
DYNAMICS OF RIGID BODIES



Measuring angles in radian

Define the value of an angle 𝜃 in radian

as 𝜃 =
𝑠

𝑟
,

or arc length 𝑠 = 𝑟𝜃

a pure number, without dimension

independent of radius r of the circle

one complete circle

𝜃 =
2𝜋𝑟

𝑟
= 2𝜋 in radian ↔ 360°

𝜋 in radian ↔ 180°

Τ𝜋 2 in radian ↔ 90°



Consider a rigid body rotating about a fixed axis

angular displacement: ∆𝜃 = 𝜃2 − 𝜃1

angular velocity:

𝜔 =
∆𝜃

∆𝑡

∆𝑡→0 𝑑𝜃

𝑑𝑡
(average)       (instantaneous)

angular acceleration:

𝛼 =
𝑑𝜔

𝑑𝑡
=
𝑑2𝜃

𝑑𝑡2

Convention: θ measured from x axis in counterclockwise direction



Convention: θ measured from x axis in counterclockwise direction



Angular velocity is a vector, direction defined by the right hand rule

direction of 𝝎

represents sense of 

rotation



Rotation 

speeding up,  

𝜶 and 𝝎 in the 

same direction

Rotation slowing 

down,  𝜶 and 𝝎

in the opposite 

direction

Angular acceleration is defined as 𝜶 = Τ𝑑𝝎 𝑑𝑡

if rotation axis is fixed, 𝜶 along the direction of 𝝎



Question

• The figure shows a graph of 𝜔 and 𝛼 versus 
time. During which time intervals is the 
rotation speeding up?

(i) 0 < t < 2 s; (ii) 2 s < t < 4 s; (iii) 4 s < t < 6 s.



Rotation with constant angular acceleration



angular velocity at 𝑡 = 0.300 s:

𝜔 = 𝜔0 + 𝛼𝑡

= 27.5 rad/s + −10.0 Τrad s2 0.300 s

= 24.5 rad/s

Suppose 𝜃 is the angular position of PQ at 

𝑡 = 0.300 s

𝜃 = 𝜔0𝑡 +
1
2𝛼𝑡

2 = 7.80 rad

= 7.8 rad
360°

2𝜋 rad
= 447° = 87°

Example
A Blu-ray disc is slowing down to a stop with constant angular acceleration 

𝛼 = −10.0 rad/s2. At 𝑡 = 0, 𝜔0 = 27.5 rad/s, and a line PQ marked on the disc surface 
is along the x axis.

What are the directions of 𝝎 and 𝜶?



Question

• In the above example, suppose the initial 
angular velocity is doubled to 2𝜔0, and the 
angular acceleration (deceleration) is also 
doubled to 2𝛼, it will take (more / less / the 
same amount of) time for the disc to come to 
a stop compared to the original problem.



A. 0.40 rad

B. 0.80 rad

C. 1.0 rad 

D. 2.0 rad

Q9.2

A DVD is initially at rest so that the line PQ on the 
disc’s surface is along the +x-axis. The disc begins 
to turn with a constant az = 5.0 rad/s2. 

At t = 0.40 s, what is the angle between the line PQ
and the +x-axis?
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Rigid body rotation

In time ∆𝑡, angular displacement is ∆𝜃,

tangential displacement (arc length) is 

∆𝑠 = 𝑟∆𝜃

∴ tangential speed 

𝑣 =
∆𝑠

∆𝑡
= 𝑟

∆𝜃

∆𝑡
→ 𝑟

𝑑𝜃

𝑑𝑡
= 𝑟𝜔

Velocity of point P, 𝒗, is tangential and 

has magnitude 𝑣 = 𝑟𝜔

tangential acceleration 

radial acceleration 

(from circular motion 

of P)

𝑎tan =
𝑑𝑣

𝑑𝑡
= 𝑟

𝑑𝜔

𝑑𝑡
= 𝑟𝛼

𝑎rad =
𝑣2

𝑟
= 𝜔2𝑟



Example

An athlete whirls a discus in a circle of radius 80.0 cm. At some instant 𝜔 =
10.0 rad/s, and 𝛼 = 50.0 rad/s2. Then

