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Second Law of Thermodynamics
Reading: Chapter 20

One-way Processes

Examples
Irreversible process: free expansion

Stopcock closed Stopcock open

- System

o

)

SN

2

Insulation - () Initial state 5 (b) Final state f

FIGURE 21-1 The free expansion of an ideal gas. () The gas is
confined to the left half of an insulated container by a closed
stopcock. (b) When the stopcock is opened, the gas rushes to fill
the entire container. This process is irreversible; that is, it does
not occur in reverse, with the gas spontaneously collecting itself
in the left half of the container.

Reversible process: isothermal expansion

l . FIGURE 21-3 The iso-

thermal expansion of an
ideal gas, done in a revers-
ible way. The gas has the
same initial state i and
same final state f as in the

= irreversible process of
(a) Initial state i Figs. 21-1 and 21-2. (#) Final state /

Insulation —
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Change in Entropy

\ i
\ Isotherm
FIGURE 21-4 A p-V dia- '

gram for the reversible iso- % .
thermal expansion of Fig. 21- & A
3. The intermediate states,

which are now equilibrium

states, are shown. Volume

ure

Suppose the initial state i and the final state f are
connected by a reversible process. Then the change in
entropy from state i to state fis

f
Aszsf—sl:f %Q.

Although the heat transferred depends on the path
connecting states i and f, it can be proved that the AS is
independent of the path.

Hence the entropy is a property of the state.

When states i and f are connected by a reversible and an
irreversible process, both processes must have the same
change in entropy.

For isothermal expansion,

For irreversible processes,

f
AS>J d—Q
T

l
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Entropy as a State Function

Consider a reversible process of an ideal gas from initial
state 7 to final state f. Using the first law of
thermodynamics,

dQ =dE._ +dW.
Since dW = p dV and dEin = nCy dT,
dQ = pdV +nC,dT.
Using the ideal gas law, p = nRT/V. Hence

d—Q:an—V+nCVd—T.
T |% T

Integrating,

f f f
J d—Q:J an—V+J nCVd—T.
i T i vV i T
vV

f Tf
AS=S§,-§,=nRIn—-+nC,In—-.

Thus the entropy change between the initial and final
states of an ideal gas depends only on properties of the
initial state (V; and T;) and properties of the final state (Vr
and Ty).
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Examples

20-1 One mole of nitrogen gas is confined to the left side
of the container in the figure. You open the stopcock and
the volume of the gas doubles. What is the entropy
change of the gas for this irreversible process? Treat the
gas as ideal.

(@) Initial state

Replace the irreversible process with the isothermal
expansion.
Heat absorbed by the gas:

O =nRT1 Yy
=nRT In—-.
Vi
Entropy change:
v
AS = % =nRIn—L

=(1)8.31)In2=+5.76 JK™" (ans)

20-2 Consider two identical copper blocks, each of mass
m = 1.5 kg: block L is at temperature 7;; = 60°C and
block R is at temperature Tz = 20°C. The blocks are in a
thermally insulated box and are separated by an
insulating shutter. When we lift the shutter, the blocks
eventually come to the equilibrium temperature 7y =
40°C. What is the net entropy change of the two-block
system during this irreversible process? The specific heat
of copper is 386 Jkg 'K ™.
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FIGURE 21-5 Sample Problem 21-2. (a) In the initial state,
two copper blocks L and R, identical except for their tempera-
tures, are in an insulating box and are separated by an insulat-
ing shutter. (b) When the shutter is removed, the blocks ex-
change heat and come to a final state, both with the same
temperature T;. The process is irreversible.

Replace the irreversible process by a reversible one
which uses reservoirs with controllable temperatures.

7~ Insulation

TR R A s,

i%

i’Q .
N

- Reservoir

(a) Step 1 (b) Step 2
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=

FIGURE 21-6 The blocks of Fig. 21-5 can proceed from their
initial state to their final state in a reversible way if we use
a reservoir with a controllable temperature (a) to extract
heat reversibly from block L and (b) to add heat reversibly to
block R.

Entropy change of block L:
rd Ty Ty T
ASL:f —Q:J M:mcf d—T:mcln—f
i T no T n T I,

4
— (1.5)(386)In 20273 _ 3586 7K,
60+ 273

Similarly, entropy change of block R:

AS, =(1.5)(386) lnM =+38.23JK™.
20+273

Net entropy change:
AS =AS, +AS, =-35.86+38.23=2.4JK"". (ans)
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The Second Law of thermodynamics

If a process occurs in a closed system, the entropy of the
system increases for irreversible processes and remains
constant for reversible processes. It never decreases.

