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and f ′′′(0) = −1 miles/min3. Predict the location of the plane
at time t = 2 min.

52. Suppose that an astronaut is at (0, 0) and the moon is rep-
resented by a circle of radius 1 centered at (10, 5). The
astronaut’s capsule follows a path y = f (x) with current posi-
tion f (0) = 0, slope f ′(0) = 1/5, concavity f ′′(0) = −1/10,
f ′′′(0) = 1/25, f (4)(0) = 1/25 and f (5)(0) = −1/50. Graph a
Taylor polynomial approximation of f (x). Based on your cur-
rent information, do you advise the astronaut to change paths?
How confident are you in the accuracy of your approximation?

53. Find the Taylor series for ex about a general center c.

54. Find the Taylor series for
√

x about a general center c = a2.

Exercises 55–58 involve the binomial expansion.

55. Show that the Maclaurin series for (1 + x)r is

1 +
∞∑

k=1

r (r − 1) · · · (r − k + 1)

k!
xk, for any constant r.

56. Simplify the series in exercise 55 for r = 2; r = 3; r is a pos-
itive integer.

57. Use the result of exercise 55 to write out the Maclaurin series
for f (x) = √

1 + x .

58. Use the result of exercise 55 to write out the Maclaurin series
for f (x) = (1 + x)3/2.

59. Find the Maclaurin series of f (x) = cosh x and f (x) = sinh x .
Compare to the Maclaurin series of cos x and sin x .

60. Use the Maclaurin series for tan x and the result of exercise 59
to conjecture the Maclaurin series for tanh x .

EXPLORATORY EXERCISES

1. Almost all of our series results apply to series of complex num-
bers. Defining i = √−1, show that i2 = −1, i3 = −i, i4 = 1
and so on. Replacing x with ix in the Maclaurin series for
ex , separate terms containing i from those that don’t contain i
(after the simplifications indicated above) and derive Euler’s

formula: eix = cos x + i sin x .

2. Using the technique of exercise 1, show that cos(i x) = cosh x
and sin(i x) = i sinh x . That is, the trig functions and their hy-
perbolic counterparts are closely related as functions of com-
plex variables.

3. The method used in examples 7.3, 7.5, 7.6 and 7.7 does not
require us to actually find Rn(x), but to approximate it with a
worst-case bound. Often this approximation is fairly close to
Rn(x), but this is not always true. As an extreme example of
this, show that the bound on Rn(x) for f (x) = ln x about c = 1
(see exercise 23) increases without bound for 0 < x < 1

2 . Ex-
plain why this does not necessarily mean that the actual error
increases without bound. In fact, Rn(x) → 0 for 0 < x < 1

2 but
we must show this using some other method. Use integration of

an appropriate power series to show that
∞∑

k=1
(−1)k+1 (x − 1)k

k
converges to ln x for 0 < x < 1

2 .

4. Verify numerically that if a1 is close to π , the sequence
an+1 = an + sin an converges to π . (In other words, if an is
an approximation of π , then an + sin an is a better approxima-
tion.) To prove this, find the Taylor series for sin x about c = π .
Use this to show that if π < an < 2π , then π < an+1 < an .
Similarly, show that if 0 < an < π , then an < an+1 < π .

9.8 APPLICATIONS OF TAYLOR SERIES

In section 9.7, we developed the concept of a Taylor series expansion and gave many
illustrations of how to compute these. In this section, we expand on our earlier presentation,
by giving a few examples of how Taylor series are used to approximate the values of
transcendental functions, evaluate limits and integrals and define important new functions.
These represent but a small sampling of the important applications of Taylor series.

First, consider how calculators and computers might calculate values of transcendental
functions, such as sin(1.234567). We illustrate this in example 8.1.

