared light.

• The light from both sources is 
emitted in the form of packets of energy called photons.

• The individual photons in the infrared laser are actually less 
energetic than the photons in the visible light.



The photoelectric effect
• To escape from the surface, 

an electron must absorb 
enough energy from the 
incident light to overcome 
the attraction of positive ions 
in the material. 

• These attractions constitute 
a potential-energy barrier; 
the light supplies the “kick” 
that enables the electron to 
escape.

• The ejected electrons form 
what is called a photocurrent.
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The experimental results proved to be very different from these predictions.
Here is what was found in the years between 1877 and 1905:

Experimental Result 1: The photocurrent depends on the light frequency. For a given
material, monochromatic light with a frequency below a minimum threshold fre-
quency produces no photocurrent, regardless of intensity. For most metals the thresh-
old frequency is in the ultraviolet (corresponding to wavelengths between 200 and
300 nm), but for other materials like potassium oxide and cesium oxide it is in the vis-
ible spectrum ( between 380 and 750 nm).

Experimental Result 2: There is no measurable time delay between when the light is
turned on and when the cathode emits photoelectrons (assuming the frequency of the
light exceeds the threshold frequency). This is true no matter how faint the light is.

Experimental Result 3: The stopping potential does not depend on intensity, but does
depend on frequency. Figure 38.4 shows graphs of photocurrent as a function of
potential difference for light of a given frequency and two different intensities.
The reverse potential difference needed to reduce the current to zero is the same
for both intensities. The only effect of increasing the intensity is to increase the num-
ber of electrons per second and hence the photocurrent i. (The curves level off when

is large and positive because at that point all the emitted electrons are being col-
lected by the anode.) If the intensity is held constant but the frequency is increased,
the stopping potential also increases. In other words, the greater the light frequency,
the higher the energy of the ejected photoelectrons.

These results directly contradict Maxwell’s description of light as an electro-
magnetic wave. A solution to this dilemma was provided by Albert Einstein in
1905. His proposal involved nothing less than a new picture of the nature of light.

Einstein’s Photon Explanation
Einstein made the radical postulate that a beam of light consists of small
packages of energy called photons or quanta. This postulate was an exten-
sion of an idea developed five years earlier by Max Planck to explain the proper-
ties of blackbody radiation, which we discussed in Section 17.7. (We’ll explore
Planck’s ideas in Section 39.5.) In Einstein’s picture, the energy E of an individual
photon is equal to a constant h times the photon frequency ƒ. From the relationship

for electromagnetic waves in vacuum, we have

(38.2)

where h is a universal constant called Planck’s constant. The numerical value of
this constant, to the accuracy known at present, is

CAUTION Photons are not “particles” in the usual sense It’s common to envision pho-
tons as miniature billiard balls or pellets. While that’s a convenient mental picture, it’s not
very accurate. For one thing, billiard balls and bullets have a rest mass and travel slower
than the speed of light c, while photons travel at the speed of light and have zero rest mass.
For another thing, photons have wave aspects (frequency and wavelength) that are easy to
observe. The fact is that the photon concept is a very strange one, and the true nature of
photons is difficult to visualize in a simple way. We’ll discuss the dual personality of pho-
tons in more detail in Section 38.4. ❙

In Einstein’s picture, an individual photon arriving at the surface in Fig. 38.1a
or 38.2 is absorbed by a single electron. This energy transfer is an all-or-nothing
process, in contrast to the continuous transfer of energy in the wave theory of
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reconstructed into an image (Fig. 38.2). On the moon, sunlight striking the sur-
face causes surface dust to eject electrons, leaving the dust particles with a posi-
tive charge. The mutual electric repulsion of these charged dust particles causes
them to rise above the moon’s surface, a phenomenon that was observed from
lunar orbit by the Apollo astronauts.

Threshold Frequency and Stopping Potential
In Section 32.1 we explored the wave model of light, which Maxwell formulated
two decades before the photoelectric effect was observed. Is the photoelectric
effect consistent with this model? Figure 38.3a shows a modern version of one of
the experiments that explored this question. Two conducting electrodes are
enclosed in an evacuated glass tube and connected by a battery, and the cathode
is illuminated. Depending on the potential difference between the two elec-
trodes, electrons emitted by the illuminated cathode (called photoelectrons) may
travel across to the anode, producing a photocurrent in the external circuit. (The
tube is evacuated to a pressure of 0.01 Pa or less to minimize collisions between
the electrons and gas molecules.)

The illuminated cathode emits photoelectrons with various kinetic energies. If
the electric field points toward the cathode, as in Fig. 38.3a, all the electrons are
accelerated toward the anode and contribute to the photocurrent. But by reversing
the field and adjusting its strength as in Fig. 38.3b, we can prevent the less ener-
getic electrons from reaching the anode. In fact, we can determine the maximum
kinetic energy of the emitted electrons by making the potential of the anode
relative to the cathode, just negative enough so that the current stops. This
occurs for where is called the stopping potential. As an electron
moves from the cathode to the anode, the potential decreases by and negative
work is done on the (negatively charged) electron. The most energetic elec-
tron leaves the cathode with kinetic energy and has zero kinetic
energy at the anode. Using the work–energy theorem, we have

(maximum kinetic energy
of photoelectrons) (38.1)

Hence by measuring the stopping potential we can determine the maxi-
mum kinetic energy with which electrons leave the cathode. (We are ignoring any
effects due to differences in the materials of the cathode and anode.)

In this experiment, how do we expect the photocurrent to depend on the volt-
age across the electrodes and on the frequency and intensity of the light? Based
on Maxwell’s picture of light as an electromagnetic wave, here is what we would
expect:

Wave-Model Prediction 1: We saw in Section 32.4 that the intensity of an electromag-
netic wave depends on its amplitude but not on its frequency. So the photoelectric
effect should occur for light of any frequency, and the magnitude of the photocurrent
should not depend on the frequency of the light.

Wave-Model Prediction 2: It takes a certain minimum amount of energy, called the
work function, to eject a single electron from a particular surface (see Fig. 38.1). If
the light falling on the surface is very faint, some time may elapse before the total
energy absorbed by the surface equals the work function. Hence, for faint illumina-
tion, we expect a time delay between when we switch on the light and when photo-
electrons appear.

Wave-Model Prediction 3: Because the energy delivered to the cathode surface
depends on the intensity of illumination, we expect the stopping potential to increase
with increasing light intensity. Since intensity does not depend on frequency, we fur-
ther expect that the stopping potential should not depend on the frequency of the light.
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1905. His proposal involved nothing less than a new picture of the nature of light.
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Einstein made the radical postulate that a beam of light consists of small
packages of energy called photons or quanta. This postulate was an exten-
sion of an idea developed five years earlier by Max Planck to explain the proper-
ties of blackbody radiation, which we discussed in Section 17.7. (We’ll explore
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Photocurrent in the photoelectric effect
• Shown are graphs of photocurrent as a function of potential 

difference VAC for light of a given frequency and two 
different intensities.

• The reverse potential 
difference −V0 needed 
to reduce the current to 
zero is the same for 
both intensities.



Einstein’s photon explanation
• Einstein made the radical postulate that a beam of light 

consists of small packages of energy called photons or quanta.

• The energy of an individual photon is:

• Here Planck’s constant is h = 6.626 × 10−34 J · s

• An individual photon arriving at a surface is absorbed by a 
single electron. 

• The electron can escape from the surface only if the energy it 
acquires is greater than the work function ϕ. 



Einstein’s explanation of the photoelectric 
effect

• This explains how the energy 
of an emitted electron in the 
photoelectric effect depends 
on the frequency of light 
used.

• The greater the work 
function of a particular 
material, the higher the 
minimum frequency needed 
to emit photoelectrons.



Table 38.1: Work functions of several 
elements



Photon momentum
• Every particle that has energy must have momentum. 

• Photons have zero rest mass, and a particle with zero rest 
mass and energy E has momentum with magnitude p given 
by E = pc.

• Thus the magnitude p of the momentum of a photon is:

• The direction of the photon’s momentum is simply the 
direction in which the electromagnetic wave is moving.



X-ray production
• Inverse of photoelectric 

effect

• Shown is an experimental 
arrangement for making 
x rays.

• The next slide shows the 
resulting x-ray spectrum. 



X-ray production
• The greater the kinetic 

energy of the electrons that 
strike the anode, the 
shorter the minimum 
wavelength of the x rays 
emitted by the anode.