𝑎tan = 𝑟𝛼 = 0.800 m 50.0 Τrad s2 = 40.0 m/s2

𝑎rad = 𝜔2𝑟 = 10.0 Τrad s 2 0.800 m = 80.0 m/s2

Magnitude of the linear acceleration is

𝑎 = 𝑎tan
2 + 𝑎rad

2 = 89.4 m/s2



Rotational kinetic energy of a rigid body

Consider a rigid body as a collection of particles, the kinetic energy due to rotation is

𝐾 =෍ 1
2𝑚𝑖𝑣𝑖

2 =෍ 1
2𝑚𝑖𝑟𝑖

2𝜔2 =
1

2
෍𝑚𝑖𝑟𝑖

2 𝜔2

c.f. in rectilinear motion, 

𝐾 = 1

2
𝑚𝑣2

moment of inertia I, analogous 

to mass in rectilinear motion

𝐾 = 1
2𝐼𝜔

2

𝐼 =෍𝑚𝑖𝑟𝑖
2

I depends on distribution of mass, and therefore on the location of the rotation axis.



You want to double the radius of a rotating solid sphere while keeping its 
kinetic energy constant. (The mass does not change.) To do this, the final 
angular velocity of the sphere must be

A. 4 times its initial value.

B. twice its initial value.

C. the same as its initial value.

D. 1/2 of its initial value.

E. 1/4 of its initial value.

Q9.5
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The three objects shown 
here all have the same 
mass M. Each object is 
rotating about its axis of 
symmetry (shown in blue). 
All three objects have the 
same rotational kinetic 
energy. Which one is 
rotating with fastest 
angular speed?

Q9.6

R

A B C
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𝑈 = 𝑚1𝑔𝑦1 +𝑚2𝑔𝑦2 +⋯
= 𝑚1𝑦1 +𝑚2𝑦2 +⋯ 𝑔 = 𝑀𝑔𝑦cm

Gravitational PE is as if all the mass is 
concentrated at the CM.

Gravitational potential energy of a rigid body



Example

Assumption: rotation of cylinder is frictionless

no slipping between cylinder and cable

At the moment the block hits the ground, speed of block is 𝑣, angular speed 

of cylinder is 𝜔

initial PE 

of block

rotational KE, 𝐼 =
1

2
𝑀𝑅2

(we will tell you why later)

⇒ 𝑣 =
2𝑔ℎ

1 +𝑀/2𝑚

𝑣 = 𝑅𝜔

0 +𝑚𝑔ℎ = 1
2𝑚𝑣

2 + 1
2𝐼𝜔

2

if 𝑀 = 0, 𝑣 = 2𝑔ℎ, same as free falling

Question: Is there friction between the string 

and pulley? Does it dissipate energy?



Question

• Suppose the cylinder and block have the same 
mass, 𝑚 = 𝑀. Just before the block hits the 
floor, it’s KE is (larger than / less than / the 
same as) the KE of the cylinder.



𝐼cm: moment of inertia about an axis through its CM
𝐼𝑝:   moment of inertia about another axis ∥ to the original one and at ⊥ distance 𝑑

𝐼𝑝 = 𝐼cm +𝑀𝑑2

Proof:

𝐼cm =෍𝑚𝑖 𝑥𝑖
2 + 𝑦𝑖

2

𝐼𝑝 =෍𝑚𝑖 𝑥𝑖 − 𝑎 2 + 𝑦𝑖 − 𝑏 2

=෍𝑚𝑖 𝑥𝑖
2 + 𝑦𝑖

2 − 2𝑎෍𝑚𝑖𝑥𝑖 − 2𝑏෍𝑚𝑖𝑦𝑖

+ 𝑎2 + 𝑏2 ෍𝑚𝑖

𝐼cm 𝑀𝑥cm = 0 𝑀𝑦cm = 0

𝑀

square of ⊥ distance of 𝑚𝑖 to rotation axis

Parallel axis theorem



Question

• A pool cue is a wooden rod with a uniform 
composition and tapered with a larger 
diameter at one end than at the other end. 
Does it have a larger moment of inertia

 for an axis through the thicker end of the rod 
and perpendicular to the length of the rod, or

 for an axis through the thinner end of the rod 
and perpendicular to the length of the rod?



