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What is a wave?

e 3 wave is a disturbance that travels
through a medium from one location to
another.

e a wave is the motion of a disturbance



Slinky Wave

Let’s use a slinky wave as an example.
When the slinky is stretched from end to end and is held at

rest, it assumes a natural position known as the equilibrium

or rest position.
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To introduce a wave here we must first create a disturbance

We must move a particle away from its rest position.
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Two types of wave

Motion of the wave Amplitude A
Crest

>

transverse,

Trough €.g. wave 1n a string,
Amplitude A
water wave, EM wave

“The SHM of the spring and mass generates a sinusoidal
wave in the string. Each particle in the string exhibits the
same harmonic motion as the spring and mass; the
amplitude of the wave is the amplitude of this motion.

e
1 2012 Pearsan Efucaion, In¢

Forward motion of the plunger creates a compression (a zone of high density);
backward motion creates a rarefaction (a zone of low density).

H : longitudinal,
Comprif:ssion Rarelelction
Plunger 1 | . e.g. SOU.Ild wave
oscillating === —
in SHM |

¥ lk—Ar—  wave slpeed

Wavelength A is the distance between corresponding points on successive cycles.
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Wave length, frequency and period

Wavelength is also measured in metres (m) - it is a length after all.

The frequency, f, of a wave is the number of waves passing a point
in one second (Sl unit: hertz (Hz=1/s) )

: 1. : : :
period, T = 7 is the time for a particle on a medium to make one

complete vibrational cycle

| «—— Wavelength ——| Velocity of
} A propagation
Amplitude w—\/

-------------------------------------------------------------------------

f = frequency
T = Period
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Sinusoidal wave on a string as an example:

Oscillator Three points on the string,
generating wave one half-wavelength apart
L,, | ﬁmm% Wave motion represented by a wavefunction
t=20 I X }’(x; t)
v 1?1 A i P011|1t c Assume a sinusoidal generator y(0,t) = A cos wt
1 J | . |
= gT t *
@ I @
v L Follow the time evolution of an arbitrary point, it
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If wave traveling to the left, v - —v
X
y(x,t) = Acosw (t + ;) = A cos(kx + wt)

A\ v is the magnitude, i.e., v > 0. The direction is shown in the phase angle (kx + wt)
A y(x,t) is a function of two variables:

displacement of a particular point a snapshot (or photo) of the wave
on the string — x is fixed motion — ¢ is fixed
slope is dy vertical velocity of dJobe is dy
dt the string at this point P a




Question

In the diagram that shows a traveling wave at t =
T/8,2T/8,...T, at which time will the point A
have (a) maximum upward speed, (b) greatest
upward acceleration, (c) downward acceleration
but an upward velocity?

Oscillator

Three points on the string,

generating wave one half-wavelength apart
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Particle velocity and acceleration in a sinusoidal wave

Waveatr = 0




Particle velocity and acceleration in a sinusoidal wave

The same wave att = Qand ¢t = 0.05T




Q15.2 @

Which of the following wave functions describe a wave that moves in the —x-
direction?

A. y(x,t) = Asin (—kx — ax)
B. y(x,t) = A sin (kx + ax)
C. y(x,t) = A cos (kx + ax)
D. both B. and C.

E. all of A., B., and C.



A15.2

Which of the following wave functions describe a wave that moves in the —x-
direction?

A. y(xt) = A sin (—kx — at)
B. y(x,t) = A sin (kx + at)
C. y(xt) = A cos (kx + axt)
N both B. and C.

Jall of A., B., and C.



Example

A transverse wave travelling along a string is described by y(x, f) =

0.00327sin(72.1x — 2.72¢), in which the numerical constants are in SI units.

(a) What is the amplitude of this wave?

(b) What are the wavelength, period, and frequency of this wave?

(c) What is the velocity of this wave?

(d) What is the displacement y at x =22.5 cm and t = 18.9 s?

(e) What is the transverse velocity u of this element of the string, at that place
and at that time?

(f) What is the transverse acceleration a, at that position and at that time?



