Selection Test 1 Solution
1. A satellite of mass m is orbiting around the Earth. When it is at a distance r0 away from the center of the Earth, its velocity is v0 and makes an angle ( with the outward radius vector, as shown in the figure. Let ( = GME, where G is the gravitational constant and ME is the mass of the Earth.
(a) Derive an expression for the mechanical energy E of the satellite.

(b) Derive an expression for the angular momentum L of the satellite.
(c) Derive an expression for the closest distance rmin and furthest distance rmax from the center of the Earth.

(d) Derive an expression for the orbital period of the satellite.


(a) Kinetic energy: 
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Potential energy: 
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Mechanical energy: 
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(b) Angular momentum: 
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(c) At the closest and furthest distance, the velocity is normal to the radius.
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Using the conservation of energy,
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(d) Semimajor axis: 
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Orbital period: 
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2. Consider the propagation of waves on surfaces of deep water given by
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where ( = kx ( (t is the phase of the wave. ( is called the angular frequency and k is called the wavenumber. For surface waves, it was found that the relation between ( and k is given by
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Here, g is the gravitational acceleration. This is called a dispersive wave because the wave velocity depends on the frequency.
(a) The velocity of a dispersive wave is calculated in a way different from that of non-dispersive waves. We consider the superposition of waves in a narrow range of angular frequency (( and a narrow range of wavenumber (k. For waves in these ranges to interfere constructively, what is the ratio x/t? Note that this ratio describes the progression of the peaks of a dispersive wave and is called the group velocity vg. (b) Derive the group velocity of the surface wave as a function of the wavenumber.
(c) Derive an expression for the phase ( at the peak of the dispersive wave when it travels to position x at time t.

(d) A stone drops on the water surface at a position x = 0 and time t = 0. An observer is located at another location x. What is the wavelength observed by her when the peak of the surface wave arrives at her location at time t?
(e) A helicopter moving at a velocity u drops a row of small pebbles vertically on the water surface. It generates a disturbance with a peak propagating in the forward direction slower than u. What is the velocity of this peak?
(a) Consider waves in the narrow range. The spread of the phase is given by
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For waves in this range to interfere constructively,
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(b) Group velocity: 
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(c) From (a), 
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(d) Observed wavelength: 
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(e) Consider waves generated at time t’. Its phase arriving at location x at time t is
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Consider waves generated in a narrow range (t’. The spread of the phase is
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For waves in this range to interfere constructively,
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This can be rewritten as 
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, revealing that a disturbance created at time t’ and location ut’ travels forward with velocity u/2.
3. Consider two masses, each of mass m, and two strings, each of force constant k, connected in the way shown in the figure.
(a) Derive expressions for the two possible periods of the small-amplitude oscillations of the masses when they are displaced vertically.
(b) Suppose initially the upper mass is held in position with the upper string unstretched and the lower mass hangs freely in equilibrium. At t = 0, the upper mass is relaxed and the two masses can move freely. Calculate the amplitudes of the oscillations of each mass.

(a) Let x1 and x2 be the extensions of the upper and lower springs from the equilibrium positions respectively. Using Newton’s second law for the two masses,
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Let 
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In matrix form,
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For the equations to have non-trivial solutions,
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Hence the periods of oscillations are 
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(b) When 
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When 
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Hence the general solution is
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At the equilibrium position, the upper and lower springs are extended by 2mg/k and mg/k respectively. Hence in the initial position, x1 = (2mg/k and x2 = 0. At t = 0,
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Since the ratio of the two frequencies is an irrational number, the amplitude of the upper mass is 
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The amplitude of the lower spring is 
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4. A uniform cylinder is free to roll on a horizontal rough table. The table is driven by an external force to oscillate horizontally with an amplitude A and frequency f. The moment of inertia of a uniform cylinder is MR2/2, where M and R are the mass and radius of the cylinder respectively.
(a) What is the amplitude of oscillations of the cylinder measured by a stationary observer?

(b) If the coefficient of static friction between the cylinder and the table surface is (, what is the amplitude A above which the cylinder starts to slide on the surface?
Suppose the displacement of the table is 
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 where ( = 2(f.

The oscillating table is a non-inertial frame. Hence the cylinder experiences a fictitious force equal to (matable = +m(2Asin(t.
Let y be the displacement of the cylinder relative to the table.

Let ( be the angular displacement of the cylinder.

Using Newton’s second law for linear motion, 
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Using Newton’s second law for rotation, 
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For rolling without sliding, 
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Together with I = mR2/2, we have 
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Let 
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To a stationary observer, the displacement of the cylinder is 
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(b) Frictional force: 
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Maximum frictional force: 
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5. A Stirling engine contains a working substance that can be approximated as 1 mole of diatomic ideal gas. The molar heat capacities of the gas at constant pressure and constant volume are cP = 7R/2 and cV = 5R/2 respectively, where R is the universal gas constant. The engine operates with the following four cycles:
(1) Power stroke: The gas is in contact with a hot reservoir at temperature 3T. It absorbs heat from the reservoir and expands isothermally from volume V to 2V.

(2) Cooling stroke: The gas is cooled from temperature 3T to T at constant volume. The heat flowed out of the gas is temporarily stored in a heat regenerator.

(3) Compression stroke: The gas is in contact with a cold reservoir at temperature T. It gives up heat to the reservoir and compresses isothermally from volume 2V to V.
(4) Heating stroke: Heat previously stored in the heat regenerator flows into the gas at constant volume, and the gas heats from temperature T to 3T.

(a) Sketch the PV diagram, that is, the engine cycle in the space of pressure P and volume V.

(b) Calculate the heat absorbed during the power stroke.
(c) Calculate the heat stored in the heat regenerator during the cooling stroke.

(d) Calculate the work done by the engine in a cycle.

(e) Calculate the efficiency of the engine.

(f) Suppose the heat regenerator breaks down, such that the heat flow during the cooling stroke is wasted, and the heat flow during the heating stroke has to be provided by the hot reservoir. Calculate the efficiency of the engine.

(a)

(b) Heat absorbed = Work done by the gas
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(c) Heat stored in the regenerator
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(d) Work done by the engine

= work done by the gas during the power stroke ( work done on the gas during the compression stroke
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(e) Efficiency of the engine
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(f) Efficiency of the engine after breakdown
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