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Kinetic Theory 
 

Reading: Chapter 19 

 

Ideal Gases 

 

Ideal gas law: 

 
pV nRT= ,  

 

where 

p = pressure 

V = volume 

n = number of moles of gas 

R = 8.31 J mol-1K-1 is the gas constant. 

T = absolute temperature 

 

All gases behave like ideal gases at low enough densities. 

 

Work Done by an Ideal Gas at Constant Temperature 

 

Isothermal expansion: During the expansion, the 

temperature is kept constant. 

Isothermal compression: During the compression, the 

temperature is kept constant. 

Using the ideal gas law, an isotherm on a p-V diagram is 

given by 

 

p
nRT

V
= .  
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Work done by an ideal gas during an 

isothermal expansion from Vi to Vf: 
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Since T is constant in an isothermal 

expansion, 
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Since ln a − ln b = ln (a/b), 

 

.ln
i

f

V

V
nRTW =  

 

For isothermal expansion, Vf > Vi, W is positive. 

For isothermal compression, Vf < Vi, W is negative. 

Other thermodynamic processes: 

 

For constant-volume processes, W = 0. 

For constant-pressure processes, W = p(Vf − Vi) = p∆V. 
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Examples 

 

19-1 A cylinder contains 12 L of oxygen at 20oC and 15 

atm. The temperature is raised to 35oC, and the volume 

reduced to 8.5 L. What is the final pressure of the gas in 

atmospheres? Assume that the gas is ideal. 

 

Since pV = nRT, 
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=22.3 atm   (ans) 
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19-2 One mole of oxygen (assume it to be an ideal gas) 

expands at a constant temperature T of 310 K from an 

initial volume Vi of 12 L to a final volume Vf of 19 L. 

(a) How much work is done by the expanding gas? 

(b) How much work is done by the gas during an isothermal 

compression from Vi = 19 L to Vf = 12 L? 

 

(a) 
i

f

V

V
nRTW ln=  

12

19
ln)310)(31.8)(1(=  

J 1184=    (ans) 

 

(b)  
f

i

V

V
nRTW ln=  

19

12
ln)310)(31.8)(1(=  

J 1184−=    (ans) 

 

Work is done on the gas to compress it. 
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Pressure, Temperature and RMS Speed 

 
Consider n moles of an ideal gas in a cubical box of volume 

V at temperature T.  
 

The gas molecules are moving in the box. 

When they collide with the walls, the collision is elastic and 

momentum is transferred to the walls. 

Using Newton’s second law, this change in momentum 

results in a force acting on the wall. 

This force comtributes to the pressure of the gas. 
 

In the x direction, the velocity of a molecule of mass m 

changes from vx to −vx when it collides with the shaded 

wall. 

Change in momentum ∆px = 2mvx. 

The time between collisions ∆t = 2L/vx. 

Hence the rate at which momentum is transferred to the 

shaded wall is: 
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Using Newton’s law, this is the force exerted by the gas on 

the shaded wall. Summing up the forces due to all gas 

molecules, 
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Pressure: 
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To simplify this expression, let 
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Also, L3 = V. Therefore, 
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Since mN is the total mass of the gas, mN = nM, where 

n = number of moles of gas,  

M = mass of 1 mole of gas (the molar mass of the gas). 

 

.

2

V

vnM
p

x
=  

 

Since v2 = vx
2 + vy

2 + vz
2, and 〈vx

2〉 = 〈vy
2〉 = 〈vz

2〉, we have  

 

.
3

1 22
vvx =  

 

Hence 
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The root-mean-square speed vrms for N molecules is 

defined by 

 

( ).1 22
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This yields 
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This tells us that the (macroscopic) pressure of the gas 

depends on the (microscopic) speed of the molecules. 

 

Using the ideal gas law, pV = nRT, we have 

 

.
3

rms
M

RT
v =  

 

Example 19-3 Here are five numbers: 5, 11, 32, 67, 89. 

(a) What is the average value 〈n〉 of these numbers? 

(b) What is the rms value nrms of these numbers? 