AS =2 0.

The Rubber Band

? Coiled

o

o~y
Uncoiled
ro L 74J__.’D

(b)
20-7 A section of a rubber
band (@) unstretched and (b)

stretched, and a polymer within it (a)
coiled and () uncoiled.

Rubber consists of cross-linked polymer chains.

When the rubber band is at its rest length, the polymers
are coiled up.

This 1s highly disordered and the rest state has a high
entropy.

When the rubber band is stretched, the polymers are
uncoiled.

This decreases the disorder and the entropy is reduced.
Implication: When the temperature increases, the rubber
band tends to be shorter (the entropy increases).
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Heat Engines

A heat engine is a device that extracts heat and does
work as it continuously repeats a set sequence of
processes.

Carnot Engine

| &fl
’ - H
£ . \ tllr S~ +— 7}
2 * 4 , = A 4
~ ] =
w £
I f _.. RASEs  Ben ._VII
d o (21 . v = d W !
.y Q
e i
0 7 .
Volume Entropy 8
FIG. 20- yressure —volume et 2 = . .
G. 20-9 A pressure—volume plot FIG.20-10 The Carnot cycle of

of the cycle followed by the working
substance of the Carnot engine in
Fig. 20-8.The cycle consists of two
isothermal (ab and ¢d) and two adia-
batic processes (bc and da). The
shaded area enclosed by the cycle is
equal to the work W per cycle done
by the Carnot engine.

Fig.20-9 plotted on a
temperature—entropy diagram.
During processes ab and cd the
temperature remains constant.
During processes be and da the
entropy remains constant.

A Carnot engine is an ideal engine: all processes are
reversible and no energy is wasted due to friction and
turbulence. Its cycle operates in the following 4 steps:
ab: Isothermal expansion at Ty (Qn is absorbed)

bc: Adiabatic expansion from 7H to 71,

cd: Isothermal compression at Tc (Qv is discharged)

da: Adiabatic compression from 7. to Tu

Efficiency

energy weget W
energy wepay for O,
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Efficiency of an Ideal Engine

Since the engine returns to its
original state at the end of each

cycle, AEiy: = 0. The first law of
thermodynamics:

0=0,-0 —-W.
_ 4 :QH_QL.
On O

£

Since all the engine processes are
reversible, the net entropy change
per cycle for the entire system
must be zero.

AS =—%+%=O,
TH TL
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F1G. 20-8 The elements of a Carnot
engine. The two black arrowheads on
the central loop suggest the working
substance operating in a cycle, as if
on a p-V plot. Energy [Qy! is trans-
ferred as heat from the high-temper-
alure reservolr at temperature 7y to
the working substance. Energy [, | is
transferred as heat from the working
substance to the low-temperature
reservoir at temperature 7. Work W
is done by the engine (actually by the
working substance) on something in
the environment.

o _T

=L "L
TH

Oy

In real engines, there are wasteful energy transfers and
irreversible processes. Their efficiency is therefore lower

than the ideal efficiency.

Car engine: ideal efficiency about 55%, actual efficiency

about 25%.

Since Tx and T¢ are finite, there are no perfect engines

with 100% efficiency.
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Examples

20-4 Imagine a Carnot engine that operates between the
temperatures Ty = 850 K and 71 = 300 K. The engine
performs 1200 J of work each cycle, which takes 0.25 s.
(a) What is the efficiency of this engine?

(b) What is the average power of this engine?

(c) How much energy |Qu| is extracted as heat from the
high-temperature reservoir every cycle?

(d) How much energy |Qi| is delivered as heat to the
low-temperature reservoir every cycle?

(e) By how much does the entropy of the working
substance change as a result of the energy transferred to
it from the high-temperature reservoir? From it to the
low-temperature reservoir?

