1.

(a)

$$
\begin{gathered}
m g \sin \theta_{1}+m g \sin \theta_{2}-\mu m g \cos \theta_{1}-\mu m g \cos \theta_{2}^{[1 M a r k]}=2 m a \\
g\left(\sin \theta_{1}+\sin \theta_{2}\right)-\mu g\left(\cos \theta_{1}+\cos \theta_{2}\right)=2 a \\
g\left[2 \sin \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right)\right]-\mu g\left[2 \cos \left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right)\right] \\
=2 a
\end{gathered}
$$

$$
a \geq 0
$$

[1 Mark]

$$
\begin{array}{r}
\Rightarrow 2 \sin \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right)-2 \mu \cos \left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right) \rightarrow \theta \\
\sin \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right)>\mu \cos \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right) \\
\tan \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right)>\mu \\
\theta_{1}+\theta_{2}>2 \tan ^{-1}(\mu) \quad[1 \text { Mark] }
\end{array}
$$

(b) Lower Block:

$$
m g \sin \theta_{1}-\mu m g \cos \theta_{1}-k \Delta l=m a \quad \text { [1 Mark] }
$$

Upper Block:

$$
m g \sin \theta_{2}+k \alpha l-\mu m g \cos \theta_{2}=m a \quad[1 \text { Mark] }
$$

Same Acceleration,

$$
\begin{array}{r}
\Rightarrow m g \sin \theta_{1}-\mu m g \cos \theta_{1}-k g l=m g \sin \theta_{2}+k g l-\mu m g \cos \theta_{2} \\
2 k x l=m g \sin \theta_{1}-\mu m g \cos \theta_{1}-m g \sin \theta_{2}+\mu m g \cos \theta_{2} \\
=
\end{array}
$$

$\operatorname{Fram}(a)$,

$$
\tan \left(\frac{\theta_{1}}{2}+\frac{\theta_{2}}{2}\right)=\mu=\frac{m g \sqrt{1+\mu^{2}}}{2}
$$

[0.5 Mark for $\sin (x / 2+y / 2)=f(u)]$
$f(u)=$ function of u
2.

2.
(a) Reaction fore becomes zero when the object detaches.

$$
\left.\begin{array}{rl}
m g \cos \alpha & =\frac{m v^{2}}{R} \\
g\left(\frac{h_{1}}{R}\right) & =\frac{v^{2}}{R} \\
v^{2} & =g h_{1} \tag{1}
\end{array} \quad \cos \alpha=\frac{h_{1}}{R} \quad \text { [0.5 Mark] }\right] ~[1 \text { Mark] }]
$$

Energy Conservation:

$$
\begin{align*}
& m g\left[R(1-\cos \alpha)+h_{2}-R\right]=\frac{1}{2} M v^{2}[2 \text { Marks] } \\
& V^{2}
\end{aligned}=2 g\left[R-R \cos \alpha+h_{2}-R\right] \quad \begin{aligned}
& =2 g\left(h_{2}-R \frac{h_{1}}{R}\right) \\
& =2 g\left(h_{2}-h_{1}\right) \quad \text { (2) [1 Mark] }
\end{align*}
$$

(1) and (2) $\Rightarrow \quad g h_{1}=2 g\left(h_{2}-h_{1}\right)$ [0.5 Mark]

$$
\frac{h_{1}}{h_{2}}=\frac{2}{3} \quad \text { [0.5 Mark] }
$$

Concave Convex

[0.5 Mark for alpha]