• The photon model explains 
this behavior.

• Higher-energy electrons 
can convert their energy 
into higher-energy 
photons, which have a 
shorter wavelength. eVAC = hfmax =

hc
λmin



X-ray absorption and medical imaging
• Atomic electrons can absorb 

x rays. 

• Hence materials with many 
electrons per atom tend to be 
better x-ray absorbers than 
materials with few electrons. 
(Absorption rate ~ Z3)

• Bones contain large amounts of elements such as phosphorus and 
calcium, with 15 and 20 electrons per atom, respectively. 

• In soft tissue, the predominant elements are hydrogen, carbon, and 
oxygen, with only 1, 6, and 8 electrons per atom, respectively.

• Hence x rays are absorbed by bone but pass relatively easily 
through soft tissue.



X-ray scattering: The Compton experiment
• In the Compton experiment, 

x rays are scattered from 
electrons. 

• The scattered x rays have a 
longer wavelength than the 
incident x rays, and the 
scattered wavelength 
depends on the scattering 
angle .
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reconstructs a picture of absorption over an entire cross section of the subject
(see Fig. 38.9). Differences in absorption as small as 1% or less can be detected
with CT scans, and tumors and other anomalies that are much too small to be
seen with older x-ray techniques can be detected.

X rays cause damage to living tissues. As x-ray photons are absorbed in tissues,
their energy breaks molecular bonds and creates highly reactive free radicals (such
as neutral H and OH), which in turn can disturb the molecular structure of proteins
and especially genetic material. Young and rapidly growing cells are particularly
susceptible, which is why x rays are useful for selective destruction of cancer cells.
Conversely, however, a cell may be damaged by radiation but survive, continue
dividing, and produce generations of defective cells; thus x rays can cause cancer.

Even when the organism itself shows no apparent damage, excessive exposure
to x rays can cause changes in the organism’s reproductive system that will affect
its offspring. A careful assessment of the balance between risks and benefits of
radiation exposure is essential in each individual case.

Application X-Ray Absorption 
and Medical Imaging
Atomic electrons can absorb x rays. Hence
materials with many electrons per atom tend
to be better x-ray absorbers than materials
with few electrons. In this x-ray image the
lighter areas show where x rays are absorbed
as they pass through the body, while the
darker areas indicate regions that are rela-
tively transparent to x rays. Bones contain
large amounts of elements such as phospho-
rus and calcium, with 15 and 20 electrons
per atom, respectively. In soft tissue, the pre-
dominant elements are hydrogen, carbon, and
oxygen, with only 1, 6, and 8 electrons per
atom, respectively. Hence x rays are absorbed
by bone but can pass relatively easily through
soft tissue.

Test Your Understanding of Section 38.2 In the apparatus shown in 
Fig. 38.7, suppose you increase the number of electrons that are emitted from the cathode
per second while keeping the potential difference the same. How will this affect the
intensity I and minimum wavelength of the emitted x rays? (i) I and will both
increase; (ii) I will increase but will be unchanged; (iii) I will increase but will
decrease; (iv) I will remain the same but will decrease; (v) none of these. ❙lmin

lminlmin

lminlmin

VAC

38.3 Light Scattered as Photons: 
Compton Scattering and Pair Production

The final aspect of light that we must test against Einstein’s photon model is its
behavior after the light is produced and before it is eventually absorbed. We can
do this by considering the scattering of light. As we discussed in Section 33.6,
scattering is what happens when light bounces off particles such as molecules in
the air.

Compton Scattering
Let’s see what Maxwell’s wave model and Einstein’s photon model predict for
how light behaves when it undergoes scattering by a single electron, such as an
individual electron within an atom.

Wave-Model Prediction: In the wave description, scattering would be a process of
absorption and re-radiation. Part of the energy of the light wave would be absorbed by
the electron, which would oscillate in response to the oscillating electric field of the
wave. The oscillating electron would act like a miniature antenna (see Section 32.1),
re-radiating its acquired energy as scattered waves in a variety of directions. The fre-
quency at which the electron oscillates would be the same as the frequency of the inci-
dent light, and the re-radiated light would have the same frequency as the oscillations
of the electron. So, in the wave model, the scattered light and incident light have the
same frequency and same wavelength.

Photon-Model Prediction: In the photon model we imagine the scattering process as a
collision of two particles, the incident photon and an electron that is initially at rest
(Fig. 38.10a). The incident photon would give up part of its energy and momentum to
the electron, which recoils as a result of this impact. The scattered photon that remains
can fly off at a variety of angles with respect to the incident direction, but it has less
energy and less momentum than the incident photon (Fig. 38.10b). The energy and
momentum of a photon are given by (Eq. 38.2) and 
(Eq. 38.5). Therefore, in the photon model, the scattered light has a lower frequency
and longer wavelength than the incident light.l

ƒ
p = hƒ>c = h>lE = hƒ = hc>lf

(a) Before collision: The target electron
 is at rest.

Incident photon:
wavelength l,
momentum p

Target electron
(at rest)

S

(b) After collision: The angle between the
directions of the scattered photon and the
incident photon is f.

Scattered photon:
wavelength lr,
momentum pr

Recoiling electron:
momentum Pe

S

f

S

S
Pe

38.10 The photon model of light scat-
tering by an electron.



Compton scattering
• In Compton scattering, an incident photon collides with an 

electron that is initially at rest. 

• The photon gives up part of its energy and momentum to the 
electron, which recoils as a result of this impact. 

• The scattered photon flies off at an angle ϕ with respect to the 
incident direction, but it has less energy and less momentum 
than the incident photon. 

• Therefore, the wavelength of the scattered photon λ' is 
longer than the wavelength λ of the incident photon.



pc+mc2 = p 'c+ Ee
Ee

2 =mc2 + (Pec)
2


Pe =
p− p '⇒ Pe

2 = p2 + p '2+ 2pp 'cosφ

Eliminate Pe , we get

λ −λ ' = h
mc

(1− cosφ)

The definitive experiment that tested these predictions of the wave and photon
models was carried out in 1922 by the American physicist Arthur H. Compton. In
his experiment Compton aimed a beam of x rays at a solid target and measured
the wavelength of the radiation scattered from the target (Fig. 38.11). He discov-
ered that some of the scattered radiation has smaller frequency (longer wave-
length) than the incident radiation and that the change in wavelength depends on
the angle through which the radiation is scattered. This is precisely what the pho-
ton model predicts for light scattered from electrons in the target, a process that is
now called Compton scattering.

Specifically, if the scattered radiation emerges at an angle with respect to
the incident direction, as shown in Fig. 38.11, and if and are the wavelengths
of the incident and scattered radiation, respectively, Compton found that

(Compton scattering) (38.7)

where m is the electron rest mass. In other words, is greater than The quan-
tity that appears in Eq. (38.7) has units of length. Its numerical value is

Compton showed that Einstein’s photon theory, combined with the principles
of conservation of energy and conservation of momentum, provides a beautifully
clear explanation of his experimental results. We outline the derivation below.
The electron recoil energy may be in the relativistic range, so we have to use the
relativistic energy–momentum relationships, Eqs. (37.39) and (37.40). The incident
photon has momentum with magnitude p and energy The scattered photon has
momentum with magnitude and energy The electron is initially at rest, so
its initial momentum is zero and its initial energy is its rest energy The final
electron momentum has magnitude and the final electron energy is given by

Then energy conservation gives us the relationship

Rearranging, we find

(38.8)

We can eliminate the electron momentum from Eq. (38.8) by using momen-
tum conservation. From Fig. 38.12 we see that , or
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38.11 A Compton-effect experiment.

38.12 Vector diagram showing conser-
vation of momentum in Compton
scattering.
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Pair production
• When gamma rays of sufficiently short wavelength are fired 

into a metal plate, they can convert into an electron and a 
positron, each of mass m and rest energy mc2.

• The photon model explains 
this: The photon wavelength 
must be so short that the 
photon energy is at least 
2mc2. 

λmax =
hc
Emin

=1.213×10−3nm



Diffraction and uncertainty
• When a photon passes 

through a narrow slit, its 
momentum becomes 
uncertain and the photon 
can deflect to either side. 

• A diffraction pattern is the 
result of many photons 
hitting the screen.

• The pattern appears even if only one photon is present at a 
time in the experiment (i.e. extremely low intensity).