EXAMPLE 8.1 Using Taylor Polynomials to Approximate
a Sine Value

Use a Taylor series to approximate sin(1.234567) accurate to within 10−11.
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Solution In section 9.7, we left it as an exercise to show that the Taylor series
expansion for f (x) = sin x about x = 0 is

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞, ∞). Notice that if we take x = 1.234567,
the series representation of sin 1.234567 is

sin 1.234567 =
∞∑

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1,

which is an alternating series. We can use a partial sum of this series to approximate the
desired value, but how many terms will we need for the desired accuracy? Recall that
for alternating series, the error in a partial sum is bounded by the absolute value of the
first neglected term. (Note that you could also use the remainder term from Taylor’s
Theorem to bound the error.) To ensure that the error is less than 10−11, we must find an

integer k such that
1.2345672k+1

(2k + 1)!
< 10−11. By trial and error, we find that

1.23456717

17!
≈ 1.010836 × 10−13 < 10−11,

so that k = 8 will do. This says that the first neglected term corresponds to k = 8 and
so, we compute the partial sum

sin 1.234567 ≈
7∑

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1

= 1.234567− 1.2345673

3!
+ 1.2345675

5!
− 1.2345677

7!
+· · ·− 1.23456715

15!

≈ 0.94400543137.

Check your calculator or computer to verify that this matches your calculator’s estimate.
�

In example 8.1, while we produced an approximation with the desired accuracy, we
did not do this in the most efficient fashion, as we simply grabbed the most handy Taylor
series expansion of f (x) = sin x . You should try to resist the impulse to automatically use
the Taylor series expansion about x = 0 (i.e., the Maclaurin series), rather than making a
more efficient choice. We illustrate this in example 8.2.

EXAMPLE 8.2 Choosing a More Appropriate Taylor Series Expansion

Repeat example 8.1, but this time, make a more appropriate choice of the Taylor series.

Solution Recall that Taylor series converge much faster close to the point about
which you expand, than they do far away. Given this and the fact that we know the exact
value of sin x at only a few points, you should quickly recognize that a series expanded
about x = π

2 ≈ 1.57 is a better choice for computing sin 1.234567 than one expanded
about x = 0. (Another reasonable choice is the Taylor series expansion about x = π

3 .)
In example 7.5, recall that we had found that

sin x =
∞∑

k=0

(−1)k

(2k)!

(
x − π

2

)2k
= 1 − 1

2

(
x − π

2

)2
+ 1

4!

(
x − π

2

)4
− · · · ,
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where the interval of convergence is (−∞, ∞). Taking x = 1.234567 gives us

sin 1.234567 =
∞∑

k=0

(−1)k

(2k)!

(
1.234567 − π

2

)2k

= 1 − 1

2

(
1.234567 − π

2

)2
+ 1

4!

(
1.234567 − π

2

)4
− · · · ,

which is again an alternating series. Using the remainder term from Taylor’s Theorem
to bound the error, we have that

|Rn(1.234567)| =
∣∣∣∣ f (2n+2)(z)

(2n + 2)!

∣∣∣∣
∣∣∣∣1.234567 − π

2

∣∣∣∣2n+2

≤
∣∣1.234567 − π

2

∣∣2n+2

(2n + 2)!
.

(Note that we get the same error bound if we use the error bound for an alternating
series.) By trial and error, you can find that∣∣1.234567 − π

2

∣∣2n+2

(2n + 2)!
< 10−11

for n = 4, so that an approximation with the required degree of accuracy is

sin 1.234567 ≈
4∑

k=0

(−1)k

(2k)!

(
1.234567 − π

2

)2k

= 1 − 1

2

(
1.234567 − π

2

)2
+ 1

4!

(
1.234567 − π

2

)4

− 1

6!

(
1.234567 − π

2

)6
+ 1

8!

(
1.234567 − π

2

)8

≈ 0.94400543137.

Compare this result to example 8.1, where we needed many more terms of the Taylor
series to obtain the same degree of accuracy. �

We can also use Taylor series to quickly conjecture the value of difficult limits. Be
careful, though: the theory of when these conjectures are guaranteed to be correct is be-
yond the level of this text. However, we can certainly obtain helpful hints about certain
limits.

EXAMPLE 8.3 Using Taylor Polynomials to Conjecture
the Value of a Limit

Use Taylor series to conjecture lim
x→0

sin x3 − x3

x9
.

Solution Again recall that the Maclaurin series for sin x is

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞, ∞). Substituting x3 for x gives us

sin x3 =
∞∑

k=0

(−1)k

(2k + 1)!
(x3)2k+1 = x3 − x9

3!
+ x15

5!
− · · · .
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This gives us

sin x3 − x3

x9
=

(
x3 − x9

3!
+ x15

5!
− · · ·

)
− x3

x9
= − 1

3!
+ x6

5!
+ · · ·

and so, we conjecture that

lim
x→0

sin x3 − x3

x9
= − 1

3!
= −1

6
.