(a) y,=0.00327 =3.27 mm (ans)
) A=Z =2 _00871=8.71cm (ans)
kK721
T = e = el =2.31s (ans)
72

2.
B

2.31
272 _ 0.0377=3.77cms” (ans)
72.1

f=

0]
7{ = =0.433Hz (ans)

_w
(c) v-k

(d)  y(x,1)=0.00327sin(72.1x0.225-2.72x18.9)
=0.00192 =1.92 mm

(e) u= a_y =—ay, cos(kx—ax)

ot
=—(2.72)(0.00327)sin(72.1x0.225 - 2.72x18.9)

=7.20mms"' (ans)

(f) a,= ?)—L; = —a)zym sin(kx —ax) = —@’ y

=—(2.72)*(0.00192) =-0.0142=-142mms ™ (ans)



Wave equation

F — equilibrium tension of the string
p — mass per unit length of the string

F d
% = —(slope atx) = —( y) )
X

dx
Fay (51)
F 0x
x+Ax

Newton’s 274 Jaw

dy dy
Fy=F1y+F2y=F a - a =may
x+Ax X

0%y
= (Whx) =3

S 1Y oy\ | 0%y wua?y
Ax |\ 0x 0x ~ 0x2 F 0t?
x+Ax X

From wavefunction y(x,t) = A cos(kx — wt)

1

vk = w

- 2=k2
FCU

’y
ok —w?A cos(kx — wt)

5 =
a_x}zl = —k?A cos(kx — wt)

Motion of the wave Amplitude A

ce S Voo
= \f/. T\i/

Tretgh

Amplitude A

The string to the right of the segment (not
shown) exerts a force F, on the segment.

There can be a net vertical F,,
force on the segment, but
the net horizontal force is
zero (the motion 1s 5
transverse). L . i

F

o

Equilibrium length of

Fiy  this segment of the string

_____ / |
F K Ax >:
- |
X x+Ax

The string to the left of the segment (not
shown) exerts a force F'; on the segment.
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wave speed on a string




. wavefunctions are solutions of the wave equation

wave equation (D’Alembert’s equation)

0%y 1 0%y
0x?2 B v2 0t2 hold for different kinds of waves

Different kinds of waves have different speed. For mechanical waves

restoring force returning the system to equilibrium
v =
inertia resisting the return to equilibrium

v =

=™

\

v does not depend on A nor f



Q15.1 @

If you double the wavelength A of a wave on a string, what happens to the
wave speed v and the wave frequency f?

A. vis doubled and f is doubled.

B. vis doubled and f is unchanged.
C. vis unchanged and fis halved.
D. vis unchanged and fis doubled.

E. vis halved and fis unchanged.



Al5.1

If you double the wavelength A of a wave on a string, what happens to the
wave speed v and the wave frequency f?

A.vis doubled and fis doubled.

B. vis doubled and f is unchanged.
vis unchanged and f is halved.

D. vis unchanged and fis doubled.

E. vis halved and f is unchanged.



Q15.8 @

The four strings of a musical instrument are all made of the same material and are
under the same tension, but have different thicknesses. Waves travel

A. fastest on the thickest string.
B. fastest on the thinnest string.
C. at the same speed on all strings.

D. not enough information given to decide



A15.8

The four strings of a musical instrument are all made of the same material and are
under the same tension, but have different thicknesses. Waves travel

A. fastest on the thickest string.
Jfastest on the thinnest string.

C. at the same speed on all strings.

D. not enough information given to decide



Kinetic energy of the wave

Consider a wave of the form:

y(x,t) = Acos(kx — wt)

Consider a string element of mass dm.
The kinetic energy is:

1
dK = §dmu2 and u = 22 = Aw sin(kx — wt)

And

0
ot

dm = pdx

We get

1
dK = §,ud:cA2w2 sin? (kx — wt)

Rate of kinetic energy transmission:

\
fg = l,quwz sin? (kx — wt)d—aC
dt 2 dt
1
= §,uvA2w2 sin®(kz — wt)
N\ J

Kinetic energy is maximum at the y=0 position

e -

(> l‘
=

dx

FIG. 1612 A snapshot of a travel-
g wave on a string at tiume ¢ = 0.
String clement a is at displacement

Y = Yo and string clement b is at dis-
placement y = 0. The kinetic energy
of the string clement at cach position
depends on the transverse velocity of
the clement. The potential encrgy de-
pends on the amount by which the
stnng clement is stretched as the

wave passes through it



(elastic) Potential energy of the wave

* Potential energy is carried in the string when it is stretched.

» Stretching is largest when the displacement has the largest gradient. Hence, the potential
energy 1s also maximum at the y = O position. This is different from the harmonic
oscillator, in which case energy is conserved.

Consider the extension As of a string element.