$$
\begin{aligned}
S & =R\left[\cos ^{-1}\left(\frac{4 R-3 h_{1}}{2 R}\right)+\cos ^{-1}\left(\frac{h_{1}}{R}\right)\right] \\
& =R\left[\cos ^{-1}\left(\frac{4 R-3\left(\frac{2}{3}\right) h_{2}}{2 R}\right)+\cos ^{-1}\left(\frac{2 h_{2}}{3 R}\right)\right] \\
& =R\left[\cos ^{-1}\left(\frac{2 R-h_{2}}{R}\right)+\cos ^{-1}\left(\frac{2 h_{2}}{3 R}\right)\right][1 \text { Mark] answer for final }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (C) Remacks: } \frac{d}{d x} \cos ^{-1}(x)=\frac{-1}{\sqrt{1-x^{2}}} \\
& \cos y=x \\
& -\sin y d y=d x \quad 1 \\
& \frac{d y}{d x}=\frac{-1}{\sin y} \\
& =\frac{-1}{\sqrt{1-x^{2}}} \\
& \frac{d S}{d h_{2}}=R\left[\frac{\frac{1}{R}}{\sqrt{1-\left(\frac{2 R-h_{2}}{R}\right)^{2}}}-\frac{\frac{2}{3 R}}{\sqrt{1-\left(\frac{2 h_{2}}{3 R}\right)^{2}}}\right]=0 \\
& \frac{1}{\sqrt{1-\left(\frac{\left.2 R-h_{2}\right)^{2}}{R}\right.}}=\frac{2}{3} \frac{1}{\sqrt{1-\left(\frac{2 h_{2}}{3 R}\right)^{2}}} \\
& 1-\left(\frac{2 R-h_{2}}{R}\right)^{2}=\frac{9}{4}\left[1-\left(\frac{2 h_{2}}{3 R}\right)^{2}\right] \\
& -\frac{4 R^{2}+h_{2}^{2}-4 R h_{2}}{R^{2}}=\frac{5}{4}-\frac{9}{4} \frac{4 h_{2}^{2}}{9 R^{2}} \\
& 4 \frac{h_{2}}{R}=\frac{21}{4} \\
& h_{2}=\frac{21}{16} R^{[1 \text { Мак }]} \\
& S=R\left[\cos ^{-1}\left(\frac{2 R-\frac{21}{16} R}{R}\right)+\cos ^{-1}\left(\frac{2 \times \frac{21}{16} R}{3 R}\right)\right. \\
& =R\left[\cos ^{-1}\left(\frac{11}{16}\right) \rightarrow \cos ^{-1}\left(\frac{7}{8}\right)\right] \\
& =1.318 R^{[1 \text { Макk] }}
\end{aligned}
$$

(d)

$$
V_{x}=v \cos \alpha
$$

$$
\sqrt{R^{2}-h_{1}^{2}}
$$

$$
v_{y}=v \sin \alpha
$$

$$
h_{1}
$$

$$
\begin{align*}
s_{G_{G}} & =u t+\frac{1}{2} g t^{2} \\
h_{1} & =v_{y} t+\frac{1}{2} g t^{2} \\
h_{1} & =v \sin \alpha t+\frac{1}{2} g t^{2} \quad \frac{1 / 2 \mathrm{mv2}=\mathrm{mg}(\mathrm{~h} 2-h 1)}{v=\operatorname{sgqt}(g \mathrm{R})} \mathrm{V} \\
& =\sqrt{g h_{1}} \frac{\sqrt{R^{2}-h_{1}^{2}}}{h_{1}} t+\frac{1}{2} g t^{2} \\
& =\sqrt{\frac{g\left(R^{2}-h_{1}^{2}\right)}{h_{1}} t+\frac{1}{2} g t^{2}}
\end{align*}
$$

$$
\sin \alpha=\frac{\sqrt{R^{2}-h_{1}^{2}}}{h_{1}}
$$

Detach at the common tangent $\Rightarrow h_{1}=R$
$\mathrm{h} 2=3 / 2 \mathrm{R} \quad$ [0.5 Mark]

$$
\text { (3) } \begin{aligned}
\Rightarrow \quad h_{1} & =\frac{1}{2} g t^{2} \text { [0.5 Mark] } \\
t & =\sqrt{\frac{2 h_{1}}{g}}{ }^{[0.5 \text { Mark] }} \\
S_{G} & =V_{x} \times t \\
& =v \cos \alpha \sqrt{\frac{2 h_{1}}{g}} \\
& =\sqrt{g h_{1}}\left(\frac{h_{1}}{R}\right) \sqrt{\frac{2 h_{1}}{g}} \\
& =\frac{h_{1}^{2} \sqrt{2}}{R} \\
& =\sqrt{2} R^{[1 \text { Mark] }}
\end{aligned}
$$

Alternative Method:

