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Measuring angles in radian

(b) s=rb

An angle 6 in radians
is the ratio of the arc
length s to the radius r.

£ 2012 Pearson Education, Inc.

Define the value of an angle 0 in radian

S
as 6 =-,
r

or arc length s=16

A\ a pure number, without dimension
independent of radius » of the circle

A one complete circle

21T

0 = — = 27 (in radian) < 360°
7 (in radian) < 180°
/2 (in radian) < 90°



Consider a rigid body rotating about a fixed axis

angular displacement: A6 =0, — 06,

w B S -
4 - angular velocity:
A ¥
,’,Cil\cle followed e A6 At—0  dB
/by point P g W= — — —
,' /<9 At dt
i‘ = 2 (average)  (instantaneous)
\ ;,
\ /
\\ /, °
. angular acceleration:
L dow d*6
a — —
dt  dt?

Convention: @ measured from x axis in counterclockwise direction




Convention: @ measured from x axis in counterclockwise direction

Counterclockwise Clockwise
rotation positive: rotation negative:
A6 > 0, so Af < 0, so

Wy, = AO[AL > 0 w,,.. = AB[At < 0

Axis of rotation (z-axis) passes through
origin and points out of page.
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Angular velocity 1s a vector, direction defined by the right hand rule

(@)

[f you curl the
fingers of your

| . : I
| right hand in the
: direction of :
| rotation ... I
| . .
\\ direction of w
| * represents sense of
g 3 | | rotation
w ... your right thumb l
points in the I

direction of w.
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Angular acceleration is defined as @ = dw/dt

A\if rotation axis is fixed, & along the direction of @

Rotation Rotation slowing

Rl
=i

Rl
et

speeding up, down, @ and w
a and w 1n the @ = in the opposite
same direction ([ direction

Z
=
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Question

* The figure shows a graph of w and a versus

time. During which time intervals is the
rotation speeding up?

(()0<t<2s;(ii)2s<t<4s; (iii)ds<t<bs.




Rotation with constant angular acceleration

Straight-Line Motion with
Constant Linear Acceleration

a, = constant
U-l‘ — Uo‘\‘ + a‘x‘r

— I 2
X =Xx9 t+ Vgt + 5a,¢

sz = Uo.,éZ + 2a.d4x0— By}

|
x — x0 = 3(vox + Ut
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(2.8)

(2.12)
(2.13)
(2.14)

Fixed-Axis Rotation with
Constant Angular Acceleration

o, = constant

W, = wo, + a,t

6 = 0y + wy,t + %a:jz
0 = wo? + 2a.(6 — 6)

I
0 — 0p = 3 (wg, + w,)t

9.7)

(9.11)
9.12)
(9.10)



Example
A Blu-ray disc is slowing down to a stop with constant angular acceleration

a=—-—10.0 rad/sz. Att =0, wy = 27.5rad/s, and a line PQ marked on the disc surface
is along the x axis.

angular velocity at t = 0.300 s:

X Direction
__of rotation w = wqy+ at
= 27.5rad/s + (—10.0 rad/sz) (0.300 s)
= 24.5rad/s
¥ Suppose 6 is the angular position of PQ at
t =0.300s

0 = wyt + zat? = 7.80 rad

360°
= (7.8 rad) = 447° = 87°
27 rad

What are the directions of @ and a?



Question

* |n the above example, suppose the initial
angular velocity is doubled to 2w, and the
angular acceleration (deceleration) is also
doubled to 2«, it will take (more / less / the
same amount of) time for the disc to come to
a stop compared to the original problem.



Q9.2

A DVD is initially at rest so that the line PQ on the
disc’s surface is along the +x-axis. The disc begins
to turn with a constant «, = 5.0 rad/s?.

At t = 0.40 s, what is the angle between the line PQ
and the +x-axis?

A. 0.40 rad
B. 0.80 rad
C.1.0rad
D. 2.0 rad

© 2012 Pearson Education, Inc

O

Direction

\ of rotation




A9.2

A DVD is initially at rest so that the line PQ on the
disc’s surface is along the +x-axis. The disc begins
to turn with a constant «, = 5.0 rad/s?.