As = \/(dx)2 + [y(x +dx,t)— y(x,t)]2 —dx
> (9y ’ dy ’
= |(dx)"+| —dx| —dx=|,/1+| =— | —1\|dx.
ox ox
Using power series expansion,

2 2
As = 1+1(ayj -1 dle(ayj dx.
2\ ox 2\ ox

The potential energy is given by work done in extending the string element

_ _F Ay ’ _Foa0 o
dU = FAs =~ 5 (8_33) dr = 5/43 A*sin”(kx — wt)dx
Rate of potential energy transmission:
dU 1 dK
2 2 2 \
— = —uvA wsin®(kx —wt, = —
a 2" ( : dt



Power of transmission:

_dK+dU
dt dt

P = pvA*w?sin? (kx — wt)

time-averaged Power of transmission:

(=L




Another way to look at power propagation in wave motion

Consider a vibrating string E,, y-component of force acting on point a

as point a moves, Fy,does work. The power is

_ Wave ay 6y
_ . — —
motion P(X, t) = Fyvy = <—F a)a
= [-FkA sin(kx — wt)][—wA sin(kx
x4~ = FkwA? sin?(kx — wt)
j “"g v F

P(x,t) = \/uFw?A? sin?(kx — wt)

\ Y J

Pmax = + UF w?A? propagating, like a wave

1 T

Pyy == j P(x, t)dt Wave power versus time ¢

T, at coordinate x = 0
2n Poax T=N /"~ 7\~~~ /\" "

w
= JUF w?A? (—) j “ sin? (kx — wt) dt
2t/ ), Bods LA A B A J K
n}w A
1 1 0 f— | :
_ = 242 _
Pav—zw/#F‘UA —ZPmaX %Period?‘%




Q15.7

Two identical strings are each under the same tension. Each string has a sinusoidal
wave with the same average power P,

If the wave on string #2 has twice the amplitude of the wave on string #1, the
wavelength of the wave on string #2 must be

A. 4 times the wavelength of the wave on string #1.

B. twice the wavelength of the wave on string #1.

C. the same as the wavelength of the wave on string #1.
D. 1/2 of the wavelength of the wave on string #1.

E. 1/4 of the wavelength of the wave on string #1.



Al15.7

Two identical strings are each under the same tension. Each string has a sinusoidal
wave with the same average power P,

If the wave on string #2 has twice the amplitude of the wave on string #1, the
wavelength of the wave on string #2 must be

A 4 times the wavelength of the wave on string #1.

twice the wavelength of the wave on string #1.
C. the same as the wavelength of the wave on string #1.
D. 1/2 of the wavelength of the wave on string #1.

E. 1/4 of the wavelength of the wave on string #1.



For wave in 3D, define intensity = average power per unit area, Sl unit: W/m?

Suppose power of source is P
intensity at distance r

At distance r, At a greater distance
from the source, ry > ry, the intensity ] P
the intensity is ;. I, is less than I;: the =
1€ 1NLensi }_..1% | _"“:. L;‘:“ _IIUL L ]"Ile 4-7'[7"2
SdINe NET 1S SPIC« . .
_\.r] p an inverse square law! Just like the
Over a QILLIILI l’.lILLl..
: é % Newton’s law of gravitation and the
\%} : Coulomb’s law, although in a different
" . W
é 2 context
\7’9 \é‘( A\ In the case of intensity it is clear that the
VW =W\ @A W :
% inverse square law results from the surface
§ area of a sphere, i.e., the dimensionality of
)§ %&\ space. The Newton’s law of gravitation and
? Coulomb’s law can also be formulated in a

—_— e similar way to show that the inverse square
- laws are results of the dimensionality of
space. This more general formulation is

known as the Gauss Law.



Spherical wave



Principle of superposition of wave

Whenever two (or more) waves travelling through the same
medium at the same time. The waves pass through each other
without being disturbed. The net displacement of the medium at
any point in space or time, is simply the sum of the individual
wave displacements.

y(.ﬂf,t) — yl(Iat) + y2(337 t)

Princié of Superpositio/

—




Reflection of a wave pulse at a fixed end of a string

 What happens when a wave
pulse or a sinusoidal wave
arrives at the end of the string?

* If the end is fastened to a rigid
support, it is a fixed end that
cannot move.

* The arriving wave exerts a force
on the support (drawing 4).

String exerts an upward

force on wall ... =====ee.....
g

... wall exerts a downward

reaction force on string.

’

Pulse arrives
at fixed end.