Significance of the 
parallel axis theorem: 
need formula for 𝐼cm only



Example A cylinder with uniform density

Before calculating moment of inertia, must 

specify rotation axis

CM along axis of symmetry

𝐼 =෍𝑚𝑖𝑟𝑖
2 ⟶ න𝑟2 𝑑𝑚 = න𝑟2𝜌𝑑𝑉

𝑑𝑉

uniform density

Key: choose 𝑑𝑉 (the volume element) wisely, as 

symmetric as possible

𝑑𝑉 = 2𝜋𝑟 𝑑𝑟 𝐿

𝐼 = 2𝜋𝜌𝐿න
𝑅1

𝑅2

𝑟3 𝑑𝑟 =
𝜋𝜌𝐿

2
𝑅2
4 − 𝑅1

4

=
𝜋𝜌𝐿

2
𝑅2
2 − 𝑅1

2 𝑅2
2 + 𝑅1

2

But 𝑀 = 𝜌 𝜋𝑅2
2𝐿 − 𝜋𝑅1

2𝐿 = 𝜋𝜌𝐿 𝑅2
2 − 𝑅1

2

𝐼 = 1
2𝑀 𝑅2

2 + 𝑅1
2

independent of length

⊥ distance of 𝑚𝑖 to rotation axis



Question

• Two hollow cylinders have the same inner and 
outer radii and the same mass, but they have 
different lengths. One is made of wood and 
the other of lead. The wooden cylinder has 
(larger / smaller / the same) moment of 
inertia about the symmetry axis than the lead 
one.



Example A uniform sphere 

Choose 𝑑𝑉 to be a disk of radius 𝑟 = 𝑅2 − 𝑥2 and thickness 𝑑𝑥

From Example 9.10, moment of inertia of this disk is 

1

2
𝑑𝑚 𝑟2 =

1

2
𝜌𝜋𝑟2𝑑𝑥 𝑟2 =

1

2
𝜌𝜋 𝑅2 − 𝑥2 2𝑑𝑥

Therefore

𝐼 = න 1
2 𝑑𝑚 𝑟2 =

𝜌𝜋

2
න
−𝑅

𝑅

𝑅2 − 𝑥2 2𝑑𝑥 =
8𝜋𝜌𝑅5

15

Since 𝜌 =
𝑀

𝑉
=

3𝑀

4𝜋𝑅3

𝐼 = 2
5
𝑀𝑅2





Vector (Cross) Product

𝑪 = 𝑨 × 𝑩

Magnitude: 𝐶 = 𝐴𝐵 sin𝜙

direction determined by Right Hand Rule

Important!



Special cases: 

(i) if  𝑨 ∥ 𝑩, 𝑨 × 𝑩 = 0,

in particular, Ƹ𝑖 × Ƹ𝑖 = Ƹ𝑗 × Ƹ𝑗 = ෠𝑘 × ෠𝑘 = 0

(ii) if  𝑨 ⊥ 𝑩, 𝑨 × 𝑩 = 𝐴𝐵

in particular,  

In analytical form  (no need to memorize)

𝑨 × 𝑩

= 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 Ƹ𝑖 + 𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧 Ƹ𝑗

+ 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 ෠𝑘

=

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

don’t worry if you 

have not learnt 

determinants in 

high school



Torque

Besides magnitude and direction, the line of action of a force is important because 

it produces rotation effect.

𝑭𝑎 and 𝑭𝑏 have the same 

magnitudes and directions, but 

different line of action: they 

produce different physical effects 

– which force would you apply if 

you were to tighten/loosen the 

screw?



Define torque about a point O as 

a vector

𝝉 = 𝒓 × 𝑭

𝝉 is ⊥ to both 𝒓 and 𝑭

Magnitude: 

𝜏 = 𝑟 𝐹 sin𝜙 = 𝑟 sin𝜙 𝐹

component 

of 𝑭 ⊥ to 𝒓

⊥ distance 

from O to 

line of 

actions of 𝑭

Direction gives the sense of 

rotation about O through the 

right-hand-rule.

Notation: ⊙ out of the plane

⊗ into the plane

SI unit for torque: Nm (just like work done)



Which of the four forces shown here produces 
a torque about O that is directed out of the 
plane of the drawing?