 

(a) 8.40
5

896732115
=

++++
=n    (ans) 

(b) 1.52
5

896732115 22222

=
++++

=rmsn    (ans) 
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Translational Kinetic Energy 

 

The translational kinetic energy of the gas: 
 

.
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Since MRTv /3rms = , 
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=  

 

Since M = NAm, where NA is the Avogadro’s number 

(number of molecules in 1 mole = 6.02 × 1023 mol-1), 
 

.
2

3
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RT
K =  

 

This is generally written as 
 

,
2

3
kTK =  

 

where k is called the Boltzmann constant, given by 
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Conclusion: 
 

At a given temperature T, all ideal gas molecules – no 

matter what their mass – have the same average 

translational kinetic energy, namely, 3

2
kT.  When we 

measure the temperature of a gas, we are also measuring the 

average translational kinetic energy of its molecules. 
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Mean Free Path 

 

Mean free path λ is the average distance traversed by a 

molecule between collisions.  

A collision will take place if the centers of two molecules 

come within a distance d of each other. 

Consider a single molecule traveling at constant speed v 

and assume that all other molecules are at rest. 

In time ∆t, the center of the moving molecule sweeps out a 

cylinder of length v∆t and radius d; any other molecule 

whose center lies in this cylinder will be collided. 

Volume of the cylinder = (πd2)(v∆t). 

Number of molecules in the cylinder = (πd2)(v∆t)(N/V). 

Mean free path: 
 

.
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However, since all molecules are moving, the expression 

should include an extra factor of 2/1 . That is, 
 

.
/2

1
2 VNdπ

λ =  

 

To obtain the extra factor, let v1 and v2 be velocity of two 

molecules. Then the relative velocity is estimated as 
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vx 

vy 
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Averaging both sides, and noting that 021 =⋅ vv , 
 

 .22 22

221

2

1

2
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It becomes reasonable to estimate that 
 

.2 vrel =v  

 

Maxwell Distribution of Molecular Speeds 

 

Maxwell found that when the probability of finding a 

molecule at an energy state E is 
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In the state space, the probability 

of finding a molecule in a cube of 

sides dvx, dvy, dvz at velocity (vx, vy, vz) is 
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In spherical coordinates, the volume with velocity between 

v and v + dv is 4πv2dv. Hence the probability of finding a 

molecule with velocity between v and v + dv is 
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A is a constant satisfying 
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The mathematical result is 
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Fraction of molecules with speed between v1 and v2 
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⌠
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Average speed 
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Mean square speed 
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Internal Energy 

 

Consider a monatomic ideal gas (e.g. helium, neon, argon) 

 

Internal energy: 

translational kinetic energy of the atoms 

no rotational kinetic energy (because monatomic) 

no potential energy (because no intermolecular force) 

 

For n moles of the gas, 

number of molecules = nNA 

average kinetic energy of a molecule = kT
2

3
 

total internal energy: 

 

.
2

3
)( Aint 








= kTnNE  

 

Since NAk = R, 

 

nRTE
2

3
int =    (monatomic gas). 

 

The internal energy Eint of an ideal gas is a function of the 

gas temperature only; it does not depend on its pressure or 

density. 
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Molar Specific Heat at Constant Volume 

 
Using the first law of thermodynamics, 

 

.int WQE −=∆  

 

Since the volume is fixed, W = 0. Furthermore, 

 

.
2

3
int TnRE ∆=∆  

 

Therefore, 

.
2

3
QTnR =∆  

 

Molar specific heat at constant volume: 

 

,
Tn

Q
CV

∆
=  

 

RCV
2

3
=    (monatomic gas). 

 

Its value is CV = 12.5 Jmol−1K−1. 
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General Kinds of Gases 

 

Polyatomic molecules possess both 

translational and rotational kinetic 

energy. 

 

Hence their internal energy and 

specific heat are greater than those of 

monatomic gases. In general, if the 

molar specific heat at constant 

volume is CV, then 

 

,int TnCE V=  

 

and 

 

.int TnCE V ∆=∆  

 

A change in the internal energy 

Eint of an ideal gas at constant 

volume depends on the change 

in the gas temperature only; it 

does not depend on what type of 

process produces the change in 

temperature. 

 

path 1: constant volume 

path 2: constant pressure 

path 3: adiabatic compression 
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Molar Specific Heat at Constant Pressure 

 
Using the first law of thermodynamics, 

 

.int WQE −=∆  

 

For ideal gases, pV = nRT. Thus for work done at constant 

pressure, 

 
W p V nR T= =∆ ∆ . 

