Selection Test 2 Solution
1. At the position (x, y) = (S, 0), there is a charge –q. At the position (x, y) = (–S, 0), there is another charge +q.

(a) What is the relation between q and S such that when s increases to infinity, the electric field at (x, y) = (0, 0) remains at an effectively constant value E0.

(b) Suppose a neutral and isolated conducting sphere is placed between the two charges at x = (S. The conducting sphere has a radius R and is centered at (x, y) = (0, 0) where R < S. Describe the image charge configuration.

(c) By taking a suitable limit, show that the image charge of the conducting sphere approaches a dipole moment p when it is put in a uniform external electric field E0. What is the value of p?

(d) Starting from Coulomb’s law for single charges, derive the magnitude and direction of the electric field at the positions A and B on the surface of the conducting sphere, where A lies along the +x direction, and B makes an angle of (/4 with the +x direction. Write the direction of the electric field as an angle with the +x direction. [Remark: You may need to use the power series expansion (1 + x)n ( 1 + nx + …]

(e) Find the surface charge density of the conducting sphere at the positions A and B.
(a) Electric field at (0, 0) is
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Relation between q and S is 
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(b) Consider the image charge of –q. Suppose its image charge is q’ located at x = S’. Then the electric potential at the position (R, () on the surface of the conducting sphere is
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Since the surface of the conducting sphere is an equipotential surface, ( is independent of the direction (. Separating the constant electric potential, we have
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Similarly, the image charge of +q is (Rq/S located at x = (R2/S.

Since the total induced charge is 0, there are no other net charges induced.

(c) In the limit that s increases to infinity and 
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, the image charges are equal and opposite and their distance approaches 0. Dipole moment of the image charges is
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(d) Consider two charges (q located at ((a, 0). Their dipole moment is p = 2qa. At the location (x, 0), the electric field of the dipole is
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 by symmetry.

Hence the total electric field at (x, 0) is 

[image: image12.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

=

+

=

3

3

0

3

3

0

0

2

1

2

x

R

E

x

R

E

E

E

x

   and   
[image: image13.wmf]0

=

y

E


On the surface of the sphere, x = R. Hence

E = 3E0 and the angle with the +x direction is 0.

At the location (x, x), the electric field of the dipole is
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 EMBED Equation.3  [image: image16.wmf]2
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Hence the magnitude of the total electric field at (x, x) is 
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On the surface of the sphere, 
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 and the angle with the +x direction is (/4.
(e) Using Gauss’s law, surface charge density is 
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At A, 
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At B, 
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2. Consider an infinitely long cylinder of radius R carrying an electric current with a uniform current density J along the direction of its axis. As shown in the figure, an infinitely long cylindrical column of radius r is cut out from it, forming an infinitely long cylindrical hole. Let the perpendicular distance between the axes of the cylinder and the hole be d, where r < d < R.

(a) Choosing the coordinate of the center of the cylinder to be x = 0, find the magnetic field in the range x < (R.

(b) Repeat (a) for the range (R < x < d ( r.

(c) Repeat (a) for the range d ( r < x < d + r.

(d) Repeat (a) for the range d + r < x < R.

(e) Repeat (a) for the range x > R.

(f) Sketch the magnetic field as a function of x. For comparison, also sketch the magnetic field before cutting out the hole on the same sketch.


[image: image28]
(a) The structure can be considered as an upward flowing cylindrical column of current of radius R and a downward flowing cylindrical column of current of radius r.
Using Ampere’s law, the magnetic field due to the upward column in the range x < (R
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The magnetic field due to the downward column in the range x < (R
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Total magnetic field: 
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(b) In the range (R < x < d ( r,
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(c) In the range d ( r < x < d + r,
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(d) In the range d + r < x < R,
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(e) In the range x > R,
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(f) Magnetic field before cutting out the cavity

In the range x < (R, 
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In the range (R < x < R, 
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In the range x > R, 
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The sketch for R = 4, r = 1 and d = 2 is shown below.
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3. A thin copper wire with electrical resistance R is bent into a ring. The area encircled by the ring is A, and its moment of inertia is I. The ring is placed in a uniform magnetic field B in the z-direction. As shown in the figure, the ring is free to rotate about a diameter along the x-direction.