A. F1

B. F2

C. F3

D. F4

E. more than one of these

Q10.2

F1

F2

F3

F4

O
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A force P is applied to one end of a lever of length L. The magnitude of 
the torque of this force about point A is (𝑃𝐿 sin 𝜃 / 𝑃𝐿 cos 𝜃 / 𝑃𝐿 tan𝜃)

Question



𝐹1,rad, 𝐹1,tan, and 𝐹1,z are the 3 components of 

the total force acting on 𝑚1

Only 𝐹1,tan produces the desired rotation, 𝐹1,rad
and 𝐹1,z produce some other effects which are 

irrelevant to the rotation about the z axis.

𝐹1,tan = 𝑚1𝑎1,tan = 𝑚1 𝑟1𝛼𝑧

𝐹1,tan𝑟1 = 𝑚1𝑟1
2𝛼𝑧

torque on 𝑚1 about z, 𝜏1𝑧

Sum over all mass in the body, since they all have the same 𝛼𝑧

෍𝜏𝑖𝑧 = ෍𝑚𝑟𝑟𝑖
2 𝛼𝑧 = 𝐼𝛼𝑧

Suppose a rigid body is rotating about a fixed axis which we arbitrarily call the z axis. 
𝑚1 is a small part of the total mass.



Need to consider torque due to external forces 

only. Internal forces (action and reaction pairs) 

produce equal and opposite torques which have 

no net rotational effect.

Conclusion: for rigid body rotation about a 

fixed axis,

෍𝜏ext = 𝐼𝛼

c.f. Newton’s second law σ𝑭ext = 𝑀𝒂



For the block

𝑚𝑔 − 𝑇 = 𝑚𝑎

Therefore

𝑎 =
𝑔

1 + 𝑀/2𝑚

For the cylinder

𝑇𝑅 = 1
2
𝑀𝑅2

𝑎

𝑅

i.e. 𝑇 = 1

2
𝑀𝑎

torque due 

to T

moment of 

inertia of 

cylinder

angular 

acceleration

Pulley rotates about a fixed axis. What is the acceleration 
a of the block? 

Suppose the block is initially at rest at height h. At the moment it hits the floor:

𝑣2 = 0 + 2
𝑔

1 +𝑀/2𝑚
ℎ ⟹ 𝑣 =

2𝑔ℎ

1 +𝑀/2𝑚

c.f. Previously we get the same result using energy conservation.

Example



Mass 𝑚1slides on a frictionless track. The pulley has moment of inertia I about its 
rotation axis, and the string does not slip nor stretch. When the hanging mass 𝑚2 is 
released, arrange the forces 𝑇1, 𝑇2, and 𝑚2𝑔 in increasing order of magnitude.

Question



We know how to deal with:
translation of a point particle (or CM of a rigid body):

෍𝑭ext = 𝑚𝒂

rotation of a rigid body about a fixed axis: 

෍𝜏ext = 𝐼𝛼

In general, a rigid body is rotating about a moving axis, i.e., 
has both types of motion simultaneously.

Every possible motion of a rigid body can be 

represented as a combination of translational motion 

of the CM and rotation about an axis through its CM.



e.g. tossing a baton

translation + rotation
rotation 

about a fixed 

axis through 

CM 

translation of CM 

(considered as a 

particle)