• The pattern is the probability of any individual photon will 
land at a given spot



Diffraction and uncertainty
• These images record the 

positions where individual 
photons in a two-slit 
interference experiment strike 
the screen.

• As more photons reach the 
screen, a recognizable 
interference pattern appears.



the fact that the photomultiplier detects faint light as a sequence of individual
“spots” can’t be explained in wave terms.

Probability and Uncertainty
Although photons have energy and momentum, they are nonetheless very differ-
ent from the particle model we used for Newtonian mechanics in Chapters 4
through 8. The Newtonian particle model treats an object as a point mass. We can
describe the location and state of motion of such a particle at any instant with
three spatial coordinates and three components of momentum, and we can then
predict the particle’s future motion. This model doesn’t work at all for photons,
however: We cannot treat a photon as a point object. This is because there are
fundamental limitations on the precision with which we can simultaneously
determine the position and momentum of a photon. Many aspects of a photon’s
behavior can be stated only in terms of probabilities. (In Chapter 39 we will find
that the non-Newtonian ideas we develop for photons in this section also apply to
particles such as electrons.)

To get more insight into the problem of measuring a photon’s position and
momentum simultaneously, let’s look again at the single-slit diffraction of light
(Fig. 38.17). Suppose the wavelength is much less than the slit width a. Then
most (85%) of the photons go into the central maximum of the diffraction pat-
tern, and the remainder go into other parts of the pattern. We use to denote the
angle between the central maximum and the first minimum. Using Eq. (36.2)
with we find that is given by Since we assume it
follows that is very small, is very nearly equal to (in radians), and

(38.12)

Even though the photons all have the same initial state of motion, they don’t all
follow the same path. We can’t predict the exact trajectory of any individual pho-
ton from knowledge of its initial state; we can only describe the probability that
an individual photon will strike a given spot on the screen. This fundamental
indeterminacy has no counterpart in Newtonian mechanics.

Furthermore, there are fundamental uncertainties in both the position and the
momentum of an individual particle, and these uncertainties are related insepara-
bly. To clarify this point, let’s go back to Fig. 38.17. A photon that strikes the
screen at the outer edge of the central maximum, at angle must have a compo-
nent of momentum in the y-direction, as well as a component in the x-direction,
despite the fact that initially the beam was directed along the x-axis. From the
geometry of the situation the two components are related by 
Since is small, we may use the approximation andtan u1 = u1,u1

py>px = tan u1.

pxpy

u1,

u1 = l
a

u1sin u1u1

l = a,sin u1 = l>a.u1m = 1,

u1

l
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38.17 Interpreting single-slit diffraction
in terms of photon momentum. px and py are the momentum components

for a photon striking the outer edge of
the central maximum, at angle u1.
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ActivPhysics 17.6: Uncertainty Principle

Uncertainty in Diffraction
In the theory of diffraction, the angle between the central maximum and the first minimum is:

sinϑ =
λ
a

,  we have 
py
px
= tanϑ ≈ϑ =

λ
a
⇒ py = px

λ
a

i.e. the y-compoment momentum is spread out over a range between − px
λ
a

 and px
λ
a

.

There will be an uncertainty Δp y  at least eqaul to px
λ
a

.

Δpy ≥ px
λ
a
⇒Δpy ≥

h
λ
λ
a
=
h
a
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The Heisenberg uncertainty principle
• You cannot simultaneously know the position and 

momentum of a photon, or any other particle, with arbitrarily 
great precision. 

• The better you know the value of one quantity, the less well 
you know the value of the other.

• There is a similar uncertainty relationship for the y- and z-
coordinate axes and their corresponding momentum 
components.



The Heisenberg uncertainty principle
• Shown is a graphical 

representation of the 
Heisenberg uncertainty 
principle.

• A measurement with 
uncertainties whose product 
puts them to the left of or 
below the blue line is not 
possible to make.



Uncertainty in energy
• There is also an uncertainty principle that involves energy 

and time.

• The better we know a photon’s energy, the less certain we are 
of when we will observe the photon:

• This relation holds true for other kinds of particles as well.





Looking forward at …

• de Broglie’s proposal that electrons and other particles can 
behave like waves.

• how physicists discovered the atomic nucleus.

• how Bohr’s model of electron orbits explained the spectra of 
hydrogen and hydrogenlike atoms.

• how a laser operates.

• how the idea of electron energy levels, coupled with the 
photon model of light, explains the spectrum of light emitted 
by a hot, opaque object.



Introduction
• Viruses (shown in blue) have landed on an E. coli bacterium 

and injected their DNA, converting the bacterium into a virus 
factory. 

• This false-color image was made by using a beam of 
electrons rather than a light beam. 



de Broglie waves
• In 1924 a French physicist, Louis de Broglie (pronounced “de 

broy”), proposed that particles may, in some situations, 
behave like waves.

• A free particle with rest mass m, moving with non-relativistic 
speed v, should have a wavelength related to its momentum:

• A particle’s frequency is related to its energy in the same way 
as for a photon:



Davisson and Germer experiment
• Shown is an apparatus used to study electron diffraction.



electron diffraction

During the experiment an accident occurred that permitted air to enter the vac-
uum chamber, and an oxide film formed on the metal surface. To remove this
film, Davisson and Germer baked the sample in a high-temperature oven, almost
hot enough to melt it. Unknown to them, this had the effect of creating large
regions within the nickel with crystal planes that were continuous over the width
of the electron beam. From the perspective of the electrons, the sample looked
like a single crystal of nickel.

When the observations were repeated with this sample, the results were quite
different. Now strong maxima in the intensity of the reflected electron beam
occurred at specific angles (Fig. 39.3a), in contrast to the smooth variation of
intensity with angle that Davisson and Germer had observed before the accident.
The angular positions of the maxima depended on the accelerating voltage 
used to produce the electron beam. Davisson and Germer were familiar with 
de Broglie’s hypothesis, and they noticed the similarity of this behavior to x-ray
diffraction. This was not the effect they had been looking for, but they immediately
recognized that the electron beam was being diffracted. They had discovered a
very direct experimental confirmation of the wave hypothesis.

Davisson and Germer could determine the speeds of the electrons from the
accelerating voltage, so they could compute the de Broglie wavelength from 
Eq. (39.1). If an electron is accelerated from rest at point a to point b through a
potential increase as shown in Fig. 39.2, the work done on the
electron equals its kinetic energy K. Using for a non-
relativistic particle, we have

We substitute this into Eq. (39.1), the expression for the de Broglie wavelength of
the electron:

(de Broglie wavelength of an electron) (39.3)

The greater the accelerating voltage , the shorter the wavelength of the electron.
To predict the angles at which strong reflection occurs, note that the electrons

were scattered primarily by the planes of atoms near the surface of the crystal.
Atoms in a surface plane are arranged in rows, with a distance d that can be
measured by x-ray diffraction techniques. These rows act like a reflecting diffrac-
tion grating; the angles at which strong reflection occurs are the same as for a
grating with center-to-center distance d between its slits (Fig. 39.3b). From 
Eq. (36.13) the angles of maximum reflection are given by

(39.4)

where is the angle shown in Fig. 39.2. (Note that the geometry in Fig. 39.3b is
different from that for Fig. 36.22, so Eq. (39.4) is different from Eq. (36.16).)
Davisson and Germer found that the angles predicted by this equation, using the
de Broglie wavelength given by Eq. (39.3), agreed with the observed values
(Fig. 39.3a). Thus the accidental discovery of electron diffraction was the first
direct evidence confirming de Broglie’s hypothesis.

In 1928, just a year after the Davisson–Germer discovery, the English physicist
G. P. Thomson carried out electron-diffraction experiments using a thin, polycrys-
talline, metallic foil as a target. Debye and Sherrer had used a similar technique
several years earlier to study x-ray diffraction from polycrystalline specimens. In
these experiments the beam passes through the target rather than being reflected
from it. Because of the random orientations of the individual microscopic crystals
in the foil, the diffraction pattern consists of intensity maxima forming rings around
the direction of the incident beam. Thomson’s results again confirmed the 
de Broglie relationship. Figure 39.4 shows both x-ray and electron diffraction
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(a) This peak in the intensity of scattered
electrons is due to constructive
interference between electron waves
scattered by different surface atoms.

(b) If the scattered waves are in phase,
there is a peak in the intensity of
scattered electrons.