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{y}=0 \\
V_{x}=V
\end{array}\right. \\
& h_{1}=\frac{1}{2} g t^{2[0.5 \text { Mark] }} \\
& t={\sqrt{\frac{2 h_{1}}{g}}}^{[0.5 \text { Mark }]} \\
& S_{q}=\sqrt{2} R^{[1 \text { Mark] }}
\end{aligned}
$$

(a) $\quad P_{1} V_{0}=n_{1} R T_{1}$
(I) [0.5 Mark]

$$
P_{2} V_{0}=n_{2} R T_{2}
$$

(2) 0.5 Mark$]$

$$
\begin{equation*}
P_{2}=P_{1}+\frac{m g}{A} \tag{3}
\end{equation*}
$$

[1 Mark for attempt to solve P1, P2, and Vo]

$$
\begin{equation*}
\text { (1) }(2) \Rightarrow \frac{P_{1}}{P_{2}}=\frac{n_{1} T_{1}}{n_{2} T_{2}} \tag{4}
\end{equation*}
$$

(3) and (4) $\Rightarrow P_{2}=\frac{n_{1} T_{1} P_{2}}{n_{2} T_{2}}+\frac{m g}{A}$

$$
\begin{aligned}
& P_{2}\left(1-\frac{n_{1} T_{1}}{n_{2} T_{2}}\right)=\frac{m g}{A} \\
& P_{2}\left(\frac{n_{2} T_{2}-n_{1} T_{1}}{n_{2} T_{2}}\right)=\frac{m g}{A} \\
& P_{2}=\frac{m g}{A}\left(\frac{n_{2} T_{2}}{n_{2} T_{2}-n_{1} T_{1}}\right)
\end{aligned}
$$

$$
P_{1}=P_{2}-\frac{m g}{A}
$$

$$
=\frac{m g}{A} \frac{n_{2} T_{2}}{n_{2} T_{2}-n_{1} T_{1}}-\frac{m g}{A}
$$

$$
=\frac{m g}{A}\left(\frac{n_{1} T_{1}}{n_{2} T_{2}-n_{1} T_{1}}\right) \text { [1 Mark] }
$$

$$
\begin{aligned}
V_{0} & =\frac{1}{P_{1}} n_{1} R T_{1} \\
& =\frac{A}{m g} \frac{n_{2} T_{2}-n_{1} T_{1}}{n_{1} T_{1}} \cdot n_{1} R T_{1} \\
& =\frac{A R}{m g}\left(n_{2} T_{2}-n_{1} T_{1}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P_{1}=\frac{M g}{A}\left(\frac{n_{1} T}{n_{2} \sqrt{2}-n_{1} T_{1}}\right)_{[0.5 \text { mark for correct substitution of numerical values }]} \\
& =\frac{(0.2)(9.8)}{0.01}\left[\frac{(0.05)(183)}{(0.03)(323)-(0.05)(183)}\right] \\
& =3321 \mathrm{~Pa} \text { [0.5 Mark] } \\
& P_{2}=\frac{m g}{A}\left(\frac{n_{2} T_{2}}{n_{2} T_{2}-n_{1} T_{1}[0.5 \text {) } \text { hark for correct substitution of numerical values] }}\right. \\
& =\frac{(0.2)(9.8)}{0.01}\left[\frac{(0.03)(323)}{(0.03)(323)-(0.05)(183)}\right] \\
& =3517 P_{a} \text { [0.5 Mark] }
\end{aligned}
$$

$$
\begin{aligned}
V_{0} & =\frac{A R}{m g}\left(n_{2} T_{2}-n_{1} T_{1}\right) \\
& =\frac{(0.01)(8.31)}{(0.2)(9.8)}[(0.03)(323)-(0.05)(183)] \\
& =22.9 \times 10^{-3} \mathrm{~m}^{3}(0.5 \mathrm{Mark}]
\end{aligned}
$$

(c) Noble Gas, Degree of freedom $=3$ [0.5 Mark]

Air, Degree of freedom $=5$ [0.5 Mark]
3.
(d) Energy Conservation:

$$
\begin{aligned}
& \frac{3}{2} n_{1} R\left(T-T_{1}\right)+\frac{5}{2} n_{2} R\left(T-T_{2}\right)+m c\left(T-T_{1}\right)+m g x=0 \\
& \frac{3}{2}(0.05)(8.31)(T-183)+\frac{5}{2}(0.03)(8.31)(T-323) \\
&+(0.2)(200)(T-373)+(0.2)(9.8) x=0
\end{aligned}
$$