Energy consideration

𝑚𝑖 is a small mass of the rigid body

𝒗𝑖
′ its velocity relative to the CM, its velocity relative to the 

ground is 𝒗𝑖 = 𝒗cm + 𝒗𝑖
′

𝐾𝑖 =
1
2
𝑚𝑖 𝒗𝑖

2 = 1
2
𝑚𝑖 𝒗cm + 𝒗𝑖

′ ∙ 𝒗cm + 𝒗𝑖
′

= 1
2𝑚𝑖 𝒗cm ∙ 𝒗cm + 2𝒗cm ∙ 𝒗𝑖

′ + 𝒗𝑖
′ ∙ 𝒗𝑖

′

= 1
2𝑚𝑖 𝑣cm

2 + 2𝒗cm ∙ 𝒗𝑖
′ + 𝑣𝑖

′2

Total KE of the rigid body

𝐾 =෍𝐾𝑖

= 1
2
෍𝑚𝑖 𝑣cm

2 + 𝒗cm ∙ ෍𝑚𝑖𝒗𝑖
′ +෍ 1

2
𝑚𝑖𝑣𝑖

′2

𝑀 center of mass 

velocity 

relative to CM 

– zero 

1
2
𝑚𝑖𝑟𝑖

2𝜔2
Therefore

𝐾 = 1
2𝑀𝑣cm

2 + 1
2𝐼𝜔

2



Rolling without slipping
No slipping at the point of contact ⟹ point of contact must be at rest (instantaneously), i.e., 
−𝑅𝜔 + 𝑣cm = 0 ⟹ 𝑣cm = 𝑅𝜔

translation + rotation

𝐾 = 1
2𝑀𝑣cm

2 + 1
2𝐼𝜔

2

rotation about instantaneous axis 

of rotation ( a moving axis)

𝐾 = 1
2 𝐼 + 𝑀𝑅2 𝜔2

= 1
2𝑀𝑣cm

2 + 1
2𝐼𝜔

2

parallel axis theorem
𝑣cm = 𝑅𝜔



Example

What determines which body rolls down the incline fastest?

Suppose a rigid body’s moment of inertia about its symmetry axis is 𝐼 = 𝑐𝑀𝑅2

0 +𝑀𝑔ℎ = 1
2𝑀𝑣cm

2 + 1
2𝑐𝑀𝑅

2
𝑣cm
𝑅

2

+ 0

initial KE initial PE
translation 

KE of CM

rotation KE about 

a fixed axis
final PE

⇒ 𝑣𝑐𝑚 =
2𝑔ℎ

1 + 𝑐

Rolling without slipping, 

friction does no work

depends on 𝑐 only, 

independent of 𝑀 and 𝑅

Rigid body with smaller 𝑐 rolls faster : 

solid sphere (𝑐 =
2

5
) 

> solid cylinder (𝑐 =
1

2
) 

> thin walled hollow sphere (𝑐 =
2

3
) 

> thin walled hollow cylinder (𝑐 = 1)



Role of friction: Example

Rolling without slipping is not possible without friction.

Consider a rigid sphere going freely down an inclined plane. If no friction, no 

torque about the center and the sphere slides down the plane.

Assume rolling without slipping, friction must be (static / dynamics) and 
must point (upward / downward) along the plane. 

𝑣cm = 𝑅𝜔 ⇒ 𝑎cm = 𝑅𝛼



Translation of CM:                          𝑀𝑔 sin 𝛽 − 𝑓 = 𝑀𝑎cm

Rotation of sphere about its center:   𝑓𝑅 = 𝐼cm𝛼 = 2

5
𝑀𝑅2 Τ𝑎cm 𝑅

Get 𝑎𝑐𝑚 =
5

7
𝑔 sin 𝛽 and 𝑓 =

2

7
𝑀𝑔 sin 𝛽

Rolling is slower than sliding because part of the PE is converted into rotation KE
If the sphere is rolling uphill with no slipping, the friction will point (upward / 
downward) along the plane because its effect is to decelerate the rotation.

𝑣cm = 𝑅𝜔 ⇒ 𝑎cm = 𝑅𝛼



Puzzle: For rolling without slipping,

friction does NO work.

Therefore a vehicle will go on forever

if there is no air resistance,

just like a magnetic levitated train.

Too good to be true! 



In reality energy is lost because the floor and/or the rolling body are deformed, e.g. 

vehicle tyre.

Energy is lost because:

•due to deformation, normal reaction produces a torque opposing the rotation.

•sliding of the deformed surfaces causes energy lost.

These two effects give rise to rolling friction.

Consequence: trains, with metal wheels on metal tracks, are more fuel efficient 

than vehicles with rubber tires.