At t = 0.40 s, what is the angle between the line PQ o
and the +x-axis? Y Dlrectu?n
“of rotation

J)AO rad

B. 0.80 rad

C.1.0rad
D. 2.0 rad
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Rigid body rotation

/!
/ Circle followed
=

;’ by point P
/<9

I
I
1 (0]
\

® ’
/‘_,-**‘--4,_ v = rw
-~ /_) \\
/// cla
,*" Linear— | '\ Z \P

’ acceleration ~ a0
p > yg = W7

In time At, angular displacement 1s A8,

tangential displacement (arc length) 1s
As = rAf

" tangential speed

As A6 dg
= — = —_— > —_— =
v At r At r dt rw

has magnitude v = rw

Velocity of point P, v, is tangential and

dv
tangential acceleration dtan — i =
& radial acceleration 2
(from circular motion Arad = T —

of P)



Example
(a) (b)

= Path of discus
KN =500 md/s

W =10.0 rad / S

[ r=0.800m

Discys

An athlete whirls a discus in a circle of radius 80.0 cm. At some instant w =
10.0 rad/s, and &« = 50.0 rad/s2. Then

atan = ra = (0.800 m)(50.0 rad/s?) = 40.0 m/s?
Arag = w*r = (10.0 rad/s)*(0.800 m) = 80.0 m/s*
Magnitude of the linear acceleration is

a = \/atan + arad = 89.4 m/s?




Rotational Kinetic energy of a rigid body

Consider a rigid body as a collection of particles, the kinetic energy due to rotation 1s

1
K= Z Smvf = z smirfw? = 5 (Z miri2> w?

\ J
[

moment of inertia /, analogous
to mass in rectilinear motion

K =3l . .
c.f. in rectilinear motion,

K = imv?
I = E m;r? 2

A

I depends on distribution of mass, and therefore on the location of the rotation axis.



Q9.5 @

You want to double the radius of a rotating solid sphere while keeping its
kinetic energy constant. (The mass does not change.) To do this, the final
angular velocity of the sphere must be

A. 4 times 1ts 1nitial value.

B. twice its 1nitial value.

C. the same as 1ts 1itial value.
D. 1/2 of 1ts initial value.

E. 1/4 of its initial value.



A9.5

You want to double the radius of a rotating solid sphere while keeping its
kinetic energy constant. (The mass does not change.) To do this, the final
angular velocity of the sphere must be

A. 4 times its 1nitial value.
B. twice its initial value.
C. the same as its 1nitial value.

J 1/2 of its 1nitial value.

E. 1/4 of its initial value.



Q9.6

The three objects shown
here all have the same
mass M. Each object is
rotating about its axis of
symmetry (shown in blue).
All three objects have the
same rotational kinetic

R
energy. Which one is R -
rotating With fGStESt @ 2012 Pearson Education, Inc
angular speed? A B C



Q9.6

The three objects shown
here all have the same
mass M. Each object is
rotating about its axis of
symmetry (shown in blue).
All three objects have the
same rotational kinetic

R
energy. Which one is R -
rotating With fGStESt @ 2012 Pearson Education, Inc
angular speed? A C



Gravitational potential energy of a rigid body

U=mygy; + mygy, + -
= (myy; + myy, + )9 = Mgyem

Gravitational PE is as if all the mass is
concentrated at the CM.



Example

Assumption: rotation of cylinder is frictionless

no slipping between cylinder and cable

At the moment the block hits the ground, speed of block is v, angular speed
of cylinder 1s w

vV =Rw
(@) (b)
5 0 + mgh = ;mv? + 2 w?
K—-\ \_Y_} S
{-E. {ﬁ. 1
initial PE  rotational KE, | = - M R?
M M
f block .

7 ? B o DI (we will tell you why later)
L H H 717

é =K+ l:' é = 12-9- U Zgh
A 1] = V=
L8 . 1+M/2m
1 V[ A

I

Cylrhder and block af rest Block about to hit ground if M = 0, v = /2gh, same as free falling

Question: Is there friction between the string
and pulley? Does it dissipate energy?



Question

* Suppose the cylinder and block have the same
mass, m = M. Just before the block hits the
floor, it’s KE is (larger than / less than / the
same as) the KE of the cylinder.