[1 Mark for reducing the equation to contain variables T and x]

$$
\begin{gather*}
41.25 T-15235+1.96 x=0 \\
T=\frac{15235-1.96 x}{41.25} \tag{5}
\end{gather*}
$$

Initial and Final States:

$$
\begin{align*}
& \frac{P_{1} V_{0}}{T_{1}}=\frac{P\left(V_{0}+x A\right)}{T} \tag{6}\\
& \frac{P_{2} V_{0}}{T_{2}}=\frac{\left(P+\frac{m g}{A}\right)\left(V_{0}-x A\right)}{T} \tag{7}
\end{align*}
$$

(6) $\Rightarrow P=\frac{P_{1} V_{0}}{T_{1}} \frac{T}{V_{0}+x A} \quad$ [1 Mark]

Sub. into (7),

$$
\begin{aligned}
& \frac{P_{2} V_{0}}{T_{2}}=\left(\frac{P_{1} V_{0}}{T_{1}} \frac{T}{V_{0}+x A}+\frac{m g}{A}\right)\left(\frac{V_{0}-x A}{T}\right) \\
& \frac{P_{2} V_{0}}{T_{2}}=\left(\frac{P_{1} V_{0}}{T_{1}} \frac{T}{V_{0}+x A}\right)\left(\frac{V_{0}-x A}{T}\right)+\frac{m g}{A}\left(\frac{V_{0}-x A}{T}\right) \\
& \frac{P_{2} V_{0}}{T_{2}}\left(V_{0}+x A\right)=\left(\frac{P_{1} V_{0}}{T_{1}}\right)\left(V_{0}-x A\right)+\frac{m g}{A T}\left(V_{0}-x A\right)\left(V_{0}+x A\right) \\
& m g A x^{2}+\left(\frac{P_{2}}{T_{2}}+\frac{P_{1}}{T_{1}}\right) V_{0} A T x+V_{0}^{2} T\left(\frac{P_{2}}{T_{2}}-\frac{P_{1}}{T_{1}}\right)-\frac{m g \cdot V_{0}^{2}}{A}=5
\end{aligned}
$$

3.

(d) (cont.)

$$
\begin{align*}
&(0.2)(9.8)(0.01) x^{2}+\left(\frac{3517}{323}+\frac{3321}{183}\right)\left(22.9 \times 10^{-3}\right)(0.01) T x \\
&+\left(22.9 \times 10^{-3}\right)^{2} T\left(\frac{3517}{323}-\frac{3321}{183}\right) \\
&-\frac{(0.2)(9.8)\left(22.9 \times 10^{-3}\right)^{2}=0}{6.01} \\
& 0.0196 x^{2}+6.649 \times 10^{-3} T x-3.807 \times 10^{-3} T-0.1028=0 \\
& x^{11 \text { Mark for reducing the equation to contain variables Tand } x]} \\
& x^{2}+0.3392 T x-0.1942 T-5.245=0
\end{align*}
$$

Sub. (5) into (8),

$$
\begin{gathered}
x^{2}+0.3392\left(\frac{15235-1.96 x}{41.25}\right) x-0.1942\left(\frac{15235-1.96 x}{4.25}\right) \\
-5.245=0 \\
0.9839 x^{2}+125.3 x-76.97=0 \text { [0.5 Mark] } \\
x=-128 \mathrm{~m} \quad(\text { rejected }) \text { [0.5 Mark] } \\
\text { or } x=0.6114 \mathrm{~m} \quad \text { [1 Mark] } \\
\text { [1 Mark] } \\
T=369 \mathrm{~K}
\end{gathered}
$$