Reflection of a wave pulse at a fixed end of a string

] String exerts an upward
* The reaction to the force of force on wall ... =serue.._.
. .
drawing 4, exerted by the @ y
. ‘. ... wall exerts a downward
SUpport on the S.trmg' kicks reaction force on string. ™
back” on the string and sets up
a reflected pulse or wave ® {
traveling in the reverse " Pulse inverts
direction. > as 1t reflects
@ q from fixed end.
.
@ :
« y,




Reflection of a wave pulse at a free end of a string

 Afreeendisone thatis ,‘ )
perfectly free to move in the @
direction perpendicular to the
length of the string. g

>Pulsc arrives

« When a wave arrives at this free @ g | A Ushand.
end, the ring slides along the
rod, reaching a maximum
displacement, coming ® ) 1
momentarily to rest (drawing 4).

Rod exerts no transverse Jib
forces on string.

@




Reflection of a wave pulse at a free end of a string

Rod exerts no transverse
* |In drawing 4, the string is now  forces on string.
stretched, giving increased @
tension, so the free end of the
string is pulled back down, and
again a reflected pulse is (5)

produced. Pulse reflects
> from free end
without

@ . inverting.

© 2016 Pearson Education, Ltd.



Wave reflection https://www.youtube.com/watch?v=DbtQj8INGFY

Image method —proof involves solving the d’Alembert equation
Mirror image of the wave coming in opposite direction,
reflected wave results from the superposition of the “real” wave
and its “image”.

A must observe the boundary condition



open boundary condition — free to move at one end

=

%

“real” incoming wave,

Q)

@

®

Rod exerts no transverse
forces on string.

O

®

A cos(kx — wt) if
sinusoidal

> Pulse arrives.

image method

»
»

“image” becomes

“real” wave, i.e.,

reflected wave 1s

~ Acos(kx + wt), no
Pulse reflects

> without
inverting.

phase change

\ )
A WP

A

mirror image, going to the left,
A cos(kx + wt) if sinusoidal

l

.

7\

the slope
>le at the boundary

/5/‘—(\—‘\ must be zero

<

AK




fixed boundary condition — string clamped at one end

L- - mirror image — must be
A inverted to preserve
v . boundary condition, i.e.
“real” in coming wave/ — Acos(kx + wt) if
A cos(kx — wt) if < /L sinusoidal
sinusoidal \/A
W >

.+ Shapes that each pulse

-
0

¥  would have on its own

7— the wave
» at the boundary

reflected wave is must be zero

— A cos(kx + wt) ol
= A cos(kx + wt +71) \/}M

L
means a phase A\/
change of 7 X/’

-(/
“image” becomes \_\/

“real” wave, i.e.,




Q15.3

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the velocity of a particle of the
stringatx=a?

A. The velocity is upward.
B. The velocity is downward.
C. The velocity is zero.

D. not enough information given to decide




A15.3

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the velocity of a particle of the
stringat x=a?

A. The velocity is upward.
™ The velocity is downward.
'he velocity is zero.

D. not enough information given to decide




Q15.4

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the acceleration of a particle of the
string at x =a?

A. The acceleration is upward.
B. The acceleration is downward.
C. The acceleration is zero.

D. not enough information given to decide




Al5.4

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the acceleration of a particle of the
stringat x=a?

A The acceleration is upward.
J The acceleration is downward.
C. The acceleration is zero.

D. not enough information given to decide




Q15.5

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the velocity of a particle of the
stringatx=0b"

A. The velocity is upward.
B. The velocity is downward.
C. The velocity is zero.

D. not enough information given to decide

/



A15.5

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the
shape of part of the string at that time.

At this time, what is the velocity of a particle of the
string at x=b?

JThe velocity is upward.

B. The velocity is downward.
C. The velocity is zero.

D. not enough information given to decide

/



Q15.6 @

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the 1 S
. . 3. 4/ 6
shape of part of the string at that time. —/'\

TN T

At this time, the velocity of a particle on the string is upward at

A. only one of points 1, 2, 3, 4, 5, and 6.

B. point 1 and point 4 only.

C. point 2 and point 6 only.

D. point 3 and point 5 only.

E. three or more of points 1, 2, 3, 4, 5, and 6.



A15.6

A wave on a string is moving to the right. This graph of
y(x, t) versus coordinate x for a specific time t shows the 1 5

. . 3 4 6
shape of part of the string at that time. —/'\

0 2\\/ A\

At this time, the velocity of a particle on the string is upward at

A. only one of points 1, 2, 3,4, 5, and 6.
B. point 1 and point 4 only.

J point 2 and point 6 only.
D. point 3 and point 5 only.