You can verify that this limit is correct using l’Hôpital’s Rule (three times, simplifying
each time). �

Since Taylor polynomials are used to approximate functions on a given interval and
since polynomials are easy to integrate, we can use a Taylor polynomial to obtain an
approximation of a definite integral. It turns out that such an approximation is often better
than that obtained from the numerical methods developed in section 4.7. We illustrate this
in example 8.4.

EXAMPLE 8.4 Using Taylor Series to Approximate a Definite Integral

Use a Taylor polynomial with n = 8 to approximate
∫ 1
−1 cos(x2) dx .

Solution Since we do not know an antiderivative of cos(x2), we must rely on a
numerical approximation of the integral. Since we are integrating on the interval
(−1, 1), a Maclaurin series expansion (i.e., a Taylor series expansion about x = 0) is a
good choice. We have

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1 − 1

2
x2 + 1

4!
x4 − 1

6!
x6 + · · · ,

which converges on all of (−∞, ∞). Replacing x by x2 gives us

cos(x2) =
∞∑

k=0

(−1)k

(2k)!
x4k = 1 − 1

2
x4 + 1

4!
x8 − 1

6!
x12 + · · · ,

so that cos(x2) ≈ 1 − 1

2
x4 + 1

4!
x8.

This leads us to the approximation∫ 1

−1
cos(x2) dx ≈

∫ 1

−1

(
1 − 1

2
x4 + 1

4!
x8

)
dx

=
(

x − x5

10
+ x9

216

) ∣∣∣∣x=1

x=−1

= 977

540
≈ 1.809259.

Our CAS gives us
∫ 1
−1 cos(x2) dx ≈ 1.809048, so our approximation appears to be very

accurate. �

You might reasonably argue that we don’t need Taylor series to obtain approximations
like those in example 8.4, as you could always use other, simpler numerical methods like
Simpson’s Rule to do the job. That’s often true, but just try to use Simpson’s Rule on the
integral in example 8.5.
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EXAMPLE 8.5 Using Taylor Series to Approximate the
Value of an Integral

Use a Taylor polynomial with n = 5 to approximate
∫ 1

−1

sin x

x
dx .

Solution Note that you do not know an antiderivative of
sin x

x
. Further, while the

integrand is discontinuous at x = 0, this does not need to be treated as an improper

integral, since lim
x→0

sin x

x
= 1. (This says that the integrand has a removable

discontinuity at x = 0.) From the first few terms of the Maclaurin series for
f (x) = sin x , we have the Taylor polynomial approximation

sin x ≈ x − x3

3!
+ x5

5!
,

so that sin x

x
≈ 1 − x2

3!
+ x4

5!
.

Consequently,
∫ 1

−1

sin x

x
dx ≈

∫ 1

−1

(
1 − x2

6
+ x4

120

)
dx

=
(

x − x3

18
+ x5

600

) ∣∣∣∣x=1

x=−1

=
(

1 − 1

18
+ 1

600

)
−
(

−1 + 1

18
− 1

600

)

= 1703

900
≈ 1.89222.

Our CAS gives us
∫ 1

−1

sin x

x
dx ≈ 1.89216, so our approximation is quite good. On the

other hand, if you try to apply Simpson’s Rule or Trapezoidal Rule, the algorithm will

not work, as they will attempt to evaluate
sin x

x
at x = 0.

�

While you have now calculated Taylor series expansions of many familiar functions,
many other functions are actually defined by a power series. These include many functions in
the very important class of special functions that frequently arise in physics and engineering
applications. One important family of special functions are the Bessel functions, which
arise in the study of fluid mechanics, acoustics, wave propagation and other areas of applied
mathematics. The Bessel function of order p is defined by the power series

Jp(x) =
∞∑

k=0

(−1)k x2k+p

22k+pk!(k + p)!
, (8.1)

for nonnegative integers p. Bessel functions arise in the solution of the differential equa-
tion x2 y′′ + xy′ + (x2 − p2)y = 0. In examples 8.6 and 8.7, we explore several interesting
properties of Bessel functions.