(a)

$$
\begin{aligned}
& v_{p}^{2}=\frac{g}{k} \tanh (k h) \\
& \left(\frac{w}{k}\right)^{2}=\frac{g}{k} \tanh (k h) \quad \text { [1 Marks for } V p=w / k \text {] } \\
& \omega^{2}=g k \tanh (k h) \\
& 2 \omega \frac{d \omega}{d k}=g \tanh (k h)+\frac{g(k h}{\cosh ^{2}(k h)} \quad[1 \text { mark for differentiation (db/ } \\
& \frac{V_{g}}{V_{p}}=\left(\frac{d \omega}{d k}\right)\left(\frac{k}{\omega}\right) \quad \text { [1 Marks for } V g=d w / d k \text {] } \\
& =\frac{1}{2 w}\left[g \tanh (k h)+\frac{g k h}{\cosh ^{2}(k h)}\right]\left(\frac{k}{w}\right) \\
& =\frac{1}{2 \omega^{2}}\left[g k \tanh (k h)+\frac{g k^{2} h}{\cosh ^{2}(k h)}\right] \\
& =\frac{1}{2 g k \tanh ((k h)}\left[g k \tanh (k)+\frac{g k^{2} h}{\cosh ^{2}(k h)}\right] \\
& \text { From (1) } \\
& =\frac{1}{2}+\frac{k h}{2 \tanh (k h) \cosh ^{2}(k h)} \\
& \text { [} 0.5 \text { Mark] } \\
& =\frac{1}{2}+\frac{k h}{2 \sinh (k h) \cosh (k h)} \quad \sinh 2 x=2 \sinh x \cosh x \\
& =\frac{1}{2}+\frac{k h}{\sinh (2 k h)} \text { [1 Mark] }
\end{aligned}
$$

(b)

L'Hospital Rule:

$$
\begin{aligned}
& \lim \frac{k h}{\sinh (2 k h)}=\lim \frac{1}{2 \cosh (k h)} \text { [1 Mark] } \\
& k h \rightarrow 0, \quad \cosh (\text { th })=1 \text { [0.5 Mark] } \\
& k h \rightarrow \infty, \quad \cosh (k h) \rightarrow \infty \\
& \Rightarrow \quad 1<\cosh (k h)<\infty \\
& \Rightarrow \quad 0 \leqslant \frac{k h}{\sinh (2 k h)} \leqslant \frac{1}{2} \quad \text { [1 Mark] } \\
& \Rightarrow \quad \frac{1}{2} \leqslant \frac{V_{g}}{V_{p}} \leqslant 1 \\
& \text { [0.5 Mark] } \\
& \text { [0.5 Mark] }
\end{aligned}
$$

5.

(a) $\quad 2(m+2 m+3 m+\cdots \cdots+k m)=\frac{M}{2}$ [1Marks]

$$
\begin{aligned}
& 2 m(1+2+3+\cdots \cdots+k)=\frac{M}{2} \\
& 2 m\left[\frac{(k+1) k}{2}\right]=\frac{M}{2} \quad[0.5 \text { Mark for Sum of Series] }
\end{aligned}
$$

$$
k^{2}+k=\frac{M}{2 m}
$$

$$
k=\frac{\sqrt{2 M / m+1}-1}{2}
$$

(b) $\quad n=\frac{M}{2 M} \quad$ [0.5 Mark]
 ($¢ x y) x x x x x x x)$

 xxx

5.
(c) Conservation of momentum:

$$
\begin{align*}
&(n m+M) V_{0}=\frac{n}{2} m(-v)+\frac{n}{2} m(2 v)+M V^{\prime} \\
& \Rightarrow \quad \frac{3 M}{2} V_{0} \\
&=\quad \frac{M V}{4}+M V^{\prime} \\
& \Rightarrow \quad \quad\left(\because n=\frac{3}{2} V_{0}\right.
\end{align*}=\frac{v}{4}+V^{\prime} \quad \text { (1) }
$$