Parallel axis theorem

Icm: moment of inertia about an axis through its CM

I,: moment of inertia about another axis || to the original one and at L distance d

I, = Iem + Md?

Axis of rotation passing through cm and
perpendicular to the plane of the figure

Y Mass element m;
; Proof: square of L distance of m; to rotation axis

(—A—\

lem = ) mi(x? +¥?)

= ) milGe = ) + (i = b)?]

;_: . _ 2 2
_ i —Zmi(xi +yi)—2a2mixi—2b2miyi
Second axis of rotation
parallel to the one \ Y ' V- e
through the cm
Iem Mxcm =0 Mycm =0
N +(a% + b2 > my
) Slice of a body of mass M .
_ \_Y_l

M




Question

* A pool cueis a wooden rod with a uniform
composition and tapered with a larger
diameter at one end than at the other end.
Does it have a larger moment of inertia

@® for an axis through the thicker end of the rod
and perpendicular to the length of the rod, or

@ for an axis through the thinner end of the rod
and perpendicular to the length of the rod?



Significance of the
parallel axis theorem:
need formula for Icm only




Example A cylinder with uniform density

Mass element:
cylindrical shell
with radius r and
thickness dr

A\ Before calculating moment of inertia, must

specify rotation axis

CM along axis of symmetry
I = Zmiriz — jrz dm = jrzpdV
! -
1 distance of m; to rotation axis uniform density

Key: choose dV (the volume element) wisely, as
symmetric as possible

dV = (2nr)(dr)L

mpL
= T(Rg — R})(R% + R?)
But M = p(rR2L — nR?L) = npL(R? — R?)

I =M(R: + R?)

A independent of length



* Two hollow cy
outer radii ano

Question

inders have the same inner and
the same mass, but they have

different lengt

inertia about t
one.

ns. One is made of wood and

the other of lead. The wooden cylinder has
(larger / smaller / the same) moment of

he symmetry axis than the lead



Example A uniform sphere

Mass element: disk of

radius r and thickness dx

located a distance x from
= __the center of the sphere

/ Axis

Choose dV to be a disk of radius r = VR? — x? and thickness dx
From Example 9.10, moment of inertia of this disk is

1 1 1
5 (dm)r? = 5 (prridx)r? = Epn(R2 — x%)?%dx

Therefore
8mpR>

R
_ |1 2 _PT 2 _ 22V2 0 —
I—jz(dm)r > j_R(R x“)“dx 1=

: _ M _ 3M
Since p = = —3

— 2 2
I =2MR




Table 9.2 Moments of Inertia of Various Bodies

(a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate,
axis through center axis through one end axis through center axis along edge
1= 1= +mr? 1= L M@+ b?) 1= 1M
12 3 12 3

=4 =

b

/ﬁ\a /
T

7z

(e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow
cylinder sphere
= %M(R,Q + R j= %MRZ I = MR? [= %MR?- I= %MRz

© 2012 Pearson Education, Inc.



Vector (Cross) Product

(@) Using the right-hand rule to find the

direction of A X B

C=A4AxB
Magnitude: € = AB sin ¢
direction determined by Right Hand Rule

Place A and B tail to tail. AXB

Point fingers of right hand
along A, with palm facing B.

Curl fingers toward B.

A

B ®c

Thumb points in
direction of A X B.

Important! —

) B x A = —A X B (the vector product 13
nticommutative)

Same magnitude but ..,
opposite direction BxA

© 2012 Pearson Education, Inc.



Special cases:

(i) if AIB,|AxB| =0,
in particular, I X i =jfxj=k xk =0

(ii) if A L B, |A x B| = AB

in particular,

In analytical form (no need to memorize)
AxB
= (AyB, — A;B,)l + (A;Bx — AxB,)j
+ (AxB, — AyBy )k
ik -
B,

Z
By B,

don’t worry if you
have not learnt
determinants in

high school



Torque

Besides magnitude and direction, the line of action of a force 1s important because

it produces rotation effect.