EXAMPLE 8.6 The Radius of Convergence of a Bessel Function

Find the radius of convergence for the series defining the Bessel function J0(x).
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Solution From equation (8.1) with p = 0, we have J0(x) =
∞∑

k=0

(−1)k x2k

22k(k!)2
. The Ratio

Test gives us

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ x2k+2

22k+2[(k + 1)!]2

22k(k!)2

x2k

∣∣∣∣ = lim
k→∞

∣∣∣∣ x2

4(k + 1)2

∣∣∣∣ = 0 < 1,

for all x. The series then converges absolutely for all x and so, the radius of convergence
is ∞. �

In example 8.7, we explore an interesting relationship between the zeros of two Bessel
functions.

EXAMPLE 8.7 The Zeros of Bessel Functions

Verify graphically that on the interval [0, 10], the zeros of J0(x) and J1(x) alternate.

Solution Unless you have a CAS with these Bessel functions available as built-in
functions, you will need to graph partial sums of the defining series:

J0(x) ≈
n∑

k=0

(−1)k x2k

22k(k!)2
and J1(x) ≈

n∑
k=0

(−1)k x2k+1

22k+1k!(k + 1)!
.

Before graphing these, you must first determine how large n should be in order to
produce a reasonable graph. Notice that for each fixed x > 0, both of the defining series
are alternating series. Consequently, the error in using a partial sum to approximate the
function is bounded by the first neglected term. That is,∣∣∣∣∣J0(x) −

n∑
k=0

(−1)k x2k

22k(k!)2

∣∣∣∣∣ ≤ x2n+2

22n+2[(n + 1)!]2

and

∣∣∣∣∣J1(x) −
n∑

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

∣∣∣∣∣ ≤ x2n+3

22n+3(n + 1)!(n + 2)!
,

with the maximum error in each occurring at x = 10. Notice that for n = 12, we have
that ∣∣∣∣∣J0(x) −

12∑
k=0

(−1)k x2k

22k(k!)2

∣∣∣∣∣ ≤ x2(12)+2

22(12)+2[(12 + 1)!]2
≤ 1026

226(13!)2
< 0.04

and∣∣∣∣∣J1(x) −
12∑

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

∣∣∣∣∣ ≤ x2(12)+3

22(12)+3(12 + 1)!(12 + 2)!
≤ 1027

227(13!)(14!)
< 0.04.

So, in either case, using a partial sum with n = 12 results in an approximation that is
within 0.04 of the correct value for each x in the interval [0, 10]. This is plenty of
accuracy for our present purposes. Figure 9.43 shows graphs of partial sums with
n = 12 for J0(x) and J1(x).

y

x
2 4 6 8 10

�0.5

0.5

1
y � J0(x)

y � J1(x)

FIGURE 9.43
y = J0(x) and y = J1(x)

Notice that J1(0) = 0 and in the figure, you can clearly see that J0(x) = 0 at about
x = 2.4, J1(x) = 0 at about x = 3.9, J0(x) = 0 at about x = 5.6, J1(x) = 0 at about
x = 7.0 and J0(x) = 0 at about x = 8.8. From this, it is now apparent that the zeros of
J0(x) and J1(x) do indeed alternate on the interval [0, 10]. �

It turns out that the result of example 8.7 generalizes to any interval of positive numbers
and any two Bessel functions of consecutive order. That is, between consecutive zeros of
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Jp(x) is a zero of Jp+1(x) and between consecutive zeros of Jp+1(x) is a zero of Jp(x). We
explore this further in the exercises.

The Binomial Series
You are already familiar with the Binomial Theorem, which states that for any positive
integer n,

(a + b)n = an + nan−1b + n (n − 1)

2
an−2b2 + · · · + nabn−1 + bn.

We often write this as (a + b)n =
n∑

k=0

(
n
k

)
an−kbk,

where we use the shorthand notation

(
n
k

)
to denote the binomial coefficient, defined by(

n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
= n(n − 1)

2
and(

n
k

)
= n(n − 1) · · · (n − k + 1)

k!
, for k ≥ 3.

For the case where a = 1 and b = x , the Binomial Theorem simplifies to

(1 + x)n =
n∑

k=0

(
n
k

)
xk .

Newton discovered that this result could be extended to include values of n other than
positive integers. What resulted is a special type of power series known as the binomial
series, which has important applications in statistics and physics. We begin by deriving the
Maclaurin series for f (x) = (1 + x)n , for some constant n �= 0. Computing derivatives and
evaluating these at x = 0, we have

f (x) = (1 + x)n f (0) = 1

f ′(x) = n(1 + x)n−1 f ′(0) = n

f ′′(x) = n(n − 1)(1 + x)n−2 f ′′(0) = n(n − 1)
...