, V^{\prime} : spacecraft final velocity

Conservation of energy:

$$
\begin{align*}
& \gamma\left[\frac{1}{2}(n m+M) V_{0}^{2}\right]=\frac{1}{2}\left(\frac{n}{2} m\right)(-v)^{2}+\frac{\gamma}{R}\left(\frac{n}{2} m\right)(w)^{2}+\frac{1}{2} M V^{\prime 2} \tag{11}\\
& \Rightarrow \quad \frac{3}{2} \gamma V_{0}^{2}=\frac{5}{4} v^{2}+\cdots V^{2} \\
& \gamma(1)^{2}-\frac{3}{2}(2) \Rightarrow \gamma\left(\frac{v}{4}+V^{\prime}\right)^{2}-\frac{15}{8} v^{2}-\frac{3}{2} V^{\prime 2}=0 \\
&\left.\Rightarrow\left(\gamma-\frac{3}{2}\right) V^{2}+\frac{\gamma}{2} v^{\prime}+\left(\frac{\gamma}{16}-\frac{15}{8}\right) v^{2}=0-c \neq 1\right) \\
& \Rightarrow \quad V^{\prime}=\frac{-\frac{\gamma}{2} \pm \sqrt{\frac{\gamma^{2}}{4}-4\left(\gamma-\frac{3}{2}\right)\left(\frac{\gamma}{16}-\frac{15}{8}\right)}}{2\left(\gamma-\frac{3}{2}\right)} v \\
&=\frac{-2 \gamma \pm 3 \sqrt{2(7 \gamma-10)}}{4(2 \gamma-3)} v \\
& \gamma=\frac{3}{2}, \quad(\phi) \Rightarrow \frac{1}{2}\left(\frac{3}{2}\right) v V^{\prime}+\left(\frac{1}{16}\left(\frac{3}{2}\right)-\frac{15}{8}\right) v^{2}=0 \\
& \Rightarrow
\end{align*}
$$

0.5
(auncling is possible for $2(7 \gamma-10) \geqslant 0 \Rightarrow \gamma \geqslant \frac{10}{7}$ V^{\prime} should be finite and continuous for all finite $\gamma \geqslant \frac{10}{7}$, however, $\lim _{\gamma \rightarrow \frac{3}{2_{+}}} \frac{-2 \gamma-3 \sqrt{2(7 \gamma-10)}}{4(2 \gamma-3)} v \rightarrow \frac{-6}{0} v \rightarrow-\infty$ is andefiured. (hot physical) $_{\text {in }}$

$$
\begin{align*}
& \lim _{\gamma \rightarrow \frac{3}{2} \frac{-2 \gamma+3 \sqrt{2(7 \gamma-10)}}{4(2 \gamma-3)}}=\lim _{\gamma \rightarrow \frac{3}{2}} \frac{-2+\frac{3 \sqrt{2} \cdot 7}{2 \sqrt{7 \gamma-10}}}{8} v \quad \text { (L'Hopital; Rule) } \\
&=\frac{19}{8} v \\
&=V^{\prime}\left(\gamma=\frac{3}{2}\right) \quad \text { is continues } \\
& \therefore V^{\prime}= \begin{cases}\frac{-2 \gamma+3 \sqrt{2(7 \gamma-10)},}{4(2 \gamma-3)}, \gamma & \geqslant \frac{10}{7}, \gamma \neq \frac{3}{2} \quad \text { (ft) } \quad \text { P. } \\
\frac{17}{8} v & =3\end{cases}
\end{align*}
$$

5.