Axis of rotation

Force close to axis of
rotation: not very
effective

Force ftarther from
axis of rotation:
more effective

Force directed
toward axis of

rotation: no effect

Fa and Fb have the same
magnitudes and directions, but
different line of action: they
produce different physical effects
— which force would you apply if
you were to tighten/loosen the
screw?



Define torque about a point O as

a vector
— —
T=rXxF
7 &?isltoboth?andF
B = Feind, T\'ﬁ‘ Magnitude:
| @ T=1(Fsing ) = (rsin¢g)F
\—%l
Fq= Fcosd¢ '
i component 1 distance
70 - .
(out of page) _ _ 4 of F Ltor from O to
" Line of action of F line of
( actions of F
| I=rsind S
i = lever arm Direction gives the sense of

rotation about O through the
right-hand-rule.

Notation: ( out of the plane
& into the plane

S| unit for torque: Nm (just like work done)



Q10.2

Which of the four forces shown here produces
a torque about O that is directed out of the
plane of the drawing?

A.F,
B.F,
C. F,
D. F,

E. more than one of these



A10.2

Which of the four forces shown here produces
a torque about O that is directed out of the
plane of the drawing?

E. more than one of these



Question

A force P is applied to one end of a lever of length L. The magnitude of
the torque of this force about point A is (PLsin6 / PL cos@ / PLtan @)




Suppose a rigid body is rotating about a fixed axis which we arbitrarily call the z axis.
my is a small part of the total mass.

Only the tangential
force component

Force component

F| rad> F1tan, and F; 7 are the 3 components of

along axis of rotation

produces a z-com-

Axis of 2 s e the total force acting on m4
sotation p(l;_unl of torque.
£ \_Rotating Only F; tan produces the desired rotation, F; o4
o rigid :
2\ body and F; 7 produce some other effects which are

Path of L e irrelevant to the rotation about the z axis.

. 1,rad
article as — —
Eody ; Fitan = miaitan = my(na;)
rotates ‘Raldial force F N =m rza

component 1tan’1 171 %z

S ¥ torque on m, about z, T4,

Sum over all mass in the body, since they all have the same «,

ZTL'Z = zrnr‘ri2 a, =la,



Action-reaction force pair Line of action
whose torques cancel: of both forces
TYana = +Fl

Toon1 = =
‘_.

F .
ey 1002 Do ticle 2

,,,, e —
Lever arm /-~ X700
of both forces

Need to consider torque due to external forces
only. Internal forces (action and reaction pairs)
produce equal and opposite torques which have
no net rotational effect.

Conclusion: for rigid body rotation about a

zText = la

c.f- Newton’s second law ), Fext = Ma

fixed axis,




Example Pulley rotates about a fixed axis. What is the acceleration

a of the block?

(a) (b) T
A
n
B Cylinder R 56
r

Block X

For the cylinder

torque due  moment of angular
toT inertia of acceleration
cylinder
ie. T = %M a
For the block
mg —T = ma
Therefore
g
a =
14+ M/2m

Suppose the block is initially at rest at height h. At the moment it hits the floor:

v2=0+2< J

1+ M/2m

h = = 2gh
YT [T+ M/2m

c.f. Previously we get the same result using energy conservation.



Question

Mass mslides on a frictionless track. The pulley has moment of inertia / about its
rotation axis, and the string does not slip nor stretch. When the hanging mass m, is
released, arrange the forces Ty, T,, and m, g in increasing order of magnitude.

m T /

_— @R

h"‘---.,_..

2012 P son Baucalion, IR



We know how to deal with:
translation of a point particle (or CM of a rigid body):

Z Fext — ma)

rotation of a rigid body about a fixed axis:

EText =la

In general, a rigid body is rotating about a moving axis, i.e.,
has both types of motion simultaneously.

Every possible motion of a rigid body can be
represented as a combination of translational motion
of the CM and rotation about an axis through its CM.