Incident waves
in phase

d

Atoms on surface of crystal
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39.3 (a) Intensity of the scattered elec-
tron beam in Fig. 39.2 as a function of the
scattering angle (b) Electron waves scat-
tered from two adjacent atoms interfere
constructively when In the
case shown here, and m = 1.u = 50°

d sin u = ml.

u.

Top: x-ray diffraction

Bottom: electron diffraction

39.4 X-ray and electron diffraction. The
upper half of the photo shows the diffrac-
tion pattern for 71-pm x rays passing
through aluminum foil. The lower half, with
a different scale, shows the diffraction pat-
tern for 600-eV electrons from aluminum.
The similarity shows that electrons undergo
the same kind of diffraction as x rays.

eV =
p2
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⇒ p = 2meV ⇒ λ =

h
p
=

h
2meV

The constructive interference occur when 
d sinϑ = nλ  
where d is the distance between rows in the crystal

During the experiment an accident occurred that permitted air to enter the vac-
uum chamber, and an oxide film formed on the metal surface. To remove this
film, Davisson and Germer baked the sample in a high-temperature oven, almost
hot enough to melt it. Unknown to them, this had the effect of creating large
regions within the nickel with crystal planes that were continuous over the width
of the electron beam. From the perspective of the electrons, the sample looked
like a single crystal of nickel.

When the observations were repeated with this sample, the results were quite
different. Now strong maxima in the intensity of the reflected electron beam
occurred at specific angles (Fig. 39.3a), in contrast to the smooth variation of
intensity with angle that Davisson and Germer had observed before the accident.
The angular positions of the maxima depended on the accelerating voltage 
used to produce the electron beam. Davisson and Germer were familiar with 
de Broglie’s hypothesis, and they noticed the similarity of this behavior to x-ray
diffraction. This was not the effect they had been looking for, but they immediately
recognized that the electron beam was being diffracted. They had discovered a
very direct experimental confirmation of the wave hypothesis.

Davisson and Germer could determine the speeds of the electrons from the
accelerating voltage, so they could compute the de Broglie wavelength from 
Eq. (39.1). If an electron is accelerated from rest at point a to point b through a
potential increase as shown in Fig. 39.2, the work done on the
electron equals its kinetic energy K. Using for a non-
relativistic particle, we have

We substitute this into Eq. (39.1), the expression for the de Broglie wavelength of
the electron:

(de Broglie wavelength of an electron) (39.3)

The greater the accelerating voltage , the shorter the wavelength of the electron.
To predict the angles at which strong reflection occurs, note that the electrons

were scattered primarily by the planes of atoms near the surface of the crystal.
Atoms in a surface plane are arranged in rows, with a distance d that can be
measured by x-ray diffraction techniques. These rows act like a reflecting diffrac-
tion grating; the angles at which strong reflection occurs are the same as for a
grating with center-to-center distance d between its slits (Fig. 39.3b). From 
Eq. (36.13) the angles of maximum reflection are given by

(39.4)

where is the angle shown in Fig. 39.2. (Note that the geometry in Fig. 39.3b is
different from that for Fig. 36.22, so Eq. (39.4) is different from Eq. (36.16).)
Davisson and Germer found that the angles predicted by this equation, using the
de Broglie wavelength given by Eq. (39.3), agreed with the observed values
(Fig. 39.3a). Thus the accidental discovery of electron diffraction was the first
direct evidence confirming de Broglie’s hypothesis.

In 1928, just a year after the Davisson–Germer discovery, the English physicist
G. P. Thomson carried out electron-diffraction experiments using a thin, polycrys-
talline, metallic foil as a target. Debye and Sherrer had used a similar technique
several years earlier to study x-ray diffraction from polycrystalline specimens. In
these experiments the beam passes through the target rather than being reflected
from it. Because of the random orientations of the individual microscopic crystals
in the foil, the diffraction pattern consists of intensity maxima forming rings around
the direction of the incident beam. Thomson’s results again confirmed the 
de Broglie relationship. Figure 39.4 shows both x-ray and electron diffraction
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39.4 X-ray and electron diffraction. The
upper half of the photo shows the diffrac-
tion pattern for 71-pm x rays passing
through aluminum foil. The lower half, with
a different scale, shows the diffraction pat-
tern for 600-eV electrons from aluminum.
The similarity shows that electrons undergo
the same kind of diffraction as x rays.



Electron microscopy
• The wave aspect of electrons 

means that they can be used to 
form images, just as light waves 
can. 

• This is the basic idea of the 
transmission electron 
microscope (TEM), shown.

• The “lenses” are actually coils 
that use magnetic fields to focus 
the electrons.

• The resolution is limited by 
diffraction effect (depend on 
wavelength) λe ~ 0.01nm



Atomic line spectra

• The light emitted by atoms in a sample of heated gas includes 
only certain discrete wavelengths. Nineteenth-century physics 
does not explain this.



Atomic line spectra
• Shown are the emission line spectra of several kinds of atoms 

and molecules. 

• No two are alike. 

• Note that the 
spectrum of water 
vapor (H2O) is 
similar to that of 
hydrogen (H2), but 
there are important 
differences that make it straightforward to distinguish these 
two spectra.



Absorption line spectrum

39.2 The Nuclear Atom and Atomic Spectra 1293

It was discovered early in the 19th century that each element in its gaseous
state has a unique set of wavelengths in its line spectrum. The spectrum of hydro-
gen always contains a certain set of wavelengths; mercury produces a different
set, neon still another, and so on (Fig. 39.8). Scientists find the use of spectra to
identify elements and compounds to be an invaluable tool. For instance,
astronomers have detected the spectra from more than 100 different molecules in
interstellar space, including some that are not found naturally on earth.

While a heated gas selectively emits only certain wavelengths, a cool gas selec-
tively absorbs certain wavelengths. If we pass white (continuous-spectrum) light
through a gas and look at the transmitted light with a spectrometer, we find a
series of dark lines corresponding to the wavelengths that have been absorbed
(Fig. 39.9). This is called an absorption line spectrum. What’s more, a given
kind of atom or molecule absorbs the same characteristic set of wavelengths when
it’s cool as it emits when heated. Hence scientists can use absorption line spectra
to identify substances in the same manner that they use emission line spectra.

As useful as emission line spectra and absorption line spectra are, they pre-
sented a quandary to scientists: Why does a given kind of atom emit and absorb
only certain very specific wavelengths? To answer this question, we need to have
a better idea of what the inside of an atom is like. We know that atoms are much
smaller than the wavelengths of visible light, so there is no hope of actually
seeing an atom using that light. But we can still describe how the mass and elec-
tric charge are distributed throughout the volume of the atom.

Here’s where things stood in 1910. In 1897 the English physicist J. J. Thomson
(Nobel Prize 1906) had discovered the electron and measured its charge-to-mass
ratio . By 1909, the American physicist Robert Millikan (Nobel Prize 1923)
had made the first measurements of the electron charge These and other
experiments showed that almost all the mass of an atom had to be associated with
the positive charge, not with the electrons. It was also known that the overall size
of atoms is of the order of and that all atoms except hydrogen contain
more than one electron.

In 1910 the best available model of atomic structure was one developed by
Thomson. He envisioned the atom as a sphere of some as yet unidentified positively
charged substance, within which the electrons were embedded like raisins in
cake. This model offered an explanation for line spectra. If the atom collided with
another atom, as in a heated gas, each electron would oscillate around its equilib-
rium position with a characteristic frequency and emit electromagnetic radiation
with that frequency. If the atom were illuminated with light of many frequencies,
each electron would selectively absorb only light whose frequency matched the
electron’s natural oscillation frequency. (This is the phenomenon of resonance
that we discussed in Section 14.8.)

10-10 m

-e.
e>m

Helium (He)

Hydrogen (H2)

Krypton (Kr)

Mercury (Hg)

Neon (Ne)

Water vapor (H2O)

Xenon

39.8 The emission line spectra of several kinds of atoms and molecules. No two are
alike. Note that the spectrum of water vapor (H2O) is similar to that of hydrogen (H2), but
there are important differences that make it straightforward to distinguish these two spectra.

39.9 The absorption line spectrum of the
sun. (The spectrum “lines” read from left
to right and from top to bottom, like text
on a page.) The spectrum is produced by
the sun’s relatively cool atmosphere, which
absorbs photons from deeper, hotter layers.
The absorption lines thus indicate what
kinds of atoms are present in the solar
atmosphere.