Put into (1) \Rightarrow

$$
\begin{align*}
& =\frac{-1+\sqrt{2(7 \gamma-10)}}{2(2 \gamma-3)} v \quad, \quad \gamma=\frac{3}{2} \\
& V_{0}=\frac{7}{4} v \quad, \quad \gamma=\frac{3}{2} \\
& \therefore \quad \Delta V=V^{\prime}-V_{0}=\left[\frac{-2 \gamma+3 \sqrt{2(7 \gamma-10})}{4(2 \gamma-3)}-\frac{-1+\sqrt{2(7 \gamma-10)}}{2(2 \gamma-3)}\right] v \\
& \begin{array}{l}
=\frac{2(1-\gamma)+\sqrt{2(7 \gamma}}{4(2 \gamma-3)} \\
=\frac{5}{8} v, \gamma=\frac{3}{2}
\end{array} \\
& V^{\prime}<0 \Rightarrow \frac{-2 \gamma+3 \sqrt{2(7 \gamma-10)}}{4(2 \gamma-3)}<0 \\
& \Rightarrow \begin{cases}-2 \gamma+3 \sqrt{2(7-10)}<0 & , \quad \gamma>\frac{3}{2} \\
-2 \gamma+3 \sqrt{2(7 \gamma-10)}>0 & , \frac{100}{7} \leqslant \gamma<\frac{3}{2}\end{cases} \\
& \Rightarrow \begin{cases}9 \\
18(7 \gamma-10)<4 \gamma^{2} & \\
9(7 \gamma-10)>2 \gamma^{2}, & \frac{10}{7} \leqslant \gamma<\frac{3}{2}\end{cases} \\
& \Rightarrow \begin{cases}2 \gamma^{2}-63 \gamma+9_{0}>0, & \gamma>\frac{3}{2} \\
2 \gamma^{2}-63 \gamma+90<0, & \frac{10}{7} \leqslant \gamma<\frac{3}{2}\end{cases} \\
& \Rightarrow \begin{cases}(\gamma-30)(2 \gamma-3)>0, & \gamma>\frac{3}{2} \\
(\gamma-30)(2 \gamma-3)<0, & \frac{10}{7} \leqslant \gamma<\frac{3}{2}\end{cases} \\
& \Rightarrow\left[\left(\gamma<\frac{3}{2} \text { or } \gamma>30\right) \text { and } \gamma>\frac{3}{2}\right] \\
& \text { or }\left(\frac{3}{2}<\gamma<30 \text { and } \frac{10}{7} \leqslant \gamma<\frac{3}{2}\right) \\
& \Rightarrow \quad r>30
\end{align*}
$$

(a) $\quad P=\frac{N m V_{m s}^{2}}{3 V}$ and $P V=N k T[$ 1 Mark]

$$
\begin{aligned}
\Rightarrow P & =\frac{P V}{k T} \frac{m V_{\text {rms }^{2}}^{3 V}}{} \\
V_{\text {rms }^{2}} & =\frac{3 k T}{m} \quad[0.5 \text { Mark }]
\end{aligned}
$$

(b) Mean molar mass of air $=28 \times 0.8+32 \times 0.2$

$$
=28.8 \mathrm{~g} \quad[0.5 \text { Mark }]
$$

$$
V_{\text {rms, air }}^{2}=\frac{3\left(1.38 \times 10^{-23}\right)(300)}{0.0288 / 6.02 \times 10^{23}} \begin{aligned}
& {[0.5 \text { Mark for mean }} \\
& \text { molecule }]
\end{aligned}
$$

$$
V_{\text {rus, air }}=509.5 \mathrm{~ms}^{-1} \quad[0.5 \text { Mark }]
$$

(c) Vescape $=\sqrt{\frac{2 G M}{R}}[1$ Mark]
$V_{\text {rms }}<V_{\text {escape }}$

$$
\begin{aligned}
& \sqrt{\frac{3 k T}{m}}<\sqrt{\frac{2 G M}{R}} \quad[1 \text { Mark] } \\
& T<\frac{2 G M m}{3 k R} \quad[0.5 \text { Mark for correct } \\
&=\frac{(2)\left(6.67 \times 10^{-11}\right)(0.2)\left(5.97 \times 10^{24}\right)}{(3)\left(1.38 \times 10^{-23}\right)(25 \times 6370,000)} \times \frac{0.0288}{6.02 \times 10^{23}} \\
&=1156 K \quad[1 \text { Mark }]
\end{aligned}
$$

(a) Phase Velocity $V_{\phi}=\lambda \nu$ [1 Mark

$$
\lambda=\frac{V_{\phi}}{v}=\frac{500 \mathrm{~ms}^{-1}}{1000 \mathrm{~Hz}}=0.5 \mathrm{~m} \quad[0.5 \mathrm{Mark}]
$$

(b)

$$
\begin{aligned}
\psi(x, t) & =A \sin \left[2 \pi\left(\frac{x}{\lambda}-v t\right)\right] \\
\Delta \phi & =\phi_{1}-\phi_{2} \\
& =2 \pi\left(\frac{x_{1}}{\lambda}-v t\right)-2 \pi\left(\frac{x_{2}}{\lambda}-v t\right) \\
2 \pi\left(\frac{x_{1}}{\lambda}-\frac{x_{2}}{\lambda}\right) & =\frac{\pi}{9}[1 \text { Mark] } \\
x_{1}-x_{2} & =\frac{0.5 \mathrm{~m}}{18} \\
& =0.02778 \mathrm{~m}[1 \mathrm{Mark}]
\end{aligned}
$$