¢.g. tossing a baton

/ \
% 0)//0
/ \
/ \
/ \
/ \

This baton toss can be represented as
a combination of ...

translation + rotation

... rotation about ... plus translation
the center of mass ... of the center of mass.
rd 4T \ .
: /
e / o
” + ot ‘
I} \
I} \
I} \
I \
I} \
o—=0 —=0
12 Pearson Education, Inc
rotation

translation of CM

bout a fixed .
about a 1ixe (considered as a

axi1s through

article
CM b )



Energy consideration

m; 1s a small mass of the rigid body
v, its velocity relative to the CM, its velocity relative to the

gI'Ollﬂd 1S ﬁi = ﬁcm + 5’: Axis of rotation
s,
K; = %m V| = ml(vcm + V) - Wem + V)
1
= >m;(¥cm * Yem + 2Vem * Vi + Vi - V) <
— — Ucm
= 2m;(vém + 2Vcm - Vi + vi?) Cmﬂ‘ﬂ
. 5 -
Total KE of the rigid body e o <
| m; _:' e
K - z Ki I
(Y] v + e (z i, ) (o)
\—Y—l
M center of mass zmiri w2 Therefore
velocity 1 . 1 .
relative to CM = EM va + EI w
— Zero




Rolling without slipping

No slipping at the point of contact = point of contact must be at rest (instantaneously), i.e.,
—Rw+vem =0 = vem = Rw

Rotation around center of mass:

Translation of center of mass:  for rolling without slipping,
velocity U, speed at rim = v, Combined motion
3 I?"cm 63’ = 6cm {;3 = 21_;cm
[ e =t Hﬁ*
L
—3 - | — 5’ 4 w a =
Uen U U 2 t ] — 45 Uem
U4
i E_ _4 - o = -
1 lT;t::m t_))l! = _6cm v, = 0
\-\-"hccl. 1s instantaneously at rest
where it contacts the ground.
(.  \ J/
translation + rotation rotation about instantaneous axis
1 2 1 2 . 1 1
K = sMvim + lw of rotation ( a moving axis)

K = 2(I + MRH)w?
= Mvéy + 3l w?

parallel axis theorem \
Vem = Rw



Example

-
QU Aa

T. A\ Rolling without slipping,

N - friction does no work

What determines which body rolls down the incline fastest?
Suppose a rigid body’s moment of inertia about its symmetry axis is | = cMR?

N

translation rotation KE about
] final PE
KE of CM a fixed axis

v 2
0+ Mgh = ZMvéy + scMR? (%) +0

7

initial KE initial PE

Rigid body with smaller c rolls faster :

solid sphere (¢ = %)

2gh
14+c¢

= Ve =
Cm . . 1
> solid cylinder (¢ =-)

&depends on ¢ Qn]y’ > thin walled hollow sphere (¢ = %)

independent of M and R > thin walled hollow cylinder (c = 1)



Role of friction: Example

@)

Rolling without slipping 1s not possible without friction.
Consider a rigid sphere going freely down an inclined plane. If no friction, no
torque about the center and the sphere slides down the plane.

Assume rolling without slipping, friction must be (static / dynamics) and
must point (upward / downward) along the plane.

Vem = Rw = acm = Ra



€))

UVcm = Rw = Acm = Ra
Translation of CM: Mgsinf — f = Macm

Rotation of sphere about its center: fR = Icma = (EMRZ)(acm/R)
Get acm=§gsinﬁ and f=%Mgsin,B

A\ Rolling is slower than sliding because part of the PE is converted into rotation KE
A\ If the sphere is rolling uphill with no slipping, the friction will point (upward /
downward) along the plane because its effect is to decelerate the rotation.



Puzzle: For rolling without slipping,
friction does NO work.

Therefore a vehicle will go on forever
1f there 1s no air resistance,

just like a magnetic levitated train.
Too good to be true!



In reality energy 1s lost because the floor and/or the rolling body are deformed, e.g.

vehicle tyre.

(b) Rigid sphere rolling on a deformable

(@) Perfectly rigid sphere rolling on a perfectly
surface

rigid surface

X
: ; Normal force

Normal force produces :

) i , . pmduccs a torque about
no torque about the center ;

. I the center of the sphere that
of the sphere. _

opposes rotation.

& 2012 Pearson Education. Inc

Energy is lost because:
*due to deformation, normal reaction produces a torque opposing the rotation.

esliding of the deformed surfaces causes energy lost.

These two effects give rise to rolling friction.
Consequence: trains, with metal wheels on metal tracks, are more fuel efficient

than vehicles with rubber tires.