 

Furthermore, 

 

.int TnCE V ∆=∆  

 

Therefore, 

 

,TnRQTnCV ∆−=∆    ⇒   .TnRTnCQ V ∆+∆=  

 

Molar specific heat at constant pressure: 

 

,
Tn

Q
CP

∆
=    ⇒   .RCC VP +=  
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Equipartition of Energy (Maxwell) 

 

If a kind of molecule has f independent ways to store 

energy, then it has f degrees of freedom. Each degree of 

freedom has an average energy of 
1

2
kT  per molecule (or 

1

2
RT  per mole) associated with it. 

e.g. helium: 3 translational + 0 rotational 

∆ ∆E nR T
int

,=
3

2

 and C R
V

=
3

2

. 

e.g. oxygen: 3 translational + 2 rotational 

∆ ∆E nR T
int

,=
5

2

 and C R
V

=
5

2

. 

e.g. methane: 3 translational + 3 rotational 

∆ ∆E nR T
int

,= 3  and C R
V

= 3 . 

In general, 

∆ ∆E nR T
f

int
,=

2

 and C R
V

f
=

2

. 
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Example 

 

19-7 A bubble of 5 mol of helium is submerged at a certain 

depth in liquid water when the water (and thus the helium) 

undergoes a temperature increase ∆T of 20oC at constant 

pressure. As a result, the bubble expands. 

(a) How much energy is added to the helium as heat during 

the increase and expansion? 

(b) What is the change ∆Eint in the internal energy of the 

helium during the temperature increase? 

(c) How much work W is done by the helium as it expands 

against the pressure of the surrounding water during the 

temperature increase? 

 

(a) RRRRCC VP
2

5

2

3
=+=+=  

)20)(31.8)(5.2)(5(

2

5

=

∆







=∆= TCRnTnCQ VP
 

J 2080=    (ans) 

(b) TCRnTnCE VV ∆







=∆=∆
2

3
int  

)20)(31.8)(5.1)(5(=  

J 1250=    (ans) 

(c)  Using the first law of thermodynamics, 

5.12465.2077

int

−=

∆−= EQW
 

J 831=    (ans) 
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19-8 We transfer 1000 J to a diatomic gas, allowing it to 

expand with the pressure held constant. The gas molecules 

rotate but do not oscillate. How much of the 1000 J goes 

into the increase of the gas’s internal energy? Of that 

amount, how much goes into ∆Ktran (the kinetic energy of 

the translational motion of the molecules) and ∆Krot (the 

kinetic energy of their rotational motion)? 

 

Q = 1000 J 

A diatomic gas has 5 degrees of freedom. 

Therefore, CV = 5R/2 and CP = 7R/2. 

At constant pressure, 

2/7nR

Q
T =∆  

Q
nR

Q
RnTnCE V

7

5

2/72

5
int =








=∆=∆  

J 3.7141000
7

5
=








=    (ans) 

There are 3 translational degrees of freedom and 2 

rotational degrees of freedom. Thus, 

Q
nR

Q
RnTRnK

7

3

2/72

3

2

3
tran =








=∆







=∆  

J 6.4281000
7

3
=








=    (ans) 

Q
nR

Q
nRTRnK

7

2

2/72

2
rot ==∆








=∆  

J 7.2851000
7

2
=








=    (ans) 
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A Hint of Quantum Theory 

 
Below about 80 K, CV/R = 1.5 ⇒ 3 translational degrees of 

freedom. 

As the temperature increases, CV/R increases to 2.5, two 

additional degrees of freedom. These are the rotational 

degrees of freedom, and this motion requires a certain 

minimum amount of energy. 

In quantum theory, an energy quantum is required to excite 

the rotation. This energy is not available at low 

temperatures. 

Above 1000 K, CV/R increases to 3.5, because the 

oscillatory degrees of freedom are excited. The energy 

quantum required to excite oscillations is not available at 

lower temperatures. 
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The Adiabatic Expansion of an Ideal Gas 

 

 
For adiabatic processes, Q = 0. 

Using the first law of thermodynamics, 

adiabatic compression causes heating, 

adiabatic expansion causes cooling. 

 

We can prove: 

constant,=γ
pV  

 

where γ = CP/CV, the ratio of the molar specific heats. Or, 
 

.2211

γγ
VpVp =  

 

Using the ideal gas equation, pV = nRT, 
 

constant,=





 γ

V
V

nRT
 

constant.1 =−γ
TV  

 

or 

.1

22

1

11

−− = γγ
VTVT  

 

Example: Fog formation when a cold can of soft drink is 

opened.
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Proof: 

 

First law of thermodynamics for a small expansion: 

 

,int dWdQdE −=  

 

where 

dEint = nCVdT, 

dQ = 0 for adiabatic processes, 

dW = pdV. 