Application Using Spectra to
Analyze an Interstellar Gas Cloud
The light from this glowing gas cloud—located
in the Small Magellanic Cloud, a small satellite
galaxy of the Milky Way some 200,000 light-
years (1.9 × 1018 km) from earth—has an
emission line spectrum. Despite its immense
distance, astronomers can tell that this cloud
is composed mostly of hydrogen because its
spectrum is dominated by red light at a wave-
length of 656.3 nm, a wavelength emitted by
hydrogen and no other element.

• If white light pass through the 
gas and look at the transmitted 
light with a spectrometer.

• The dark lines correspond to 
the wavelengths that have been 
absorbed by the gas.



The Rutherford scattering experiment (1911)



The nuclear atom
• Rutherford probed the 

structure of the atom by 
sending alpha particles at a 
thin gold foil. 

• Some alpha particles were 
scattering by large angles, 
leading him to conclude that 
the atom’s positive charge is 
concentrated in a nucleus at 
its center.



39.2 The Nuclear Atom and Atomic Spectra 1295

(a) Thomson’s model of the atom: An alpha
particle is scattered through only a small angle.

(b) Rutherford’s model of the atom: An alpha
particle can be scattered through a large angle
by the compact, positively charged nucleus
(not drawn to scale).

a

Nucleusa

39.12 A comparison of Thomson’s and
Rutherford’s models of the atom.

from the Thomson prediction. Some alpha particles were scattered by nearly
180°—that is, almost straight backward (Fig. 39.12b). Rutherford later wrote:

It was quite the most incredible event that ever happened to me in my life. It was
almost as incredible as if you had fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.

Clearly the Thomson model was wrong and a new model was needed. Sup-
pose the positive charge, instead of being distributed through a sphere with
atomic dimensions (of the order of ), is all concentrated in a much
smaller volume. Then it would act like a point charge down to much smaller dis-
tances. The maximum electric field repelling the alpha particle would be much
larger, and the amazing large-angle scattering that Rutherford observed could
occur. Rutherford developed this model and called the concentration of positive
charge the nucleus. He again computed the numbers of particles expected to be
scattered through various angles. Within the accuracy of his experiments, the com-
puted and measured results agreed, down to distances of the order of His
experiments therefore established that the atom does have a nucleus—a very
small, very dense structure, no larger than in diameter. The nucleus
occupies only about of the total volume of the atom or less, but it contains
all the positive charge and at least 99.95% of the total mass of the atom.

Figure 39.13 shows a computer simulation of alpha particles with a kinetic
energy of 5.0 MeV being scattered from a gold nucleus of radius 
(the actual value) and from a nucleus with a hypothetical radius ten times larger. In
the second case there is no large-angle scattering. The presence of large-angle scat-
tering in Rutherford’s experiments thus attested to the small size of the nucleus.

Later experiments showed that all nuclei are composed of positively charged
protons (discovered in 1918) and electrically neutral neutrons (discovered in
1930). For example, the gold atoms in Rutherford’s experiments have 79 protons
and 118 neutrons. In fact, an alpha particle is itself the nucleus of a helium atom,
with two protons and two neutrons. It is much more massive than an electron but
only about 2% as massive as a gold nucleus, which helps explain why alpha par-
ticles are scattered by gold nuclei but not by electrons.

7.0 * 10-15 m

10-12
10-14 m

10-14 m.

10-10 m

Motion of incident 5.0-MeV alpha particles

(a) A gold nucleus with radius 7.0 3 10215 m
gives large-angle scattering.

(b) A nucleus with 10 times the radius of the
nucleus in (a) shows no large-scale scattering.

39.13 Computer simulation of scattering of 5.0-MeV alpha particles from a gold
nucleus. Each curve shows a possible alpha-particle trajectory. (a) The scattering curves
match Rutherford’s experimental data if a radius of is assumed for a gold
nucleus. (b) A model with a much larger radius for the gold nucleus does not match the
data.

7.0 * 10-15 m

Example 39.4 A Rutherford experiment

An alpha particle (charge 2e) is aimed directly at a gold nucleus
(charge 79e). What minimum initial kinetic energy must the alpha
particle have to approach within of the center of5.0 * 10-14 m

the gold nucleus before reversing direction? Assume that the gold
nucleus, which has about 50 times the mass of an alpha particle,
remains at rest. Continued

The Rutherford scattering experiment 



The failure of classical physics
ACCORDING TO CLASSICAL PHYSICS:

• An orbiting electron is accelerating, 
so it should radiate electromagnetic 
waves.

• The electron’s angular speed would 
increase as its orbit shrank
(Kepler's 2nd law), so the frequency of the radiated waves should
increase.

• The waves would carry away energy, so the electron should lose 
energy and spiral inward.

• Thus, classical physics says that atoms should collapse within a 
fraction of a second and should emit light with a continuous 
spectrum as they do so.



The Bohr model of hydrogen
• Niels Bohr (1885–1962) postulated 

that each energy level of a hydrogen 
atom corresponds to a specific stable 
circular orbit of the electron around 
the nucleus, where the corresponding
energy can have only certain particular
values (energy level).

• In the Bohr model, an atom radiates 
energy only when an electron makes 
a transition from an orbit of energy 
Ei to a different orbit with lower 
energy Ef , emitting a photon of
energy hf = Ei − Ef in the process.

• Bohr won the 1922 Nobel Prize in physics for these ideas.



Atomic energy levels
• When an atom makes a 

transition from one energy 
level to a lower level, it 
emits a photon whose energy 
equals that lost by the atom.

• An atom can also absorb a 
photon, provided the photon 
energy equals the difference 
between two energy levels.

• The lowest energy level is 
called ground state, levels 
with energies greater than the 
ground level are called 
excited levels.



Atomic energy levels
• A cool gas that’s illuminated by white light to make an 

absorption line spectrum also produces an emission line 
spectrum when viewed from the side.



Emission spectrum of a hypothetical atom
• Consider a hypothetical 

atom that has energy levels 
at 0.00 eV, 1.00 eV, and 
3.00 eV.

• (a) shows the energy-level 
diagram for the hypothetical 
atom.

• (b) shows the emission 
spectrum of this 
hypothetical atom.



The Bohr model of hydrogen
• Bohr found that the magnitude of the electron’s angular 

momentum is quantized; that is, this magnitude must be an 
integral multiple of h/2π. 

• Let’s number the orbits by the principal quantum number
n, where n = 1, 2, 3, …, and call the radius of orbit n, rn, and 
the speed of the electron in that orbit vn. 

• The magnitude of the angular momentum of an electron of 
mass m in such an orbit is:



The Bohr model of hydrogen
• Shown is the angular momentum of an electron in a circular 

orbit around an atomic nucleus.



The Bohr model of hydrogen
• A standing wave on a string transmits no energy, and 

electrons in Bohr’s orbits radiate no energy. 

• For the wave to “come out even” and join onto itself 
smoothly, the circumference of this circle must include some 
whole number of wavelengths.

2πrn = nλ⇒ rn =
nλ
2π

=
nh
2π pn

⇒ Ln = rn pn = n



The Bohr model of hydrogen

Ln =mvnrn = n
h
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mvn
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ε0h
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the energy levels of a particular atom. Bohr addressed this problem for the case
of the simplest atom, hydrogen, which has just one electron. Let’s look at the
ideas behind the Bohr model of the hydrogen atom.

Bohr postulated that each energy level of a hydrogen atom corresponds to a
specific stable circular orbit of the electron around the nucleus. In a break with
classical physics, Bohr further postulated that an electron in such an orbit does
not radiate. Instead, an atom radiates energy only when an electron makes a tran-
sition from an orbit of energy Ei to a different orbit with lower energy Ef, emit-
ting a photon of energy in the process.