(a) €= 1—i = 1—@ =0.647 =65% (ans)
T, 850

(b) P :E :@ =4800 W =4.8kW (ans)
t  0.25

(c) Since € =

1O |

W 1200
=—=——"=1855] (ans
O e 0.647 (ans)

(d) | 0 |:| Ox | -W
=1855-1200=655J (ans)

O, 1855 .
e) AS, = = =+2.18 JK ans
(e) AS, T 250 (ans)

H

0, —655
T, ~ 300

AS, = =-2.18JK™" (ans)
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20-5 An inventor claims to have constructed an engine
that has an efficiency of 75% when operated between the
boiling and freezing points of water. Is that possible?

Efficiency of a Carnot engine operating between the
same temperatures

e=1-1L 1283 _ (268 ~27%
T, 373

Therefore, the efficiency of 75% is not possible. (ans)

Second Law of Thermodynamics (2" alternative
form)

No series of processes is possible whose sole result is the
absorption of heat from a thermal reservoir and the
complete conversion of this energy to work.

There are no perfect engines.

G
i
! L [ 2i
Ll
[et
‘ | ::":5;) Wi= Q)
L
0 =0
FIG. 20-11 The elements of a per-
fect engine —that is, one that con-
verts heat Oy from a high-tempera-

ture reservoir directly to work W
with 100% efficiency.

Refrigerators

A refrigerator is a device that uses work to heat energy
from a low-temperature reservoir to a high-temperature
TESErvoir.

10
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Coefficient of performance

energy extracted O,

K =

energy wepay for W W=

First law of thermodynamics:

W= Qu- Q.

FIG. 20-14 The elements of a refrig-

erator. The two black arrowhcads on

the central loop suggest the working
QL substance operating in a cycle, as if
K = . on a p-V plot. Energy is transterred
Q — Q as heat Q, to the working substance
H L from the low-temperature reservoir.
Energy is transferred as heat Q1o

the high-temperature reservoir [rom

Since an ideal refrigerator iS an the working substance. Work Wis

done on the refrigerator (on the

1dea1 englne 1n I‘everse, working substance) by something

in the environment.

Typical room air conditioners: K = 2.5
Household refrigerators: K = 5.

Second law of thermodynamics (3" alternative form)
ey

—

FIG. 20-15 The elements of a per-
fect refrigerator —that is, one that
transfers energy from a low-tempera-
ture reservoir to a high-temperature
reservoir without any input of work.

11
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No series of processes is possible whose sole result is the
transfer of heat from a reservoir at a given temperature to
a reservoir at a higher temperature.

There are no perfect refrigerators.

Entropy change of a perfect refrigerator (71 < Th):

As=-2:2 on

I, 1y

This violates the 1% form of the second law of
thermodynamics.

Equivalence with the 2" Alternative Form

o )' [ —riij

- |

; < H | 2

W= Q) “'iﬂgj I I L ? ’ \
Qe lﬂ\ _! Q |

1. Suppose the 2" alternative form of the second law of
thermodynamics 1is invalid, that is, we can find a heat
engine that can completely change heat energy from a
hot reservoir into mechanical energy.

2. Then we can use the mechanical energy of this heat
engine to drive a refrigerator that transports heat energy
from a cold reservoir back to the hot reservoir.

3. The net effect of this engine-fridge system is thus to
transport heat energy from the cold reservoir to the hot
reservoir, which violates the 3™ alternative form of the
second law of thermodynamics.

12
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Real Engines vs Carnot Engines
L fi | Gy

FIG.20-16 (a) Engine X drivesa  @h
Carnot refrigerator. (h) If, as
claimed, engine X is more efficient
than a Carnot engine, then the
combination shown in (@) is equiv-
alent to the perfect refrigerator
shown here. This violates the sec-
ond law of thermodynamics,

{E’._Z_."

relrigeraton

s N P

PR ‘ | Perfect
o | | J refrigeraton
hS 4 |&
sowe conclude that engine X can-

o, {? /@ 0
L 8] X
be more efficie s 1 )
not be more efficient than a Carnot

engine. () (b

o
i

1. Let & be the efficiency of a Carnot engine operating
between Ty and Ti..
Suppose there exists an engine X with

Ey > &,

2. Then we can use the mechanical energy of this engine
to drive a Carnot refrigerator, and we have

w W
— >
Qn On
3. The net effect of this engine-fridge system is thus to

transport heat energy Q = Ou — Q’w > 0 from the cold
reservoir to the hot reservoir. This violates the 3™
alternative form of the second law of thermodynamics.

= 0y >0y

Conclusion: No real engine can have an efficiency
greater then that of a Carnot engine working between the
same two temperatures.