A Yo-yo
To find 𝑣cm at point 2, need energy conservation

0 +𝑀𝑔ℎ = 1
2
𝑀𝑣cm

2 + 1
2
1
2
𝑀𝑅2

𝑣cm
𝑅

2

+ 0

initial 

KE
initial 

PE

translation 

KE of CM
rotation KE about a 

fixed axis

final 

PE

𝑣cm = 4
3𝑔ℎ⇒ c.f. for free falling 𝑣cm = 2𝑔ℎ

To find the downward acceleration of the yo-yo, need 

dynamic equations

Translation of CM:      𝑀𝑔 − 𝑇 = 𝑀𝑎cm
Rotation of cylinder about its axis:    

𝑇𝑅 = 𝐼cm𝛼 = 1
2𝑀𝑅

2 Τ𝑎cm 𝑅

Get

𝑎cm = 2
3𝑔

𝑇 = 1
3𝑀𝑔



Exercise: rotation of a dumbbell

A dumbbell consists of a weightless rod of length L and two masses (each with 
mass M) on its two ends. Initially, the dumbbell sits on a frictionless table and 
points north. A constant force F (towards east) is applied on one of the ball. 
The dumbbell will accelerate and rotate due to the applied force.
Find the tension in the rod when the dumbbell rotation 90o

𝜑

𝐹
𝐹

𝑙



Due to the constant external force F, the CM of the dumbbell accelerates with constant 
acceleration 𝑎 = 𝐹/2𝑀.
At the instance when the CM moves to the distance 𝑙, the CM velocity becomes 𝑣 =

2𝑎𝑙. And the work-energy theorem gives

where

are the translational and rotational kinetic energies of the dumbbell respectively. Hence 
we have

𝜑

𝐹
𝐹

𝑙



Finally, focusing on the centripetal force acting on the mass 1.

𝜑

𝐹
𝐹

𝑙



only the tangential component 𝐹tan does 

work – no displacement along the radial 

and z directions.

Work done after going through angle 𝑑𝜃

𝑑𝑊 = 𝐹tan 𝑅𝑑𝜃 = 𝜏𝑑𝜃

c.f. in  translation, 

⇒ 𝑊 = න𝜏𝑑𝜃

𝑊 = න𝑭 ∙ 𝑑𝒓

A particle or rigid body, being pushed by an external force, is undergoing circular 

motion about a fixed axis (such as a merry-go-round). 

Work and power in rotational motion



By changing variable

𝜏𝑑𝜃 = 𝐼𝛼 𝑑𝜃 = 𝐼
𝑑𝜔

𝑑𝑡
𝑑𝜃 = 𝐼 𝑑𝜔 𝜔

𝑊tot = න
𝜔1

𝜔2

𝐼𝜔𝑑𝜔 = 1
2
𝐼𝜔2

2 − 1
2
𝐼𝜔1

2

This is the work-energy theorem for 
rotational motion.

How about power?

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝜏

𝑑𝜃

𝑑𝑡
= 𝜏𝜔

c.f. 𝑃 = 𝑭 ∙ 𝒗 for translational motion.

𝑊 = න𝜏𝑑𝜃



Question

• You apply equal torques to two different 
cylinders, one of which has a moment of 
inertial twice as large as the other. Each 
cylinder is initially at rest. After one complete 
rotation, the cylinder with larger moment of 
inertia will have (larger / smaller / the same) 
kinetic energy as the other one.



Angular momentum



trajectory of m 𝐿 = 𝑚𝑣𝑟 sin𝜙 = 𝑚𝑣 sin𝜙 𝑟

= 𝑚𝑣 𝑟 sin𝜙

𝑑𝑳

𝑑𝑡
=

𝑑𝒓

𝑑𝑡
× 𝒑 + 𝒓 ×

𝑑𝒑

𝑑𝑡
= 𝒓 × 𝑭

= 𝝉

𝑚
𝑑𝒓

𝑑𝑡
𝑭

i.e. 𝑑𝑷

𝑑𝑡
= 𝑭

the particle need not be rotating about any 

axis, can be travelling in a straight line

c.f.

𝑑𝑳

𝑑𝑡
= 𝝉

For a point particle, define its angular momentum about the origin 
O by 

𝑳 = 𝒓 × 𝒑



For a rigid body 
Take the rotation axis as the z axis, 

𝑚1 is a small mass of the rigid body

𝐿1 = 𝑚𝑣1𝑟1 = 𝑚 𝜔𝑟1 sin 𝜃1 𝑟1

If rotation axis is a symmetry axis, 

then there exist 𝑚2 on the opposite 

side whose x-y components of 

angular momentum cancel those of 

𝑚1.