As a result of a rather complicated argument that related the angular frequency
of the light emitted to the angular speed of the electron in highly excited energy
levels, Bohr found that the magnitude of the electron’s angular momentum is
quantized; that is, this magnitude must be an integral multiple of (Because

the SI units of Planck’s constant h, are the same as the SI
units of angular momentum, usually written as ) Let’s number the
orbits by an integer n, where , and call the radius of orbit n and
the speed of the electron in that orbit The value of n for each orbit is called the
principal quantum number for the orbit. From Section 10.5, Eq. (10.28), the
magnitude of the angular momentum of an electron of mass m in such an orbit is

(Fig. 39.21). So Bohr’s argument led to

(39.6)

Instead of going through Bohr’s argument to justify Eq. (39.6), we can use 
de Broglie’s picture of electron waves. Rather then visualizing the orbiting electron
as a particle moving around the nucleus in a circular path, think of it as a sinu-
soidal standing wave with wavelength that extends around the circle. A stand-
ing wave on a string transmits no energy (see Section 15.7), and electrons in
Bohr’s orbits radiate no energy. For the wave to “come out even” and join onto
itself smoothly, the circumference of this circle must include some whole number
of wavelengths, as Fig. 39.22 suggests. Hence for an orbit with radius and cir-
cumference , we must have where is the wavelength and

According to the de Broglie relationship, Eq. (39.1), the wave-
length of a particle with rest mass m moving with nonrelativistic speed is 

. Combining and , we find or

This is the same as Bohr’s result, Eq. (39.6). Thus a wave picture of the electron
leads naturally to the quantization of the electron’s angular momentum.

Now let’s consider a model of the hydrogen atom that is Newtonian in spirit
but incorporates this quantization assumption (Fig. 39.23). This atom consists of
a single electron with mass m and charge in a circular orbit around a single
proton with charge The proton is nearly 2000 times as massive as the elec-
tron, so we can assume that the proton does not move. We learned in Section 5.4
that when a particle with mass m moves with speed in a circular orbit with
radius its centripetal (inward) acceleration is According to Newton’s
second law, a radially inward net force with magnitude is needed to
cause this acceleration. We discussed in Section 12.4 how the gravitational
attraction provides that inward force for satellite orbits. In hydrogen the force F
is provided by the electrical attraction between the positive proton and the nega-
tive electron. From Coulomb’s law, Eq. (21.2),

F = 1
4pP0

 
e2

r  2
n
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n >rn

v 2
n >rn.rn,

vn

+e.
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h
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Angular momentum Ln of orbiting electron is
perpendicular to plane of orbit (since we take
origin to be at nucleus) and has magnitude
L 5 mvnrn sin f 5 mvnrn sin 90° 5 mvnrn.
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39.21 Calculating the angular momen-
tum of an electron in a circular orbit
around an atomic nucleus.

n ! 2

l

n ! 3

l

n ! 4

l

39.22 These diagrams show the idea of
fitting a standing electron wave around a
circular orbit. For the wave to join onto
itself smoothly, the circumference of the
orbit must be an integral number n of
wavelengths.

Total mechanical energy of the electron:

En = Kn +Un =
1
2
mvn

2 −
1

4πε0

e2

rn
= −

1
ε0

2

me4

8n2h2
= −
hcR
n2

where R = me4

8ε0
2h3c

 is th Rydberg constant



The Bohr model of hydrogen
• The orbital speed of the electron in Bohr’s model of a 

hydrogen atom is:

• The radius of this orbit is:

where the Bohr radius is a0 = 5.29 × 10−11 m.



The Bohr model of hydrogen
• The Bohr model predicts the observable energy levels of the 

hydrogen atom, which give rise to the hydrogen spectrum, 
below.
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Balmer series
(visible light
and ultraviolet)

n 5 1
n 5 2

n 5 3

n 5 4

n 5 5

n 5 6

(a) Permitted orbits of an electron in the Bohr model of a
hydrogen atom (not to scale). Arrows indicate the transitions
responsible for some of the lines of various series.

Paschen series
(infrared)

Pfund series
(infrared)

Brackett series
(infrared)Lyman series

(ultraviolet)

Lyman
series

Paschen
series

Pfund
series

Brackett
series

Balmer
series

n 5 7

n 5 2

n 5 3
n 5 4
n 5 5
n 5 6

20.28 eV
20.38 eV
20.54 eV
20.85 eV
21.51 eV

23.40 eV

213.60 eVn 5 1

(b) Energy-level diagram for hydrogen, showing some
transitions corresponding to the various series

39.24 Two ways to represent the energy levels of the hydrogen atom and the transitions between them. Note that the
radius of the nth permitted orbit is actually times the radius of the n ! 1 orbit.n2

Since in Eq. (39.14) has a different value for each n, you can see that this
equation gives the energy levels of the hydrogen atom in the Bohr model. Each
distinct orbit corresponds to a distinct energy level.

[Figure 39.24 depicts the orbits and energy levels. We label the possible energy
levels of the atom by values of the quantum number n. For each value of n there
are corresponding values of orbit radius , speed angular momentum

and total energy The energy of the atom is least when 
and has its most negative value. This is the ground level of the hydrogen atom;
it is the level with the smallest orbit, of radius . For the absolute
value of is smaller and the energy is progressively larger (less negative).

[Figure 39.24 also shows some of the possible transitions from one electron
orbit to an orbit of lower energy. Consider a transition from orbit (for
“upper”) to a smaller orbit (for “lower”), with —or, equivalently,
from level to a lower level . Then the energy of the emitted photon of
wavelength is equal to . Before we use this relationship to solve for

, it’s convenient to rewrite Eq. (39.14) for the energies as

, where (39.15)

The quantity R in Eq. (39.15) is called the Rydberg constant (named for the
Swedish physicist Johannes Rydberg, who did pioneering work on the hydrogen
spectrum). When we substitute the numerical values of the fundamental physical
constants m, c, e, h, and all of which can be determined quite independently of
the Bohr theory, we find that m–1. Now we solve for the wave-
length of the photon emitted in a transition from level to level :

(hydrogen wavelengths in the
Bohr model, ) (39.16)6 nUnL
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Hydrogen spectrum in more detail
• The Balmer series is not the 

entire spectrum of hydrogen; 
it’s just the visible-light portion.

• Hydrogen also has a 
series of spectral lines 
in the ultraviolet 
(Lymann), and several 
series of spectral lines 
in the infrared.
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Hydrogen-like atoms
• The Bohr model can be applied to any atom with a single 

electron. 
e2 → Ze2   and  R→ Z 2R

Z=2



Absorption
• Consider a gas of atoms in a transparent container. 

• Each atom is initially in its ground level of energy Eg and 
also has an excited level of energy Eex. 

• If we shine light of frequency f on the container, an atom can 
absorb one of the photons provided the photon energy E = hf
equals the energy difference Eex − Eg between the levels. 

• The figure shows this 
process, in which 
three atoms A each 
absorb a photon and 
go into the excited 
level.



Spontaneous emission
• Excited atoms (which we denote as A*) can return to the 

ground level by each emitting a photon with the same 
frequency as the one originally absorbed. 

• This process is called spontaneous emission. 

• The direction and phase of each spontaneously emitted 
photon are random.



Stimulated emission
• In stimulated emission, each incident photon encounters a 

previously excited atom. 

• A kind of resonance effect induces each excited atom to emit 
a second photon with the same frequency, direction, phase, 
and polarization as the incident photon, which is not 
changed by the process. 



Population Inversion
• We can pump the material to excite the atoms out of the 

ground state into the excited states -> enhanced stimulated 
emission
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(a) Before pumping (b) Just after pumping (c) About 1028 s after pumping

Excited state
with short lifetime

Excited state
with long lifetime
(metastable state)

Excited state
with short lifetime

Ground state
Atoms

E3

E2

E1

E 5 0

E3

E2

E1

E 5 0

E3

E2

E1

E 5 0

All atoms initially in ground state Some atoms in excited states
Atoms in metastable state E2 create
population inversion relative to E1.

Atoms in E3
drop to E2 or
ground state.

Atoms in E1
drop to
ground state.

(d) Schematic of gas laser

Mirror
(100% reflective)

Cathode

Anode

Tube with gas

Mirror
(95% reflective)

Power supply

39.29 (a), (b), (c) Stages in the operation of a four-level laser. (d) The light emitted by atoms making spontaneous transitions from
state E2 to state E1 is reflected between mirrors, so it continues to stimulate emission and gives rise to coherent light. One mirror is
partially transmitting and allows the high-intensity light beam to escape.

the two levels and : atoms that undergo spontaneous emission from the 
level help to populate the level, and the presence of the level makes a pop-
ulation inversion possible.