E. three or more of points 1, 2, 3, 4, 5, and 6.



Standing wave - result of superposition between incident and reflected waves

continuous incident For open boundary condition, reflected wave is
wave train (not pulse) A cos(kx + wt)
A cos(kx — wt) Resulting wave:

- y(x,t) = Acos(kx — wt) + A cos(kx + wt)

= 2A cos kx cos wt
\ ] \ J

sinusoidal amplitude  time variation

not propagating because no cos(kx — wt) term

For fixed boundary condition, reflected wave is —A cos(kx + wt)
resulting wave: y(x,t) = Acos(kx — wt) — A cos(kx + wt)
= 2A sin kx sin wt

node — zero amplitude, called

destructive interference antinode — maximum
\ amplitude, called

constructive interference

y A

A\ 4

A2

© 2012 Pearson Education, Inc.



Demonstration: standing wave applet
http://www.walter-fendt.de/ph14e/stwaverefl.htm

How a microwave oven works
https://www.youtube.com/watch?v=kp33ZprO0Ck



For a string of length L clamped on both ends, normal modes of vibration are
those standing waves that can be fitted into the string

Normal mode frequencies are

! 1 2L
= —_ = _—
"7 "oon’
n=1,2,..
and frequencies are
%
fnzn(i)znfl, n=1,2,

(a) n = 1: fundamental frequency, f;

N A N
I I
|
S|

I
I‘x iIL

(b) n = 2: second harmonic, f; (first overtone)

N A N A N
I I
I \ I
< 25=L >

(¢) n = 3: third harmonic, f; (second overtone)

N A N A N A N
I I
I |

- 32=1L B

(d) n = 4: fourth harmonic, f; (third overtone)

IIIII A N A N A N A 1?"
I " I
< 45 =1L >

T 2012 Pearson Education, Inc




Q15.9 @

While a guitar string is vibrating, you gently touch the midpoint of the string
to ensure that the string does not vibrate at that point.

The lowest-frequency standing wave that could be present on the string

A. vibrates at the fundamental frequency.

B. vibrates at twice the fundamental frequency.
C. vibrates at 3 times the fundamental frequency.
D. vibrates at 4 times the fundamental frequency.

E. not enough information given to decide



A15.9

While a guitar string is vibrating, you gently touch the midpoint of the string
to ensure that the string does not vibrate at that point.

The lowest-frequency standing wave that could be present on the string

A. vibrates at the fundamental frequency.
Jvibrates at twice the fundamental frequency.

C. vibrates at 3 times the fundamental frequency.

D. vibrates at 4 times the fundamental frequency.

E. not enough information given to decide



For an open organ pipe, normal modes of sound wave are :

A . 2L %
L:TLE, n=1,2,... l.e. Anzx, fnzn(i)znfl,
v
(a) Fundamental: f; = 3L
K— L = % —>
Open end 1s always a displacement ;ulli‘m:}{lc.
© 2012 Pearson Education, Inc
: ; v
(b) Second harmonic: f, = 2% = 2f, (¢) Third harmonic: f; = 3E = 3f
2 O A=) 00 ¢
c— 4 —— 2 —> K 2 Sk 3 K5
I e <—— L =35 —>

A\ sound wave is longitudinal, not transverse as sketched in the diagrams



For a closed (at one end) organ pipe, normal modes of sound wave are :

A . v
L:nZ' n=135,..i.e. An=7, fn=n(ﬁ) = nfy,

g g .8
(a) Fundamental: f, L

A S CO
N

n
—— L=5 ——3
Closed end 1s always a displacement node.

@ 2012 Pearson Education, Inc

U—

(b) Third harmonic: f; = 34% = 3f, (c) Fifth harmonic: f5 = 7 5f,
_— N N g A N
S T T TR TR
e 1 4 4 4 4
e——L=37 —i K I =5 % s



Q16.6 @

When you blow air into an open organ pipe, it produces a
sound with a fundamental frequency of 440 Hz.

If you close one end of this pipe, the new fundamental
frequency of the sound that emerges from the pipe 1s

A. 110 Hz.
B. 220 Hz.
C. 440 Hz.
D. 880 Hz.
E. 1760 Hz.



Al16.6

When you blow air into an open organ pipe, it produces a
sound with a fundamental frequency of 440 Hz.