13
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A Statistical View of Entropy

Consider a box containing 4 identical gas molecules.

(b)

FIG. 20-17  Aninsulated box con-
tains six gas molecules. Each mole-
cule has the same probability of be-
ing in the left halfl of the box as in the
right half. The arrangement in

(&) corresponds to configuration 111
in Table 20-1, and that in (b) corre-
sponds to configuration I'V.

config | Degeneracy| entropy

| | 0

II 4 1.39k

I 6 1.79k

CA A IC|R ICCC e A e

AR CACIAICCCNRCNC o

A ORI CCRICRAICCCoe

AR AR A IO T e~

14
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There are 16 microstates.

There are 5 macrostates.

The degeneracy (multiplicity) of each of the 5
macrostates is 1, 4, 6, 4, 1 respectively.

Note that macrostates with a fair distribution between L
and R have the largest degeneracy.

Terms

Microstate = the detailed specification of the state of a
collection of particles, particle-by-particle

Macrostate = the overall specification of the state of a
collection of particles, irrespective of the detailed
information of individual particles

Degeneracy = the number of microstates belonging to a
macrostate

Basic Assumption of Statistical Mechanics
All microstates are equally probable, hence the

macrostate with the highest degeneracy is the most
probable one.

15



lq'- THE HONG KONG

EERBEAL W HEBE R
The Hong Kong Academy

WJ UNIVERSITY OF SCIENCE for Gifted Education

AND TECHNOLOGY

An Analogy: The Haunted Castle

Statistical Mechanics of Free Expansion

P

;
r
The situation is like a drunken ghost wondering inside
a haunted castle with many rooms of different sizes.
(It can penetrate all walls.)
Even if he starts from a small room, he will most
likely be located in the room with the largest area after
a long time.

The largest room corresponds to the macrostate having
the largest number of microstates.

‘. |
|
|

FIGURE 21-1 The free ¢
confined to the left half er by a closed

hes to fill

his prc irreversible; that is, it does
vith the

in the left half of the container

spontaneously collecting itself

The macrostate with molecules filling only the left box
has a low degeneracy.

The macrostate with molecules filling both the left and
right boxes has a high degeneracy.

Hence given enough time, the gas will reach the
macrostate which fills both left and right boxes.

The macrostate which only fills the left box is not
completely impossible, but it is highly improbable.

16
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For a general N, the degeneracy W of a configuration:

N!

n; ng!

No. of atoms | Deg (half L, half R)

Deg (all left)

4
10
100

6
252
1029

|
|
|

+—Central
configuration

peak

Number of microstates W

J.\

S—— |

0 25 50 75

Percent of molecules in left half

100%

FIGURE 21-15 For a large number of molecules in a box, a plot
of the number of microstates that require various percentages of
the molecules to be in the left half of the box. Nearly all the
microstates correspond to an approximately equal sharing of the
molecules between the two halves of the box; those microstates
form the central configuration peak on the plot. For N = 1072,
the central configuration peak would be much too narrow to be

drawn on this plot.

When N is large, nearly all microstates correspond to
roughly equal division of molecules between left and

right.

Boltzman’s Entropy Equation

S=kInW.

k =1.38 x 10*° J/K is the Boltzmann constant.
This equation is engraved on Boltzmann’s tombstone.

17
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Stirling’s Approximation

Stirling’s approximation is used to find the logarithms of
the factorials of large numbers, which are usually
encountered in entropy calculations:

InN!'=NInN —N.

Example

20-7 When n moles of an ideal gas doubles its volume in
a free expansion, the entropy increase from the initial
state i to the final state f1s Sy — S; = nR In2. Derive this
result with statistical mechanics.

Let N be the number of molecules in n moles of gas. In
the initial state, when all N molecules are in the left half
of the container,

[
W, =L=1 = S, =klnW, =0.
N0!
In the final state,
N!

VT N )

S, =kInW, =kIn(N!)—2kIn[(N /2)!]
=k[NInN = N1=2k[(N /2)In(N /2)~ (N /2)]
=k[NInN =N~ NIn(N/2) /]

= k[NWN — NN +NIn2)]=kN1n2.

Since k = R/Ny and N = nNa,
§=8,-§,=kNIn2-0=kNIn2=nRIn2. (ans)

18
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