...
f (k)(x) = n(n − 1) · · · (n − k + 1) f (k)(0) = n(n − 1) · · · (n − k + 1).

We call the resulting Maclaurin series the binomial series, given by
∞∑

k=0

f (k)(0)

k!
xk = 1 + nx + n(n − 1)

x2

2!
+ · · · + n(n − 1) · · · (n − k + 1)

xk

k!
+ · · ·

=
∞∑

k=0

(
n
k

)
xk .

From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣n(n − 1) · · · (n − k + 1)(n − k)xk+1

(k + 1)!

k!

n(n − 1) · · · (n − k + 1)xk

∣∣∣∣
= |x | lim

k→∞
|n − k|
k + 1

= |x |,
so that the binomial series converges absolutely for |x | < 1 and diverges for |x | > 1. By
showing that the remainder term Rk(x) tends to zero as k → ∞, we can confirm that the
binomial series converges to (1 + x)n for |x | < 1. We state this formally in Theorem 8.1.
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THEOREM 8.1 (Binomial Series)

For any real number r, (1 + x)r =
∞∑

k=0

(
r
k

)
xk, for −1 < x < 1.

As seen in the exercises, for some values of the exponent r, the binomial series
also converges at one or both of the endpoints x = ±1.

EXAMPLE 8.8 Using the Binomial Series

Using the binomial series, find a Maclaurin series for f (x) = √
1 + x and use it to

approximate
√

17 accurate to within 0.000001.

Solution From the binomial series with r = 1
2 , we have

√
1 + x = (1 + x)1/2 =

∞∑
k=0

(
1/2
k

)
xk = 1 + 1

2
x +

(
1
2

) (− 1
2

)
2

x2 +
(

1
2

) (− 1
2

) (− 3
2

)
3!

x3 + · · ·

= 1 + 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + · · · ,

for −1 < x < 1. To use this to approximate
√

17, we first rewrite it in a form involving√
1 + x , for −1 < x < 1. Observe that we can do this by writing

√
17 =

√
16 · 17

16
= 4

√
17

16
= 4

√
1 + 1

16
.

Since x = 1
16 is in the interval of convergence, −1 < x < 1, the binomial series gives us

√
17 = 4

√
1 + 1

16
= 4

[
1 + 1

2

(
1

16

)
− 1

8

(
1

16

)2

+ 1

16

(
1

16

)3

− 5

128

(
1

16

)4

+ · · ·
]
.

Since this is an alternating series, the error in using the first n terms to approximate the
sum is bounded by the first neglected term. So, if we use only the first three terms of the
series, the error is bounded by 1

16

(
1

16

)3 ≈ 0.000015 > 0.000001. Similarly, if we use
the first four terms of the series to approximate the sum, the error is bounded by

5
128

(
1
16

)4 ≈ 0.0000006 < 0.000001, as desired. So, we can achieve the desired
accuracy by summing the first four terms of the series:

√
17 ≈ 4

[
1 + 1

2

(
1

16

)
− 1

8

(
1

16

)2

+ 1

16

(
1

16

)3
]

≈ 4.1231079,

where this approximation is accurate to within the desired accuracy. �

EXERCISES 9.8

WRITING EXERCISES

1. In example 8.2, we showed that an expansion about x = π

2 is
more accurate for approximating sin(1.234567) than an expan-
sion about x = 0 with the same number of terms. Explain why
an expansion about x = 1.2 would be even more efficient, but
is not practical.

2. Assuming that you don’t need to rederive the Maclaurin series
for cos x, compare the amount of work done in example 8.4 to
the work needed to compute a Simpson’s Rule approximation
with n = 16.
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3. In equation (8.1), we defined the Bessel functions as series.
This may seem like a convoluted way of defining a func-
tion, but compare the levels of difficulty doing the following
with a Bessel function versus sin x : computing f (0), com-
puting f (1.2), evaluating f (2x), computing f ′(x), computing∫

f (x) dx and computing
∫ 1

0 f (x) dx .

4. Discuss how you might estimate the error in the approximation
of example 8.4.

In exercises 1–6, use an appropriate Taylor series to approxi-

mate the given value, accurate to within 10−11.