If you close one end of this pipe, the new fundamental
frequency of the sound that emerges from the pipe 1s

D. 880 Hz.
E. 1760 Hz.



Beats — interference of two traveling waves with slightly different frequencies

At a fixed spatial point x, = 0 for simplicity

Va(t) = Acos(=2mfat + Pg)
Yp(t) = Acos(—2nfpt + ¢p)

Resulting note

Ya(t) + yp (1)
= 24 cos <—2TL’

fa ;fbt+¢a;¢b>cos<—2n’fa _fbt+¢a _¢b>

2 2

( J \ J

/ )

: . 1
_ _ slow varying with frequency = |f, — f3 |, hear
fast varying with frequency 2

. rise and fall in intensity with period
E(fa'l'fb)zfasz 1 1 1

H Ty Y TR X

Beat frequency | fpeat = |fa — /bl




A graphical illustration:

Two sound waves ~ Waves in . Waves out of
with slightly ¢/ phase with 7 phase with each
different frequencies ; eachother ;  other

~
fal]
~—

1.00 s

S |
-
o
e

Displacement

(b)

The two waves interfere | Bewt
constructively when they are in phase

and destructively when they are a half-cycle out of phase. The
resultant wave rises and falls in intensity, forming beats.

£ 20n 2 Pearson Educatian, Inc



Demonstration — beats

https://www.youtube.com/watch?v=8vUuGRaTQ2E



Question
A tuning fork vibrates at 440 Hz, while a second tuning fork vibrates at an unknown

frequency. They produce a tone that rises and falls in intensity three times per second.

The frequency of the second tuning fork is
A. 434 Hz B.437 Hz C. 443 Hz D. 446 Hz

E. either 434 or 446 Hz F. either 437 or 443 Hz



Q16.7
You hear a sound with a frequency of 256 Hz. The

amplitude of the sound increases and decreases periodically:

it takes 2 seconds for the sound to go from loud to soft and
back to loud. This sound can be thought of as a sum of two
waves with frequencies

A. 256 Hz and 2 Hz.

B. 254 Hz and 258 Hz.

C. 255 Hz and 257 Hz.

D. 255.5 Hz and 256.5 Hz.
E. 255.75 Hz and 256.25 Hz.
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You hear a sound with a frequency of 256 Hz. The
amplitude of the sound increases and decreases periodically:
it takes 2 seconds for the sound to go from loud to soft and
back to loud. This sound can be thought of as a sum of two
waves with frequencies

A. 256 Hz and 2 Hz.

B. 254 Hz and 258 Hz.

C. 255 Hz and 257 Hz.

D. 255.5 Hz and 256.5 Hz.
J 255.75 Hz and 256.25 Hz.



Doppler effect — frequency changes when source and/or observer are “moving”
Consider mechanical wave (sound as an example) only, all speeds relative to the
medium (air), which is assumed to be stationary.

Case I: Source not moving (relative to the medium)

* Velocity of listener (L) = vy
* Velocity of source (S) = 0 (at rest)

assume listener approaching

* Speed of sound wave = v
* Positive direction: from listener

source with speed v,

to source

wave front approach listener with
speed v + v,

fi=" = (140
~

Lo . v / f
T 2012 Pearson Education. b Inc.

If listener approaching source, v; > 0 and f; > fs, hear a higher pitch
If listener leaving source, v; < 0 and f; < fs, hear a lower pitch



Case |lI: Source moving

* Velocity of listener (L) = v,
* Velocity of source (S) = vg

* Speed of sound wave = v
* Positive direction: from listener
Lo source

/lb hind LtoS A
ehin Mo in front
v+ Vg i VvV — Vg
= — - —_ - =
fs fs

fovtu fL:<m)fS

Abehind v+ v

& Sign convention — direction in which listener would approach source is taken to be +ve —
check that the formula works in all possible cases

A\ if listener at rest (v, = 0), source approaching listener, then vg(>/<)0,and f; (>/<) fs

& What if vg¢ > v? A condition called supersonic, leads to shock wave. Read textbook if you
are interested.