Therefore only z component of any 

𝑳𝑖 is important.

𝜃1

𝐿 =෍ 𝑚𝑖 𝜔𝑟𝑖 sin 𝜃𝑖 𝑟𝑖 sin 𝜃𝑖 = ෍𝑚𝑖 𝑟𝑖 sin 𝜃𝑖
2 𝜔

⊥ distance of 𝑚𝑖 to rotation axis

Total angular momentum 𝑳 = σ𝑳𝑖 = σ𝐿𝑖 sin 𝜃𝑖 ෡𝒌, points along rotation axis with 
magnitude



𝝎 and 𝑳 have the same direction

Conclusion: if rotation axis is a symmetry axis, then

𝑳 = 𝐼𝝎

c.f. 𝒑 = 𝑚𝒗



What if the rotation axis is not a symmetry axis? 𝑳 ≠ 𝐼𝝎, but

For rotation about a fixed axis, “angular 
momentum” often means the 

component of  𝑳 along the axis of 

rotation, but not  𝑳 itself.

𝐿𝑧 = 𝐼𝜔



conservation of angular momentum

Under no external torque ( not force)

𝑑𝑳

𝑑𝑡
= 0

𝑑𝑷

𝑑𝑡
=෍𝑭extc.f.𝑑𝑳

𝑑𝑡
=෍𝝉

Internal forces (action and reaction pairs) have the same line of action

→ no net torque. 

Therefore for a system of particles or a rigid body



A spinning physics professor

Conservation of angular momentum

𝐼1𝜔1 = 𝐼2𝜔2

If 𝐼2 = 𝐼1/2, then 𝜔2 = 2𝜔1, and 

𝐾2 =
1

2
𝐼2𝜔2

2 = _____𝐾1. 

Where comes the extra energy?

And in the reverse process 𝐼2 → 𝐼1, 

where goes the energy?



Example 

A bullet hits a door in a perpendicular direction, embeds in it and swings it open.

Linear momentum is not conserved because _______________________________

Angular momentum along the rotation axis is conserved because ______________

𝑚𝑣𝑙 =
𝑀𝑑2

3
𝜔 + 𝑚𝑙2 𝜔

initial angular 

momentum of 

bullet about hinge

moment of 

inertia of 

door about 

hinge

moment of 

inertia of bullet 

about hinge 

after embedded 

in door

𝜔 =
𝑚𝑣𝑙

1
3
𝑀𝑑2 +𝑚𝑙2

⇒

top view



Question: If the polar ice caps were to completely melt due to global 
warming, the melted ice would redistribute itself over the earth. This 
change would cause the length of the day (the time needed for the earth to 
rotate once on its axis) to (increase / decrease / remain the same).



Gyroscope

https://www.youtube.com/wat
ch?v=cquvA_IpEsA&t=3s

https://www.google.com.hk/imgres?imgurl=http://catalog.miniscience.com/Catalog/Gyroscope/Basic_Gyroscope_m.jpg&imgrefurl=http://catalog.miniscience.com/Catalog/Gyroscope/Default.html&docid=4C1Jx5ydoROVZM&tbnid=loGKCl8eXpMcBM:&vet=10ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo..i&w=200&h=302&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=http://catalog.miniscience.com/Catalog/Gyroscope/Basic_Gyroscope_m.jpg&imgrefurl=http://catalog.miniscience.com/Catalog/Gyroscope/Default.html&docid=4C1Jx5ydoROVZM&tbnid=loGKCl8eXpMcBM:&vet=10ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo..i&w=200&h=302&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjwurLO67XVAhXIf7wKHSzECrAQMwjAAihKMEo&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=https://www.gyroscope.com/images/newmenu/topban4.jpg&imgrefurl=https://www.gyroscope.com/Gyroscopes&docid=WI9OSGaN7bCc-M&tbnid=ZcD4mRCtlAMY9M:&vet=10ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO..i&w=214&h=186&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO&iact=mrc&uact=8
https://www.google.com.hk/imgres?imgurl=https://www.gyroscope.com/images/newmenu/topban4.jpg&imgrefurl=https://www.gyroscope.com/Gyroscopes&docid=WI9OSGaN7bCc-M&tbnid=ZcD4mRCtlAMY9M:&vet=10ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO..i&w=214&h=186&safe=active&client=firefox-b&bih=675&biw=1237&q=Gyroscope&ved=0ahUKEwjX8O3V67XVAhWLxrwKHYO-C444ZBAzCBAoDjAO&iact=mrc&uact=8