 

From the ideal gas equation, pV = nRT, so that 

 

dW
nRT

V
dV= . 

 

Substituting, 

 

,0 dV
V

nRT
dTnCV −=  

 

we arrive at the differential equation 

 

.
T

V

R

C

dT

dV V 







−=  

 

Solution (verify by substitution): 

 

,constant
/ RCVTV

−⋅=    ⇒   constant.
/ =VCR

TV  

 

Since R/CV = (CP − CV)/CV = γ − 1, we get the adiabatic 

laws.
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Free Expansion 
 

 

 

 

 

No work is done: W = 0 

No heat is transferred: Q = 0 

Hence no change in internal energy: ∆Eint = Q − W = 0. 

 

For ideal gases, this implies no change in temperature: 

 

Ti = Tf or piVi = pfVf. 
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Example 

 

19-10 1 mol of oxygen expands adiabatically from an initial 

volume of 12 L at 310 K to a final volume of 19 L. 

(a) What would be the final temperature of the gas? Oxygen 

is diatomic and here has rotation but not oscillation. 

(b) What is the initial and final pressure of the gas? 

(c) If, instead, the gas had expanded freely from the initial 

volume to the final volume, what would be the final 

temperature and pressure? 

(a) Oxygen has 5 degrees of freedom, therefore 

4.1
5

7
,

2

7
,

2

5
=====

V

P
PV

C

C
RCRC γ  

Since constant1 =−γ
TV , 

K 258
19

12
310

14.1

1

1

=







==
−

−

−

γ

γ

f

i
if
V

V
TT    (ans) 

(b) Using ideal gas law, initial pressure: 

atm 12.2Nm 214675
1012

)310)(31.8)(1( 2

3
≈=

×
== −

−

i

i
i

V

nRT
p  

Final pressure: 

atm 11.1Nm 112841
1019

25831.81 2

3
≈=

×

××
== −

−

f

f

f
V

nRT
p  

(c) For free expansion, Ti = Tf and piVi = pfVf 

final temperature = 310 K 

final pressure 

atm 34.1Nm 135584
19

12
214675 2 ≈=








=== −

f

i
if
V

V
pp  

(ans) 
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Phase Transitions 

 

         A phase transition is a “discontinuous” change in the 

properties of a substance when its environment changes 

infinitesimally. For example water can change from solid to 

liquid at 0 ℃ or from liquid to gas at 100 ℃. But other 

factors, such as pressure, can also affect a phase transition 

besides temperature.  

        The phase diagram show the phases (solid, liquid, gas) 

as a function of T and P 

 

 

 

 

 

 

 

 

 

 

� The lines in the phase diagram indicate the conditions 

that two phases can coexist in equilibrium. (See “dry ice 

bomb” in YouTube.) 

� In the regions separated by the phase lines, respectively, 

ice, water and steam are the most stable phases. 

� However, “metastable” phases can still exist. 

� Example: “supercooled” water can exist at the left of the 

solid/liquid coexistence line. 

� Example: “Superheated” water can exist at the right of 

the liquid/gas coexistence line. 

� See “superheating” and “supercooling” in YouTube. 

 

 

 liquid/gas coexistence 

(evaporation) 

 Solid/gas 

 coexistence(sublimation) 

 solid/liquid/gas 

 coexistence 
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Compare the phase diagram for H2O above to CO2 below. 

A very important difference is that the solid-liquid phase 

boundary for CO2 has a positive slope 

(melting temperature increases when 

pressure increase), which is the usual 

behavior. For H2O, the solid-liquid 

boundary, actually has a negative 

slope (melting temperature decreases 

with increasing pressure), which is 

unusual. That is why we can skate on 

ice but not on any other solid surface!  

      At the phase boundary between liquid and gas, the 

liquid coexists at some temperature with gas at an 

appropriate pressure called the vapour pressure. 

 

 

 

 

 

 

 

The liquid-gas phase boundary has positive slope  

① At higher temperature, a greater pressure must be     

applied to keep the liquid and gas in coexistence 

② At higher pressure, the gas becomes more dense 

③ At the critical point, the liquid and dense gas 

becomes indistinguishable - then we call the system a 

fluid. (See “critical point of benzene” in YouTube.) 

the vapor pressure 
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Vapor Pressure 

 

The vapor pressure of a vapor is its pressure when it is in 

thermodynamic equilibrium with its condensed phase in a 

closed system. 