Example 16.15 and 16.17
A police car’s siren has frequency fg¢ = 300 Hz. Take speed of sound in still air, v,

to be 340 m/s

Case [:
Listener at rest Police car f, = 340 m/s (300 Hz)
v =0 N  vs=30my)s L7 340m/s+30m/s
f=24 L5 — &> = 276 Hz
.0 ©
Casell: _ 340 m/s — 30 m/s
Listener Police car at rest — 300 Hz
fi 340 m) ( )
e ¥ oy — 274 Hz S
R e e RS
O ©
Case lll:
Listener Police car fi = 340m/s + 15 m/s (300 Hz)
f =7 N L7340 m/s + 45 m/s

= v =15m/s L?g — :j: Vs =45 m/s — 277 Hy

2012 Pearson Education, Inc:



& In all 3 cases, the source and listener

Case I: have the same relative velocity, but
Lisieter anpes) vl Bk different f;, i.e., cannot use either
Vi e s V:io e source or listener as frame of
fi=7 )k Ligg —— reference because there exist an

©) absolute frame of reference — the
T medium.
Caselll: . .
Listener Police car at rest & How about waves without medium,
vy =30 /s fL=7 L s =,_,O such as light? All inertia frame of
—— L%S @ references are equivalent and
® S Doppler effect can depend on the
relative motion of the source and
Case IlI: receiver only.
Listener Police car

fL=7°

- T - = —
= v =15m/s = I _j Vs =45 m/s fR — — va

rwarson Education, Inc

v is the relative velocity between
source and receiver, +ve if moving
away from each other.



Question
If remote star moving away from us, see (red / blue) shift in the light it emits.



Q16.8 @

On a day when there 1s no wind, you are moving toward a
stationary source of sound waves. Compared to what you
would hear if you were not moving, the sound that you
hear has

A. a higher frequency and a shorter wavelength.
B. the same frequency and a shorter wavelength.
C. a higher frequency and the same wavelength.

D. the same frequency and the same wavelength.



Al16.8

On a day when there 1s no wind, you are moving toward a
stationary source of sound waves. Compared to what you
would hear if you were not moving, the sound that you
hear has

A. a higher frequency and a shorter wavelength.
B. the same frequency and a shorter wavelength.
J a higher frequency and the same wavelength.

D. the same frequency and the same wavelength.



Q16.9 @

On a day when there 1s no wind, you are at rest and a
source of sound waves 1s moving toward you. Compared to
what you would hear if the source were not moving, the
sound that you hear has

A. a higher frequency and a shorter wavelength.
B. the same frequency and a shorter wavelength.
C. a higher frequency and the same wavelength.

D. the same frequency and the same wavelength.
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On a day when there 1s no wind, you are at rest and a
source of sound waves 1s moving toward you. Compared to
what you would hear if the source were not moving, the
sound that you hear has

J a higher frequency and a shorter wavelength.
B. the same frequency and a shorter wavelength.
C. a higher frequency and the same wavelength.

D. the same frequency and the same wavelength.



Sound waves

Sound is simply any longitudinal wave in a medium.

The audible range of frequency for humans is between about
20 Hz and 20,000 Hz.

For a sinusoidal sound wave traveling in the x-direction, the
wave function y(x, t) gives the instantaneous displacement y
of a particle in the medium at position x and time t:

(sound wave propagating

y(x, ) cos(kx — wi) in the +x-direction)

In a longitudinal wave the displacements are parallel to the
direction of travel of the wave, so distances x and y are
measured parallel to each other, not perpendicular asin a
transverse wave.



Different ways to describe a sound wave

<— Wavelength A —>
y>0

y > 0

—A S | S
Where y > 0, A 4 Wherey < 0,
particles are dis- _,:-*" "“:__ particles are
Undisplaced particles placed to the right. * v displaced to the left.

\ F—MF‘/\_"\

bo@ooo@oooéoooéooo
1 1 - 1

<~ S R

/

Displaced particles



Different ways to describe a sound wave

Undisplaced particles

\

ONCEEEECRO 0 ¢ o ONCEEEEING 0 O O ONK
- - 1 - - - 1 - - - 1 - - - 1 - = -
® 00 0 0 ¢ © 00000 O ¢ o o0
/ : * ~ '
Displaced particles Rarefaction: Compression:
particles pulled apart; particles pile up;
pressure 1S most negative. pressure 1S most positive.

P

Pmax 7

¥ ¥
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
. |
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Different ways to describe a sound
wave

Sound can be described mathematically as a displacement

wave:

(sound wave propagating
in the +x-direction)

y(x,t) = Acos(kx — wt)
The same sound wave can alternatively be described
mathematically as a pressure wave:

p(x,t) = BkAsin(kx — wt)
The quantity BKA represents the maximum pressure
fluctuation, and is called the pressure amplitude:

Bulk modulus of medium

Pressure amplitude, === *+.., i

ol
— 4 rrvan, .
s : | = BkA ** Displacement
sinusoidal sound wave D

e amplitude
Wave number = 27/A I



Speed of sound waves

The speed of sound depends on the characteristics of the
medium.