Over the next 10–3 s, some of the atoms in the long-lived metastable state 
transition to state by spontaneous emission. The emitted photons of energy

are sent back and forth through the gas many times by a pair of
parallel mirrors (Fig. 39.29d), so that they can stimulate emission from as many
of the atoms in state as possible. The net result of all these processes is a beam
of light of frequency ƒ that can be quite intense, has parallel rays, is highly mono-
chromatic, and is spatially coherent at all points within a given cross section—
that is, a laser beam. One of the mirrors is partially transparent, so a portion of the
beam emerges.

What we’ve described is a pulsed laser that produces a burst of coherent light
every time the atoms are pumped. Pulsed lasers are used in LASIK eye surgery
(an acronym for laser-assisted in situ keratomileusis) to reshape the cornea and
correct for nearsightedness, farsightedness, or astigmatism. In a continuous laser,
such as those found in the barcode scanners used at retail checkout counters,
energy is supplied to the atoms continuously (for instance, by having the power
supply in Fig. 39.29d provide a steady voltage to the electrodes) and a steady
beam of light emerges from the laser. For such a laser the pumping must be
intense enough to sustain the population inversion, so that the rate at which atoms
are added to level through pumping equals the rate at which atoms in this
level emit a photon and transition to level .

Since a special arrangement of energy levels is needed for laser action, it’s not
surprising that only certain materials can be used to make a laser. Some types of
laser use a solid, transparent material such as neodymium glass rather than a gas.
The most common kind of laser—used in laser printers (Section 21.2), laser
pointers, and to read the data on the disc in a DVD player or Blu-ray player—is a
semiconductor laser, which doesn’t use atomic energy levels at all. As we’ll dis-
cuss in Chapter 42, these lasers instead use the energy levels of electrons that are
free to roam throughout the volume of the semiconductors.

E1

E2

E2

hƒ = E2 - E1

E1

E2

E1E2

E3E3E1

Test Your Understanding of Section 39.4 An ordinary neon light fix-
ture like those used in advertising signs emits red light of wavelength 632.8 nm.
Neon atoms are also used in a helium–neon laser (a type of gas laser). The light
emitted by a neon light fixture is (i) spontaneous emission; (ii) stimulated emission; 
(iii) both spontaneous and stimulated emission. ❙



The laser
• The laser is a light source that produces a beam of highly 

coherent and very nearly monochromatic light as a result of 
cooperative emission from many atoms.

• The name “laser” is an acronym for “light amplification by 
stimulated emission of radiation.”



Continuous spectra and blackbody radiation
• A blackbody is an idealized 

case of a hot, dense object. 

• The figure shows the 
continuous spectrum produced 
by a blackbody at different 
temperatures.

• Planck provided the first 
explanation of blackbody 
radiation by assuming that 
atoms in the blackbody have 
evenly spaced energy levels, 
and emit photons by jumping 
from one energy level down to 
the next one.

CHAPTER 39 SUMMARY

De Broglie waves and electron diffraction: Electrons and
other particles have wave properties. A particle’s wave-
length depends on its momentum in the same way as for
photons. A nonrelativistic electron accelerated from rest
through a potential difference has a wavelength
given by Eq. (39.3). Electron microscopes use the very
small wavelengths of fast-moving electrons to make
images with resolution thousands of times finer than is
possible with visible light. (See Examples 39.1–39.3.)

Vba

(39.1)

(39.2)

(39.3)l = h
p

= h22meVba

E = hƒ

l = h
p

= h
mv

The nuclear atom: The Rutherford scattering experiments show that most of an atom’s mass and all
of its positive charge are concentrated in a tiny, dense nucleus at the center of the atom. (See 
Example 39.4.)

Atomic line spectra and energy levels: The energies of
atoms are quantized: They can have only certain definite
values, called energy levels. When an atom makes a
transition from an energy level to a lower level it
emits a photon of energy The same photon can
be absorbed by an atom in the lower energy level, which
excites the atom to the upper level. (See Example 39.5.)

Ei - Ef.
Ef,Ei

(39.5)hƒ = hc
l

= Ei - Ef

The Bohr model: In the Bohr model of the hydrogen
atom, the permitted values of angular momentum are
integral multiples of The integer multiplier n is
called the principal quantum number for the level. The
orbital radii are proportional to and the orbital speeds
are proportional to The energy levels of the hydro-
gen atom are given by Eq. (39.15), where R is the 
Rydberg constant. (See Example 39.6.)

1 >  n.
n2

h >  2p. (39.6)
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The laser: The laser operates on the principle of stimulated emission, by which many photons with
identical wavelength and phase are emitted. Laser operation requires a nonequilibrium condition
called a population inversion, in which more atoms are in a higher-energy state than are in a lower-
energy state.

A*

A*

A*

n1

n0

Spontaneous
emission

Blackbody radiation: The total radiated intensity (aver-
age power radiated per area) from a blackbody surface
is proportional to the fourth power of the absolute tem-
perature T. The quantity 
is called the Stefan–Boltzmann constant. The wave-
length at which a blackbody radiates most strongly
is inversely proportional to T. The Planck radiation law
gives the spectral emittance (intensity per wave-
length interval in blackbody radiation). (See Examples
39.7 and 39.8.)

I1l2lm

s = 5.67 * 10-8 W >  m2 # K4

(Stefan–Boltzmann law) (39.19)
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Continuous spectra and blackbody radiation
• The spectral emittance I(λ) for radiation from a blackbody has 

a peak whose wavelength depends on temperature:

• We can obtain the Stefan–Boltzmann law for a blackbody by 
integrating I(λ) over all wavelengths to find the total radiated 
intensity:

where σ = 5.6704 × 10−8 W/m2 · K4 is the Stefan–Boltzmann 
constant.



39.6 The Uncertainty Principle Revisited
The discovery of the dual wave–particle nature of matter forces us to reevaluate
the kinematic language we use to describe the position and motion of a particle.
In classical Newtonian mechanics we think of a particle as a point. We can
describe its location and state of motion at any instant with three spatial coordi-
nates and three components of velocity. But because matter also has a wave
aspect, when we look at the behavior on a small enough scale—comparable to
the de Broglie wavelength of the particle—we can no longer use the Newtonian
description. Certainly no Newtonian particle would undergo diffraction like elec-
trons do (Section 39.1).
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Example 39.7 Light from the sun

To a good approximation, the sun’s surface is a blackbody with a
surface temperature of 5800 K. (We are ignoring the absorption
produced by the sun’s atmosphere, shown in Fig. 39.9.) (a) At what
wavelength does the sun emit most strongly? (b) What is the total
radiated power per unit surface area?

SOLUTION

IDENTIFY and SET UP: Our target variables are the peak-intensity
wavelength and the radiated power per area I. Hence we’ll use
the Wien displacement law, Eq. (39.21) (which relates to the
blackbody temperature T ), and the Stefan–Boltzmann law, Eq.
(39.19) (which relates to T).

EXECUTE: (a) From Eq. (39.21),

= 0.500 * 10-6 m = 500 nm

lm = 2.90 * 10-3 m # K
T

= 2.90 * 10-3 m # K
5800 K

I

lm

lm

(b) From Eq. (39.19),

EVALUATE: The 500-nm wavelength found in part (a) is near the
middle of the visible spectrum. This should not be a surprise: The
human eye evolved to take maximum advantage of natural light.

The enormous value found in part (b) is the
intensity at the surface of the sun, a sphere of radius .
When this radiated energy reaches the earth, away,
the intensity has decreased by the factor

to the still-impressive .1.4 kW>m21011 m242 = 2.15 * 10-5
316.96 * 108 m2>11.50 *

1.50 * 1011 m
6.96 * 108 m

I = 64.2 MW>m2

= 6.42 * 107 W>m2 = 64.2 MW>m2

I = sT4 = 15.67 * 10-8 W>m2 # K4215800 K24

Example 39.8 A slice of sunlight

Find the power per unit area radiated from the sun’s surface in the
wavelength range 600.0 to 605.0 nm.

SOLUTION

IDENTIFY and SET UP: This question concerns the power emitted
by a blackbody over a narrow range of wavelengths, and so
involves the spectral emittance given by the Planck radiation
law, Eq. (39.24). This requires that we find the area under the 
curve between 600.0 and 605.0 nm. We’ll approximate this area as
the product of the height of the curve at the median wavelength

and the width of the interval, From
Example 39.7, K.