(a) Suppose the plane of the ring makes an angle (t with the xy-plane at time t shortly after t = 0. Find an expression of the current flowing in the ring at time t.

(b) Find an expression of the torque acting on the ring at time t.

(c) Find an expression of the angular acceleration of the ring averaged over a period.

(d) Suppose the initial angular frequency of the ring is (0. Find the time that the angular frequency decreases to (0/e.

(e) Find an expression of the average change of the kinetic energy of the ring per unit time. Compare your result with the average power loss due to Joule heating.
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 (a) Using Faraday’s law, the electromotive force induced in the ring
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Current 
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(b) Magnetic moment of the ring 
[image: image51.wmf]t

R

B

A

iA

m

w

w

sin

2

=

=

 and is pointing perpendicular to the plane of the ring.

Torque: 
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(c) Using Newton’s second law for rotation,
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Averaging over a period,
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(d) 
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Solution: 
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When 
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(e) Rate of change of kinetic energy:
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Power dissipation due to Joule heating:
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Averaged over time:
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The rate of decrease of the kinetic energy is equal to the power dissipation due to Joule heating.

4. As shown in the figure, a resistor of resistance R and an inductor of inductance L are connected in series.

(a) The switch is turned to side A at time t = 0. Derive the current through the resistor for time t > 0. Sketch the current as a function of time.

(b) Immediately after t = 0, what is the potential difference across the resistor, and what is the potential difference across the inductor?

(c) After the current has become steady, what is the potential difference across the resistor, and what is the potential difference across the inductor?

(d) After the current has become steady, the switch is turned to side B. Derive the current through the resistor after the switch. Sketch the current as a function of time.

(e) Suppose the switch is turned periodically from side A to side B, and from side B to A. The time interval between two turns is T = L/R. Derive the maximum and minimum current after the system has reached a steady state. Sketch the current as a function of time.
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(a) 
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Solution: 
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Initial condition: at t = 0, I = 0 because the inductor opposes immediate current changes. Hence I0 = V/R. 
Final solution: 
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(b) Immediately after the switch, the potential difference across the resistor is 0, and the potential difference across the inductor is V.

(c) After the current has become steady, the potential difference across the resistor is V, and the potential difference across the inductor is 0.

(d) 
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Solution: 
[image: image72.wmf]÷

ø

ö

ç

è

æ

-

=

L

Rt

I

I

exp

0


Initial condition: at t = 0, I = V/R because the inductor opposes immediate current changes. Hence I0 = V/R. 
Final solution: 
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(e) During the charging stage, 
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, where the time is reset to 0 at the beginning of the stage.

During the discharging stage, 
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, where the time is reset to 0 at the beginning of the stage.

Hence Imax and Imin are related by
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Solution: 
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During the charging stage, 
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During the discharging stage, 
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5. A soap bubble 5.0 cm in radius with a wall thickness of 3.0 ( 10(6 cm is charged to a potential of 50 V. You are given that (0 = 8.854 ( 10(12 Fm(1.

(a) The bubble bursts and two spherical drops of equal radii are formed. Calculate the potential of each drop. Assume that the two drops carry the same amount of charge and that the soap solution conducts electricity.

(b) Calculate the surface charge density of the spherical drops.

(c) Calculate the decrease in pressure on the spherical drops caused by the presence of the surface charge.

(d) The surface tension of soap water is 0.025 Nm(1. If the electric charge remains the same, what is the radius of the bubble when the pressure due to surface tension and the pressure due to surface charge balance each other?

(a) Potential:
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Let b be the radius of the two spherical drops. Then
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The potential of the drop
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Hence the charge is given by

(b) Charge on each drop
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Surface charge 
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(c) Electric field at a location on the surface due to other surface charges 
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Pressure reduction due to the surface charge 
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(d) Charge on the bubble 
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Let r be the radius at which the two pressures balance each other. Then
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