In a fluid, such as water, the speed of sound is:

Speed of a <.~ Bulk modulus of fluid
longitudinal wave ~""*p — —
in a fluid p 4 Density of fluid

In a solid rod or bar, the speed of sound is:

Speed of a Y ~Young’s modulus
longitudinal wave s, — i of rod material
in a solid rod P Density of rod material

In an ideal gas, such as air, the speed of sound is:

Ratio of heat capacities-., .- Gas constant

Speed of sound S i YRT " Absolute temperature
in an ideal gas _ .
8 M < Molar mass




Table 16.1: Speed of sound in various bulk materials

Speed of Sound

Material (m/s)
Gases

Air (20°C) 344
Helium (20°C) 999
Hydrogen (20°C) 1330
Liquids

Liquid helium (4 K) 211
Mercury (20°C) 1451
Water (0°C) 1402
Water (20°C) 1482
Water (100°C) 1543
Solids

Aluminum 6420
Lead 1960

Steel 5941



Interference

When two or more waves
overlap in the same region of
space they interfere.

In the figure, two speakers
are driven by the same
amplifier.

Constructive interference
occurs at point P, and
destructive interference
occurs at point Q.

Two speakers
emit waves in phase.

® ®
Q N ZAE @
® pﬁ\@ - \@_ | )

The path length from
the speakers differs

A
by T sounds from
the two speakers
arrive at O out of
phase by % cycle.

The path length:
from the speakers is
the same; sounds from
the two speakers arrive
at P in phase.



(@) The path lengths from the speakers to the microphone differ by A ...

Spealjg

.. so there 1s constructive interference ...

T~ A -~
2N Wi
Speaker
Amplifier

(b) The path lengths from the speakers to the microphone differ by %

Speaker : :

N

.. so there 1s destructive interference ...

A2

Nz

\\\//J

Speaker i |

Amplifier

Interference

y1 = Acos(kr — wt)

.. and the
microphone
M detects a

ud sound.

yo = Acos(k(x — \) — wt)

y1 = Acos(kr — wt)

.. and the
microphone
detects little
or no sound.

ys = Acos(k(x — %) — wt)



Loudspeaker interference

Two small loudspeakers, A and B (Fig. 16.23), are driven by the
same amplifier and emit pure sinusoidal waves in phase. (a) For
what frequencies does constructive interference occur at point P?
(b) For what frequencies does destructive interference occur? The
speed of sound is 350 m/s.

IDENTIFY and SET UP: The nature of the interference at P depends
on the difference d in path lengths from point A to P and from
point B to P. We calculate the path lengths using the Pythagorean
theorem. Constructive interference occurs when d equals a whole
number of wavelengths, while destructive interference occurs

16.23 What sort of interference occurs at P?

when d is a half-integer number of wavelengths. To find the corre-
sponding frequencies, we use v = fA.

EXECUTE: The distance from A to P is [(2.00 m)> +
(4.00 m)?]"/? = 447 m, and the distance from B to P is
[(1.00 m)? + (4.00 m)?]"/? = 4.12 m. The path difference is
d=44Tm — 412 m = 0.35 m.

(a) Constructive interference occurs when d = 0, A, 2A,... or
d=0,v/f,2v/f,... = nv/f. So the possible frequencies are
nvy 350 m/s
I’l=7=n7 n=1,2,3,...)
d 0.35 m

= 1000 Hz, 2000 Hz, 3000 Hz,...

(b) Destructive interference occurs when d = A/2, 3A/2,
5M/2,... ord = v/2f, 3vu/2f, 5v/2f,.... The possible frequen-
cies are

nv 350 m/s
= 50 = "0 m
24~ 2(0.35 m)
= 500 Hz, 1500 Hz, 2500 Hz, ...

n=173,5,...)

EVALUATE: As we increase the frequency, the sound at point P
alternates between large and small (near zero) amplitudes, with
maxima and minima at the frequencies given above. This effect
may not be strong in an ordinary room because of reflections from
the walls, floor, and ceiling. It is stronger outdoors and best in an
anechoic chamber, which has walls that absorb almost all sound
and thereby eliminate reflections.