A Yo-yo

J
]

(b)

To find vemy at point 2, need energy conservation

v 2
0+ Mgh = iMvZy, + 1(AMR?) (%) +0

/oo o =5

initial initial translation rotation KE about a final
KE PE KE of CM fixed axis PE
4 .
= Vcm = |39 h c.f. for free falling v.,, = /2gh

To find the downward acceleration of the yo-yo, need
dynamic equations

Translation of CM: Mg —T = Macm
Rotation of cylinder about its axis:

TR = Iema = (3MR?)(acm/R)

Get

acm=§g
_1
I'=3Mg



Exercise: rotation of a dumbbell

A dumbbell consists of a weightless rod of length L and two masses (each with
mass M) on its two ends. Initially, the dumbbell sits on a frictionless table and
points north. A constant force F (towards east) is applied on one of the ball.
The dumbbell will accelerate and rotate due to the applied force.

Find the tension in the rod when the dumbbell rotation 90°




Due to the constant external force F, the CM of the dumbbell accelerates with constant

accelerationa = F/2M.
At the instance when the CM moves to the distance [, the CM velocity becomes v =

vV 2al. And the work-energy theorem gives 1
&Y A SLsing) = K + K,

where .
K, =2 x §M?J2:Fl

1 L\? 1
K,=2x -M|[=| w?==-ML?*.?
2 2 4

are the translational and rotational kinetic energies of the dumbbell respectively. Hence
we have

w:@ O_F’

O



Finally, focusing on the centripetal force acting on the mass 1.

T — Fsinp = Maciy — Macy sin @

oL F
= Mw? 5 _MW sin @
F ML 3
T:§Smgp+7w iFsmgp
F
O=
[




Work and power in rotational motion

A particle or rigid body, being pushed by an external force, is undergoing circular
motion about a fixed axis (such as a merry-go-round).

A\ only the tangential component Fiay does
work — no displacement along the radial
and z directions.

Work done after going through angle d6

7 ool dW = Fign(RdO) = 1d6

= W=j‘[d9

c.f- in translation, W = J F-dr



W=f’[d9

By changing variable
dw
7d0 = (la)dO = [ —

o do = I(dw)w

W32
[Wtot = j Iodw = Jlw} —;Iw%J
W1

This is the work-energy theorem for
rotational motion.

How about power?

_dw df

P=—=17—=
dt  dar @

c.f P = F - ¥ for translational motion.



Question

* You apply equal torques to two different
cylinders, one of which has a moment of
inertial twice as large as the other. Each
cylinder is initially at rest. After one complete
rotation, the cylinder with larger moment of
inertia will have (larger / smaller / the same)
kinetic energy as the other one.



Angular momentum



For a point particle, define its angular momentum about the origin
O by

—

— —
L=rXp
i the particle need not be rotating about any
i axis, can be travelling in a straight line
///
o trajectory of m L = mvrsing = (mvsing)r
~ . .
= mv(rsin ¢)
= rsin ¢ i N . .
. dL dr _, , dp L -
L = angular momentum of particle — = |—X P +l{rX—|=rXF
_ y t dt dt
/ L is perpendicular to the plane of .
z motion (if the origin O is in that plane) =T '\
and has magnitude L = muvl. dr —
R m— F
dt
dL v
. =g
Le. | — =T dP -,




For a rigid body

Take the rotation axis as the z axis,
m4 1s a small mass of the rigid body

Q_P )
Another slice of a Ly =mvir = m(a)rl sin 91)7”1

rigid body rotating

about the z-axis z] + Zz is along
(viewed edge-on) the rotation axis. If rotation axis is a symmetry axis,
Y L/ */mg o then there exist m, on the opposite
o, .. side whose x-y components of

S N angular momentum cancel those of
This particle This particle
of the body of the body is my.
is moving ry I, moving away Therefore only z component of any
toward you. from you. N

X L; 1s important.