1. sin 1.61 2. sin 6.32 3. cos 0.34

4. cos 3.04 5. e−0.2 6. e0.4

In exercises 7–12, use a known Taylor series to conjecture the

value of the limit.

7. lim
x→0

cos x2 − 1

x4
8. lim

x→0

sin x2 − x2

x6

9. lim
x→1

ln x − (x − 1)

(x − 1)2
10. lim

x→0

tan−1 x − x

x3

11. lim
x→0

ex − 1

x
12. lim

x→0

e−2x − 1

x

In exercises 13–18, use a known Taylor polynomial with n
nonzero terms to estimate the value of the integral.

13.

∫ 1

−1

sin x

x
dx, n = 3 14.

∫ √
π

−√
π

cos x2 dx, n = 4

15.

∫ 1

−1
e−x2

dx, n = 5 16.

∫ 1

0
tan−1 x dx, n = 5

17.

∫ 2

1
ln x dx, n = 5 18.

∫ 1

0
e

√
x dx, n = 4

19. Find the radius of convergence of J1(x).

20. Find the radius of convergence of J2(x).

21. Find the number of terms needed to approximate J2(x) within
0.04 for x in the interval [0, 10].

22. Show graphically that the zeros of J1(x) and J2(x) alternate on
the interval (0, 10].

23. Einstein’s theory of relativity states that the mass of an object
traveling at velocity v is m(v) = m0/

√
1 − v2/c2, where m0 is

the rest mass of the object and c is the speed of light. Show

that m ≈ m0 +
( m0

2c2

)
v2. Use this approximation to estimate

how large v would need to be to increase the mass by 10%.

24. Find the fourth-degree Taylor polynomial expanded about
v = 0, for m(v) in exercise 23.

25. The weight (force due to gravity) of an object of mass
m and altitude x miles above the surface of the earth is

w(x) = mgR2

(R + x)2
, where R is the radius of the earth and g is the

acceleration due to gravity. Show that w(x) ≈ mg(1 − 2x/R).
Estimate how large x would need to be to reduce the weight
by 10%.

26. Find the second-degree Taylor polynomial for w(x) in exer-
cise 25. Use it to estimate how large x needs to be to reduce
the weight by 10%.

27. Based on your answers to exercises 25 and 26, is weight sig-
nificantly different at a high-altitude location (e.g., 7500 ft)
compared to sea level?

28. The radius of the earth is up to 300 miles larger at the equator
than it is at the poles. Which would have a larger effect on
weight, altitude or latitude?

In exercises 29–32, use the Maclaurin series expansion

tanh x � x − 1

3
x3 � 2

15
x5 − · · · .

29. The tangential component of the space shuttle’s velocity during

reentry is approximately v(t) = vc tanh

(
g

vc
t + tanh−1 v0

vc

)
,

where v0 is the velocity at time 0 and vc is the terminal veloc-
ity (see Long and Weiss, The American Mathematical Monthly,

February 1999). If tanh−1 v0

vc
= 1

2
, show that v(t) ≈ gt + 1

2
vc.

Is this estimate of v(t) too large or too small?

30. Show that in exercise 29, v(t) → vc as t → ∞. Use the approx-
imation in exercise 29 to estimate the time needed to reach 90%
of the terminal velocity.

31. The downward velocity of a sky diver of mass

m is v(t) = √40mg tanh

(√
g

40m
t

)
. Show that

v(t) ≈ gt − g2

120m
t3.

32. The velocity of a water wave of length L in water of depth h

satisfies the equation v2 = gL

2π
tanh

2πh

L
. Show that v ≈ √

gh.

In exercises 33–36, use the Binomial Theorem to find the first

five terms of the Maclaurin series.

33. f (x) = 1√
1 − x

34. f (x) = 3
√

1 + 2x

35. f (x) = 6
3
√

1 + 3x
36. f (x) = (1 + x2)4/5

In exercises 37 and 38, use the Binomial Theorem to approxi-

mate the value to within 10−6.

37. (a)
√

26 (b)
√

24 38. (a)
2

3
√

9
(b) 4

√
17

39. Apply the Binomial Theorem to (x + 4)3 and (1 − 2x)4. Deter-
mine the number of nonzero terms in the binomial expansion
for any positive integer n.