EXECUTE: To obtain the height of the curve at 
we first evaluate the quantity

in Eq. (39.24) and then substitute the result into Eq. (39.24):

hc
lkT

=
16.626 * 10-34 J # s212.998 * 108 m>s216.025 * 10-7 m211.381 * 10-23 J>K215800 K2 = 4.116

hc>lkT6.025 * 10-7 m,602.5 nm =
l =I1l2T = 5800

¢l = 5.0 nm.l = 602.5 nm

I1l2I1l2 The intensity in the 5.0-nm range from 600.0 to 605.0 nm is then
approximately

EVALUATE: In part (b) of Example 39.7, we found the power
radiated per unit area by the sun at all wavelengths to be 

; here we have found that the power radiated per
unit area in the wavelength range from 600 to 605 nm is 

about 0.6% of the total.0.39 MW>m2,
I1l2¢l =

64.2 MW>m2
I =

= 3.9 * 105 W>m2 = 0.39 MW>m2

I1l2¢l = 17.81 * 1013 W>m3215.0 * 10-9 m2
= 7.81 * 1013 W>m3

I1l2 =
2p16.626 * 10-34 J # s212.998 * 108 m>s2216.025 * 10-7 m251e4.116 - 12

Test Your Understanding of Section 39.5 (a) Does a blackbody at 2000 K
emit x rays? (b) Does it emit radio waves? ❙
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unit area in the wavelength range from 600 to 605 nm is 

about 0.6% of the total.0.39 MW>m2,
I1l2¢l =

64.2 MW>m2
I =

= 3.9 * 105 W>m2 = 0.39 MW>m2

I1l2¢l = 17.81 * 1013 W>m3215.0 * 10-9 m2
= 7.81 * 1013 W>m3

I1l2 =
2p16.626 * 10-34 J # s212.998 * 108 m>s2216.025 * 10-7 m251e4.116 - 12

Test Your Understanding of Section 39.5 (a) Does a blackbody at 2000 K
emit x rays? (b) Does it emit radio waves? ❙



A two-slit interference experiment for electrons

We can send the electron once a time through the slits. Each 
electron wave interferes with itself!!!



A two-slit interference experiment for electrons



The Uncertainty Principle
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39.35 The longer the lifetime of a
state, the smaller is its spread in energy
(shown by the width of the energy levels).

¢tThe Uncertainty Principle and the Limits of the Bohr Model
We saw in Section 39.3 that the Bohr model of the hydrogen atom was tremen-
dously successful. However, the Heisenberg uncertainty principle for position
and momentum shows that this model cannot be a correct description of how an
electron in an atom behaves. Figure 39.22 shows that in the Bohr model as inter-
preted by de Broglie, an electron wave moves in a plane around the nucleus.
Let’s call this the xy-plane, so the z-axis is perpendicular to the plane. Hence the
Bohr model says that an electron is always found at z ! 0, and its z-momentum

is always zero (the electron does not move out of the xy-plane). But this
implies that there are no uncertainties in either z or , so and .
This directly contradicts Eq. (39.29), which says that the product must be
greater than or equal to .

This conclusion isn’t too surprising, since the electron in the Bohr model is a
mix of particle and wave ideas (the electron moves in an orbit like a miniature
planet, but has a wavelength). To get an accurate picture of how electrons behave
inside an atom and elsewhere, we need a description that is based entirely on the
electron’s wave properties. Our goal in Chapter 40 will be to develop this
description, which we call quantum mechanics. To do this we’ll introduce the
Schrödinger equation, the fundamental equation that describes the dynamics of
matter waves. This equation, as we will see, is as fundamental to quantum mechan-
ics as Newton’s laws are to classical mechanics or as Maxwell’s equations are to
electromagnetism.

U
¢z¢pz

¢pz = 0¢z = 0pz

pz

Test Your Understanding of Section 39.6 Rank the following situa-
tions according to the uncertainty in x-momentum, from largest to smallest. The
mass of the proton is 1836 times the mass of the electron. (i) an electron whose 
x-coordinate is known to within (ii) an electron whose x-coordinate is
known to within (iii) a proton whose x-coordinate is known to within

(iv) a proton whose x-coordinate is known to within ❙4 * 10-15 m.2 * 10-15 m;
4 * 10-15 m;

2 * 10-15 m;
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Example 39.9 The uncertainty principle: position and momentum

An electron is confined within a region of width 
(roughly the Bohr radius). (a) Estimate the minimum uncertainty
in the x-component of the electron’s momentum. (b) What is the
kinetic energy of an electron with this magnitude of momentum?
Express your answer in both joules and electron volts.

SOLUTION

IDENTIFY and SET UP: This problem uses the Heisenberg uncer-
tainty principle for position and momentum and the relationship
between a particle’s momentum and its kinetic energy. The electron
could be anywhere within the region, so we take

as its position uncertainty. We then find the momentum
uncertainty using Eq. (39.29) and the kinetic energy using the
relationships and 

EXECUTE: (a) From Eqs. (39.29), for a given value of the
uncertainty in momentum is minimum when the product 
equals . Hence

= 1.055 * 10-24 kg # m>s¢px = U
2¢x

= 1.055 * 10-34 J # s

215.000 * 10-11 m2 = 1.055 * 10-24 J # s>mU
¢x ¢px

¢x,

K = 1
2 mv2.p = mv

¢px

10-11 m
¢x = 5.000 *

5.000 * 10-11 m (b) We can rewrite the nonrelativistic expression for kinetic
energy as

Hence an electron with a magnitude of momentum equal to 
from part (a) has kinetic energy

EVALUATE: This energy is typical of electron energies in atoms.
This agreement suggests that the uncertainty principle is deeply
involved in atomic structure.

A similar calculation explains why electrons in atoms do not
fall into the nucleus. If an electron were confined to the interior of
a nucleus, its position uncertainty would be This
would give the electron a momentum uncertainty about times
greater than that of the electron in this example, and a kinetic
energy so great that the electron would immediately be ejected
from the nucleus.

5000
¢x L 10-14 m.

= 6.11 * 10 -19 J = 3.81 eV

K =
p2

2m
=
11.055 * 10-24 kg # m>s22

219.11 * 10 -31 kg2
¢px

K = 1
2 mv2 =

1mv22
2m

=
p2

2m

Example 39.10 The uncertainty principle: energy and time

A sodium atom in one of the states labeled “Lowest excited levels”
in Fig. 39.19a remains in that state, on average, for 
before it makes a transition to the ground level, emitting a photon
with wavelength 589.0 nm and energy 2.105 eV. What is the uncer-
tainty in energy of that excited state? What is the wavelength
spread of the corresponding spectral line?

SOLUTION

IDENTIFY and SET UP: This problem uses the Heisenberg uncer-
tainty principle for energy and time interval and the relationship
between photon energy and wavelength. The average time that the
atom spends in this excited state is equal to in Eq. (39.30). We
find the minimum uncertainty in the energy of the excited level by
replacing the sign in Eq. (39.30) with an equals sign and solving
for

EXECUTE: From Eq. (39.30),

= 3.3 * 10-27 J = 2.1 * 10-8 eV

¢E = U
2¢t

= 1.055 * 10-34 J # s

211.6 * 10-8 s2
¢E.

Ú

¢t

1.6 * 10-8 s
The atom remains in the ground level indefinitely, so that level has
no associated energy uncertainty. The fractional uncertainty of the
photon energy is therefore

You can use some simple calculus and the relation to
show that so that the corresponding spread in
wavelength, or “width,” of the spectral line is approximately

EVALUATE: This irreducible uncertainty is called the natural
line width of this particular spectral line. Though very small, it is
within the limits of resolution of present-day spectrometers. Ordi-
narily, the natural line width is much smaller than the line width
arising from other causes such as the Doppler effect and collisions
among the rapidly moving atoms.

¢l

¢l = l ¢E
E

= 1589.0 nm211.0 * 10-82 = 0.0000059 nm

¢l>l L ¢E>E,
E = hc>l

¢E
E

= 2.1 * 10-8 eV
2.105 eV

= 1.0 * 10-8

In these equations . The uncertainty principle
for energy and time interval has a direct application to energy levels. We have
assumed that each energy level in an atom has a very definite energy. However,
Eq. (39.30) says that this is not true for all energy levels. A system that remains
in a metastable state for a very long time (large ) can have a very well-defined
energy (small ), but if it remains in a state for only a short time (small ) the
uncertainty in energy must be correspondingly greater (large ). Figure 39.35
illustrates this idea.

¢E
¢t¢E

¢t

U = h>2p = 1.055 * 10-34 J # s
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