(c)

$$
\begin{aligned}
\Delta \phi & =\phi_{1}-\phi_{2} \\
& =2 \pi\left(\frac{x}{\lambda}-v t_{1}\right)-2 \pi\left(\frac{x}{\lambda}-v t_{2}\right) \\
& =2 \pi \nu\left(t_{2}-t_{1}\right) \\
& =2 \pi(1000)(10 \mathrm{~ms}) \\
& =20 \text { pirad } \\
& =x \times x \times x \operatorname{rad} .
\end{aligned}
$$

8.

(a)

[1 Mark for correct differentiation]

$$
\begin{aligned}
\frac{d t}{d t}=\frac{1}{2} m\left(\frac{L}{n}\right)^{2} 2\left(\frac{d \theta}{d t}\right) \frac{d^{2} \theta}{d t^{2}} & +\frac{1}{2} m\left(\frac{2 L}{n}\right)^{2}(2)\left(\frac{d \theta}{d t}\right)\left(\frac{d^{2} \theta}{d t^{2}}\right) \\
& +\frac{1}{2} m\left(\frac{3 L}{n}\right)^{2}(2)\left(\frac{d \theta}{d t}\right)\left(\frac{d^{2} \theta}{d t^{2}}\right)+\cdots
\end{aligned}
$$

$$
+m g\left(\frac{L}{n}\right) \sin \theta \frac{d \theta}{d t} \rightarrow \lg \left(\frac{2 L}{n}\right) \sin \theta \frac{d \theta}{d t}+\frac{m g}{\left(\frac{3 L}{n}\right) \sin \theta} \frac{\frac{d \theta}{d t}+\cdots}{\cdots}
$$

8.

(a) $\left(\frac{L}{n}\right)^{2} \frac{d^{2} \theta}{d t^{2}}+\left(\frac{2 L}{n}\right)^{2} \frac{d^{2} \theta}{d t^{2}}+\left(\frac{3 L}{n}\right)^{2} \frac{d^{2} \theta}{d t^{2}}+\cdots .$.

$$
\rightarrow \frac{g L}{n} \sin \theta+g\left(\frac{2 L}{n}\right) \sin \theta+g\left(\frac{3 L}{n}\right) \sin \theta+\cdots \cdot=0
$$

$$
\begin{aligned}
\frac{L}{n^{2}} \frac{d^{2} \theta}{d t^{2}}\left(1^{2}\right. & \left.+2^{2}+3^{2}+\cdots+n^{2}\right) \\
& +\frac{g \theta}{n}(1+2+3+\cdots+n)=0
\end{aligned}
$$

$$
\begin{gathered}
\frac{L}{n^{2}} \frac{d^{2} \theta}{d t^{2}} \frac{n(n+1)(2 n+1)}{6}+\frac{g \theta}{n} \frac{n(n+1)}{2}=0 \\
\frac{L}{n} \frac{d^{2} \theta}{d t^{2}} \frac{(2 n+1)}{3}=-g \theta \\
\frac{d^{2} \theta}{d t^{2}}=-\frac{3 n g}{(2 n+1) L} \theta \quad[1 \text { Mark] } \\
\Rightarrow \omega=\sqrt{\frac{3 n g}{(2 n+1) L}} \text { [1 Mark] } \\
T=2 \pi \sqrt{\frac{(2 n+1) L}{3 n g}}
\end{gathered}
$$

8.

(b)

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{(2 n+1) L}{3 n g}} \\
& =2 \pi \sqrt{\frac{(2+1 / n) L}{3 g}} \\
n \rightarrow \infty, & {[0.5 \text { Mark] }} \\
T & =2 \pi \sqrt{\frac{2 L}{3 g}}
\end{aligned}
$$

(c) Rod Pendulum, or physical pendulum,

$$
\begin{aligned}
& \text { center of mass } \\
& =2 \pi \int \frac{\frac{1}{3} M L^{2}}{M g(L / 2)} \\
& =2 \pi \sqrt{\frac{2 L}{3 g}} \text { [1 Mark] }
\end{aligned}
$$