Total angular momentum L= > Zi = Y L; sin 6; k, points along rotation axis with
magnitude

I = z[mi (wr; sin 6;)1;] sin 6; = Z m;(r;sin6;)? |w
\_Y_)

1 distance of m; to rotation axis



Conclusion: if rotation axis is a symmetry axis, then

L=1a

| If you curl the

fingers of your

right hand in
k the direction

of rotation ... \\
' |

| —

é . .
P ... your right thumb w and L have the same direction

|
points in the direction :
of . If the rotation axis :
1$ an axis of symmetry, "'T'I'i]la"]) il
| thiiis also the direction N
' of L. w
L

£ B2 Paarson Educasion, i



What if the rotation axis is not a symmetry axis? L+ [w, but

M

L,

Irregularly shaped body
y

“*=-This rotation axis is not

a symmetry axis of the body:
L 1s not along the rotation axis.

= lw

For rotation about a fixed axis, “angular
momentum” often means the

component of L along the axis of
rotation, but not L itself.



Internal forces (action and reaction pairs) have the same line of action

— no net torque.

Therefore for a system of particles or a rigid body

Line of action
of both forces

Action—reaction force pair
whose torques cancel:
Tion2 = +Fi

Fi

2onl ™

Lever arm [ ---messe= X THoon
of both forces

= 2012 Paarson Education, ng

dL
dt

—

T

dP R
c.f- dr z Fext

Under no external torque ( &\ not force)

dL

=0
dt

conservation of angular momentum



A spinning physics professor

b /
Dumbbell Dumbbell

— Professor

(not a
dumbbell)
(.U| .
)
BEFORE AFTER

Conservation of angular momentum
LLwi = Lw,

IfIZ — 11/2, then Wy = 2(,()1, and

1
Kz =512(1)% = Kl'

Where comes the extra energy?

And in the reverse process I, — I,
where goes the energy?



Example
A bullet hits a door 1in a perpendicular direction, embeds in it and swings it open.

Linear momentum is not conserved because

Angular momentum along the rotation axis is conserved because

initial angular “ M d?
momentum of mvl = w + (m12 w

: 3
top view bullet about hinge I
\—Y—)

Hinge moment of
moment of inertia of bullet
inertia of about hinge

€= 0s0m | | door about after embedded
m=10¢g ;, Bullet hinge in door
-»-—s Y|
Vijller= 00w |
d= 1.00m|/ M=15 kg
/ /
/ = muvl
8¢ N7 = w = 1
Before After = Md? + ml?



Question: If the polar ice caps were to completely melt due to global
warming, the melted ice would redistribute itself over the earth. This
change would cause the length of the day (the time needed for the earth to
rotate once on its axis) to (increase / decrease / remain the same).



Gyroscope

https://www.youtube.com/wat
ch?v=cquvA_IpEsA&t=3s



https://www.google.com.hk/imgres?imgurl=http://catalog.miniscience.com/Catalog/Gyroscope/Basic_Gyroscope_m.jpg&imgrefurl=http://catalog.miniscience.com/Catalog/Gyroscope/Default.html&docid=4C1Jx5ydoROVZM&tbnid=loGKCl8eXpMcBM:&vet=10ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo..i&w=200&h=302&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=http://catalog.miniscience.com/Catalog/Gyroscope/Basic_Gyroscope_m.jpg&imgrefurl=http://catalog.miniscience.com/Catalog/Gyroscope/Default.html&docid=4C1Jx5ydoROVZM&tbnid=loGKCl8eXpMcBM:&vet=10ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo..i&w=200&h=302&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=https://www.gyroscope.com/images/newmenu/topban4.jpg&imgrefurl=https://www.gyroscope.com/Gyroscopes&docid=WI9OSGaN7bCc-M&tbnid=ZcD4mRCtlAMY9M:&vet=10ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO..i&w=214&h=186&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=https://www.gyroscope.com/images/newmenu/topban4.jpg&imgrefurl=https://www.gyroscope.com/Gyroscopes&docid=WI9OSGaN7bCc-M&tbnid=ZcD4mRCtlAMY9M:&vet=10ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO..i&w=214&h=186&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO&iact=mrc&uact=8