All liquids have a tendency to evaporate, and some solids 

can sublimate into a gaseous form. 

Vice versa, all gases have a tendency to condense back to 

their liquid form, or deposit back to solid form. 

The equilibrium vapor pressure is an indication of a liquid's 

evaporation rate. It relates to the tendency of particles to 

escape from the liquid (or a solid). A substance with a high 

vapor pressure at normal temperatures is often referred to as 

volatile. 

 

Observations 

 

1. The atmospheric pressure boiling point of a liquid (also 

known as the normal boiling point) is the temperature at 

which the vapor pressure equals the ambient atmospheric 

pressure. With any incremental increase in that temperature, 

the vapor pressure becomes sufficient to overcome 

atmospheric pressure and lift the liquid to form vapor 

bubbles inside the bulk of the substance. 

 

2. Bubble formation deeper in the liquid requires a higher 

pressure, and therefore higher temperature, because the 

fluid pressure increases above the atmospheric pressure as 

the depth increases. 

 

3. The boiling point of water at high altitude is lower than 

100oC due to the lower atmospheric pressure. 
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4. When the temperature is lowered, the vapor pressure of 

water vapor decreases. Condensation of water takes place at 

the dew point. 

 

5. The relative humidity is the density of water vapor 

divided by saturated vapor density. It is also equal to the 

vapor pressure of water vapor divided by the saturated 

vapor pressure. When the relative humidity reacahes 100%, 

condensation takes place. 

 

6. The vapor pressure that a single component in a mixture 

contributes to the total pressure in the system is called 

partial vapor pressure. For example, air at sea level, 

saturated with water vapor at 20 °C has a partial pressures 

of 23 mbar of water, and about 780 mbar of nitrogen, 210 

mbar of oxygen and 9 mbar of argon. 

 

Surface Tension (Reference: Wikipedia) 

Surface tension is a property of the surface of a liquid that 

allows it to resist an external force. It is revealed, for 

example, in floating of some objects on the surface of 

water, even though they are denser than water, and in the 

ability of some insects (e.g. water striders) and even reptiles 

(basilisk) to run on the water surface. This property is 

caused by cohesion of like molecules, and is responsible for 

many of the behaviors of liquids. 

Surface tension has the dimension of force per unit length, 

or of energy per unit area. The two are equivalent—but 

when referring to energy per unit of area, people use the 

term surface energy—which is a more general term in the 

sense that it applies also to solids and not just liquids. 

See Wikipedia for the examples and pictures. 
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Two Definitions 

 

Let γ be the surface tension of the liquid interface. 

Suppose the liquid interface is stretched by dx. 

Applied force: LF γ=  

Work done: LdxFdxdW γ==  

Increase in surface energy: LdxdWdE γ==  

Surface energy per unit area: γ=
Ldx

dE
 

This shows that the surface tension can be interpreted as the 

surface force per unit length, as well as the surface energy 

per unit area. 

Remark: If the interface in the above experiment is a film, 

e.g. a soap film, then there is an interface above the film 

and interface below the film. The force, work done, and 

surface energy has to be multiplied by 2. 

 

Surface Curvature and Pressure 

 
Let ∆p be the excess pressure inside the cylindrically 

curved interface.  

L 

dx 

F 

L 

R 

dθ 

F F 
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Force on the curved segment due to the excess pressure 
)( θLRdp∆=  

This is balanced by the vertical components of the surface 

tension 

θγ
θ

γ Ld
d

L ≈







=
2

sin2  

Equating the two forces, θγθ LdLRdp =∆ )(  

⇒   
R

p
γ

=∆  

If the surface is curved in both the x and y directions, 











+=∆

yx RR
p

11
γ  

Remark: This result is applicable to interfaces of a bulk 

droplet, e.g. a water drop. For interfaces of a film droplet, 

e.g. a soap bubble, the result should be multiplied by 2. 

 

Capillary Action 

 

Let r be the radius of the capillary 

tube. 

Upward force due to surface 

tension rπθγ 2)cos(=  

Weight of the liquid column 

ghr )( 2ρπ=  

Equating the forces, 

ghrr )(2)cos( 2ρππθγ =    ⇒ 

gr
h

ρ

θγ cos2
=  

 

 

γ 

h 

θ 