40. If n and k are positive integers with n > k, show that(
n
k

)
= n!

k!(n − k)!
.
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41. Use exercise 33 to find the Maclaurin series for
1√

1 − x2
and

use it to find the Maclaurin series for sin−1 x .

42. Use the Binomial Theorem to find the Maclaurin series for
(1 + 2x)4/3 and compare this series to that of exercise 34.

43. Use a Taylor polynomial to estimate
∫ π

0

sin x

x
dx accurate to

within 0.00001. (This value will be used in the next section.)

44. Use a Taylor polynomial to conjecture the value of

lim
x→0

ex + e−x − 2

x2
and then confirm your conjecture using

l’Hôpital’s Rule.

45. The energy density of electromagnetic radiation at wave-
length λ from a black body at temperature T (degrees
Kelvin) is given by Planck’s law of black body radiation:

f (λ) = 8πhc

λ5(ehc/λkT − 1)
, where h is Planck’s constant, c is

the speed of light and k is Boltzmann’s constant. To find the
wavelength of peak emission, maximize f (λ) by minimizing
g(λ) = λ5(ehc/λkT − 1). Use a Taylor polynomial for ex with
n = 7 to expand the expression in parentheses and find the crit-
ical number of the resulting function. (Hint: Use hc

k ≈ 0.014.)

Compare this to Wien’s law: λmax = 0.002898

T
. Wien’s law is

accurate for small λ. Discuss the flaw in our use of Maclaurin
series.

46. Use a Taylor polynomial for ex to expand the denominator in

Planck’s law of exercise 45 and show that f (λ) ≈ 8πkT

λ4
. State

whether this approximation is better for small or large wave-
lengths λ. This is known in physics as the Rayleigh-Jeans law.

47. The power of a reflecting telescope is proportional to
the surface area S of the parabolic reflector, where

S = 8π

3
c2

[(
d2

16c2
+ 1

)3/2

− 1

]
. Here, d is the diameter

of the parabolic reflector, which has depth k with c = d2

4k
.

Expand the term

(
d2

16c2
+ 1

)3/2

and show that if
d2

16c2
is small,

then S ≈ πd2

4
.

48. A disk of radius a has a charge of constant density σ . Point P
lies at a distance r directly above the disk. The electrical po-

tential at point P is given by V = 2πσ (
√

r 2 + a2 − r ). Show

that for large r, V ≈ πa2σ

r
.

EXPLORATORY EXERCISES

1. The Bessel functions and Legendre polynomials are examples
of the so-called special functions. For nonnegative integers n,
the Legendre polynomials are defined by

Pn(x) = 2−n
[n/2]∑
k=0

(−1)k(2n − 2k)!

(n − k)!k!(n − 2k)!
xn−2k .

Here, [n/2] is the greatest integer less than or equal to
n/2 (for example, [1/2] = 0 and [2/2] = 1). Show that
P0(x) = 1, P1(x) = x and P2(x) = 3

2 x2 − 1
2 . Show that for

these three functions,∫ 1

−1
Pm(x)Pn(x) dx = 0, for m �= n.

This fact, which is true for all Legendre polynomials, is called
the orthogonality condition. Orthogonal functions are com-
monly used to provide simple representations of complicated
functions.

2. Use the Ratio Test to show that the radius of convergence of
∞∑

k=0

(
n
k

)
xk is 1. (a) If n ≤ −1, show that the interval of con-

vergence is (−1, 1). (b) If n > 0 and n is not an integer, show
that the interval of convergence is [−1, 1]. (c) If −1 < n < 0,
show that the interval of convergence is (−1, 1].

3. Suppose that p is an approximation of π with |p − π | < 0.001.
Explain why p has at least two digits of accuracy and has
a decimal expansion that starts p = 3.14 . . . . Use Taylor’s
Theorem to show that p + sin p has six digits of accuracy.
In general, if p has n digits of accuracy, show that p + sin p
has 3n digits of accuracy. Compare this to the accuracy of
p − tan p.

9.9 FOURIER SERIES

Many phenomena we encounter in the world around us are periodic in nature. That is, they
repeat themselves over and over again. For instance, light, sound, radio waves and x-rays are
all periodic. For such phenomena, Taylor polynomial approximations have shortcomings.
As x gets farther away from c (the point about which you expanded), the difference between
the function and a given Taylor polynomial grows. Such behavior is illustrated in Figure 9.44
for the case of f (x) = sin x expanded about x = π

2 .