Case 1: when the flywheel is not spinning – it falls down

torque 𝝉 due to weight of the 

flywheel 𝒘 causes it to fall 

in the x-z plane

𝑳 increases as flywheel falls



Since 𝑳 ⊥ 𝑑𝑳, flywheel axis execute circular 

motion called precession, 𝑳 remains constant

faster spinning 𝜔 → slower precession Ω

Case 2: when flywheel spinning with initial angular moment 𝑳𝑖 – it precesses



Rotational motion of the angular momentum

==> 𝐿 can only change its direction, but NOT its magnitude

Precession rate



animation of the vectors  𝒘, 𝝉, and 𝑳 at 
http://phys23p.sl.psu.edu/phys_anim/mech/gyro_s1_p.avi

http://phys23p.sl.psu.edu/phys_anim/mech/gyro_s1_p.avi


If 𝜔 ≫ Ω, can ignore angular momentum due to precession. Otherwise there 
is nutation of the flywheel axis – it wobbles up and down



A spinning figure skater pulls 
his arms in as he rotates on 
the ice. As he pulls his arms 
in, what happens to his 
angular momentum L and 
kinetic energy K?

A. L and K both increase.

B. L stays the same; K increases.

C. L increases; K stays the same.

D. L and K both stay the same.

Q10.11



A spinning figure skater pulls 
his arms in as he rotates on 
the ice. As he pulls his arms 
in, what happens to his 
angular momentum L and 
kinetic energy K?

A. L and K both increase.

B. L stays the same; K increases.

C. L increases; K stays the same.

D. L and K both stay the same.

A10.11



Purely phenomenological 
– Kepler didn’t know why

Later derived by Newton using his laws of motion and 
gravitation 

– significance: heavenly objects obey the same physical laws 
as terrestrial objects, don’t need, e.g., Greek myths!

Kepler’s Laws of Planetary Motion



An ellipse is defined by the locus of a point P

such that 𝑃𝑆′ + 𝑆𝑃 = constant

S and S’ are the two foci of the ellipse

Semi-major axis a ( a length, not an axis)

Eccentricity e (e = 0 for circle, 0 < e < 1 for 

ellipse)

Aphelion – farthest [ 1 + 𝑒 𝑎] point from sun

Perihelion – closest [ 1 − 𝑒 𝑎] point to sun

Note: aphelion distance + perihelion distance = 2a

First Law: Each planet moves in an elliptical orbit, with the sun at 

one focus of the ellipse.



Second Law: A line from the sun to a given planet sweeps out equal areas in equal times.

See http://en.wikipedia.org/wiki/File:Kepler-second-law.gif

𝑑𝐴 ≈ area of blue triangle = 1
2
𝑟𝑑𝜃 𝑟

𝑑𝐴

𝑑𝑡
=
1

2
𝑟2
𝑑𝜃

𝑑𝑡

𝑣⊥ = 𝑣 sin𝜙 = 𝑟
𝑑𝜃

𝑑𝑡

∴
𝑑𝐴

𝑑𝑡
=
1

2
𝑟𝑣 sin𝜙 =

1

2𝑚
𝒓 × 𝑚𝒗 =

𝐿

2𝑚

i.e., Kepler’s second law ⇔ conservation of 

angular momentum

Angular momentum is conserved 

because gravitational force (a central 

force) produces no torque

Another consequence of conservation of 

angular momentum – orbit lies in a plane

http://en.wikipedia.org/wiki/File:Kepler-second-law.gif


𝑇 =
2𝜋𝑎3/2

𝐺𝑚𝑆

Third Law: The periods of the planets are proportional to the  3
2

powers of the major axis 

lengths of their orbits.

For the circular orbit, we have