Case 1: when the flywheel is not spinning — it falls down

(a) Nonrotating flywheel falls

Z
7 T=rXw
Pivot
0= ; 1 X
f AXI1S i
|
; i
|I !
1 " /
s w )£ Path of free end

torque T due to weight of the
flywheel w causes it to fall
in the x-z plane

(b) View from above as flywheel falls

y
at (L; =0)
dL
dL = I7.
Pivot AL .
\ dL
O A
Flywheel

L increases as flywheel falls



Case 2: when flywheel spinning with initial angular moment Zi — it precesses

»  Rotation of flywheel Y
m y 7 Torque due to weight
/ force (as in Fig. 10.33)
4
o %
w Initial angular
IR momentum due to
\k}_ __iu rotation of flywheel 5 X

© 2012 Pearson Education, Inc

Since L L dz, flywheel axis execute circular

. ° - .
motion called precession, |L| remains constant

faster spinning w — slower precession ()



Rotational motion of the angular momentum

dl = 7dt — dL = 7dt = Mgrdt

dE 1 E ==> [, can only change its direction, but NOT its magnitude
T — dL — Mgrdt
T T Iw

Precession rate

_d_gp_Mgr
o odt Iw




animation of the vectors W, 7, and L at
http://phys23p.sl.psu.edu/phys anim/mech/gyro sl p.avi



http://phys23p.sl.psu.edu/phys_anim/mech/gyro_s1_p.avi

If w >> (), can ignore angular momentum due to precession. Otherwise there
is nutation of the flywheel axis — it wobbles up and down




Q10.11

A spinning figure skater pulls
his arms in as he rotates on
the ice. As he pulls his arms
in, what happens to his
angular momentum L and
kinetic energy K?

A. L and K both increase.
B. L stays the same; K increases.
C. L increases; K stays the same.

D. L and K both stay the same.




A10.11

A spinning figure skater pulls
his arms in as he rotates on
the ice. As he pulls his arms
in, what happens to his
angular momentum L and
kinetic energy K?

A. L and K both increase.

J L stays the same; K increases.

C. L increases; K stays the same.

D. L and K both stay the same.



Kepler’s Laws of Planetary Motion

Purely phenomenological
— Kepler didn’t know why

Later derived by Newton using his laws of motion and
gravitation

— significance: heavenly objects obey the same physical laws
as terrestrial objects, don’t need, e.g., Greek myths!



First Law: Each planet moves 1n an elliptical orbit, with the sun at

one focus of

A planet P follow

The sun S is at one
focus of the ellipse.

the ellipse.

s an elliptical orbit.

.
L P Aphelion

. }:‘
Perihelion : _ _ |
/’E“ -
y S ~
rd » N
7 ¥ \
¥ S L
T ol X
\\ (0] T
« keasi—ea—s|
\\\ v 3
= R R —.7 .

There is nothing at
the other focus.

An ellipse 1s defined by the locus of a point P
such that |PS’| + |SP| = constant

S and S’ are the two foci of the ellipse
Semi-major axis a ( A a length, not an axis)

Eccentricity e (e = 0 for circle, 0 <e <1 for
ellipse)

Aphelion — farthest [(1 4+ e)a] point from sun
Perihelion — closest [(1 — e)a] point to sun

Note: aphelion distance + perihelion distance = 2a



Second Law: A line from the sun to a given planet sweeps out equal areas in equal times.
See http://en.wikipedia.org/wiki/File:Kepler-second-law.gif

dA =~ area of blue triangle = %(rd@)r

dA 1 ,d6

dt 2 dt

(b)

_ do
v, =vsing =r—

dt
_— - = — X = —
i v sin ¢ - r X mv -

do r
){ dA = area swept out by
the line SP in a time dt

i.e., Kepler’s second law < conservation of
angular momentum
A  Angular momentum is conserved

\ g ! because gravitational force (a central

\ - The line SP sweeps out equal

e force) produces no torque
areas A in equal times.
” .
NG - A Another consequence of conservation of

-
o —— -

0 2012 Pearson Education, e angular momentum — orbit lies in a plane


http://en.wikipedia.org/wiki/File:Kepler-second-law.gif

Third Law: The periods of the planets are proportional to the % powers of the major axis
lengths of their orbits.

2mwa3/?
T —

Gms

For the circular orbit, we have

Gmsm  muv?
a? a

2Ta

T = —



