Physics Enhancement Programme Selection Test 2

Solution

1. Construct spherical Gaussian surface with radius r and centered at the origin. By symmetry, the field should be radial and with constant magnitude on the surface. Hence Gauss's law implies

$$
E \times 4 \pi r^{2}=\frac{Q_{\mathrm{enc}}}{\varepsilon_{0}} \Rightarrow \mathbf{E}=E \hat{\mathbf{r}}=\frac{Q_{\mathrm{enc}}}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

For $R \geq r \geq 0, Q_{\mathrm{enc}}=\rho \times \frac{4}{3} \pi r^{3} \Rightarrow \mathbf{E}=\frac{\rho \times 4 \pi r^{3} / 3}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}=\frac{\rho r}{3 \varepsilon_{0}} \hat{\mathbf{r}}=\frac{\rho}{3 \varepsilon_{0}} \mathbf{r}$.
For $a>r>R, Q_{\text {enc }}=\rho \times \frac{4}{3} \pi R^{3} \Rightarrow \mathbf{E}=\frac{\rho \times 4 \pi R^{3} / 3}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}=\frac{\rho R^{3}}{3 \varepsilon_{0} r^{2}} \hat{\mathbf{r}}$.
For $b>r>a, \mathbf{E}=\mathbf{0}$, since it is inside a conductor.

The volume charge density is zero because there can be no volume charge inside a conductor in electrostatics.

Construct spherical Gaussian surface centered at the origin and with radius r, where $b>r>a$. Since the E field is zero inside the conductor, by Gauss's law, the total charge enclosed by this surface should be zero. Hence the total amount of charge on the inner surface is $-\frac{4}{3} \pi \rho R^{3}$. By symmetry, the charges should be uniformly distributed over the surface. Hence $\sigma=\frac{-4 \pi \rho R^{3} / 3}{4 \pi a^{2}}=-\frac{\rho R^{3}}{3 a^{2}}$.

Since the conductor is isolated and carries no net charge, the total amount of charge on the outer surface must be $\frac{4}{3} \pi \rho R^{3}$. Again, by symmetry, the distribution is uniform. Hence $\sigma=\frac{4 \pi \rho R^{3} / 3}{4 \pi b^{2}}=\frac{\rho R^{3}}{3 b^{2}}$.

Construct spherical Gaussian surface centered at the origin and with radius r, where $r>b$. Since $Q_{\mathrm{enc}}=\frac{4}{3} \pi \rho R^{3}$, Gauss's law implies

$$
\begin{equation*}
\mathbf{E}=\frac{\rho \times 4 \pi R^{3} / 3}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}=\frac{\rho}{3 \varepsilon_{0}} \frac{R^{3}}{r^{2}} \hat{\mathbf{r}} . \tag{1.5}
\end{equation*}
$$

By definition, $V(\mathbf{r})=-\int_{\infty}^{\mathrm{r}} \mathbf{E} \cdot d \mathbf{l}=-\int_{\infty}^{r} E d r$.
For $r>b, V(r)=-\int_{\infty}^{r} \frac{\rho}{3 \varepsilon_{0}} \frac{R^{3}}{r^{2}} d r=\frac{\rho R^{3}}{3 \varepsilon_{0} r}$.
For $b \geq r \geq a, V(r)=\frac{\rho R^{3}}{3 \varepsilon_{0} b}$.
For $a>r>R$,

$$
V(r)=\frac{\rho R^{3}}{3 \varepsilon_{0} b}-\int_{a}^{r} \frac{\rho}{3 \varepsilon_{0}} \frac{R^{3}}{r^{2}} d r=\frac{\rho R^{3}}{3 \varepsilon_{0} b}-\frac{\rho R^{3}}{3 \varepsilon_{0} a}+\frac{\rho R^{3}}{3 \varepsilon_{0} r}=\frac{\rho R^{3}}{3 \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{a}+\frac{1}{r}\right) .
$$

For $R \geq r \geq 0$,

$$
\begin{aligned}
V(r) & =\frac{\rho R^{3}}{3 \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{a}+\frac{1}{R}\right)-\int_{R}^{r} \frac{\rho r}{3 \varepsilon_{0}} d r=\frac{\rho R^{3}}{3 \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{a}+\frac{1}{R}\right)+\frac{\rho}{6 \varepsilon_{0}}\left(R^{2}-r^{2}\right) \\
& =\frac{\rho}{6 \varepsilon_{0}}\left(\frac{2 R^{3}}{b}-\frac{2 R^{3}}{a}+3 R^{2}-r^{2}\right)
\end{aligned}
$$

2. Let the solution of the following configuration be $\Phi_{1}(x, y)$.

Let the solution of the following configuration be $\Phi_{2}(x, y)$.

Let the solution of the following configuration be $\Phi_{3}(x, y)$.

Let the solution of the following configuration be $\Phi_{4}(x, y)$.

Then the solution of the following configuration is

$$
\Phi(x, y)=\Phi_{1}(x, y)+\Phi_{2}(x, y)+\Phi_{3}(x, y)+\Phi_{4}(x, y)
$$

But it is trivial that $\Phi(x, y)=V_{0}$.
Besides, by symmetry we have

$$
\Phi_{1}(a / 2, a / 2)=\Phi_{2}(a / 2, a / 2)=\Phi_{3}(a / 2, a / 2)=\Phi_{4}(a / 2, a / 2)
$$

Hence

$$
\begin{equation*}
\Phi_{1}(a / 2, a / 2)=\frac{V_{0}}{4} \tag{8}
\end{equation*}
$$

3. (a)

$$
\begin{aligned}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \Rightarrow \int_{S}(\nabla \times \mathbf{E}) \cdot d \mathbf{a}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{a} \\
& \Rightarrow \oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{a} \\
& \Rightarrow \boldsymbol{E}=-\frac{d \Phi}{d t}
\end{aligned}
$$

For $t<0, \Phi=0, \quad \mathcal{E}=-\frac{d \Phi}{d t}=0$.
For $a / v>t>0, \quad \Phi=B a v t, \quad \mathcal{E}=-\frac{d \Phi}{d t}=-v B a$.
For $2 a / v>t>a / v, \quad \Phi=B a^{2}-B a v t, \quad \mathcal{E}=-\frac{d \Phi}{d t}=v B a$.
For $t>2 a / v, \quad \Phi=0, \quad \mathcal{E}=-\frac{d \Phi}{d t}=0$.
(b)

$$
\begin{align*}
\nabla \cdot\left(\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right) & =\mu_{0}\left(\nabla \cdot \mathbf{J}+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \mathbf{E}\right) \\
& =\mu_{0}\left(\nabla \cdot \mathbf{J}+\varepsilon_{0} \frac{\partial}{\partial t} \frac{\rho}{\varepsilon_{0}}\right)=\mu_{0}\left(\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}\right)=0 \tag{2}
\end{align*}
$$

4. (a) Construct circular Amperian loop with radius s. The loop is centered at the wire and lies on a plane perpendicular to it.
By symmetry, the H field should be along the tangential direction and with constant magnitude along the wire. Hence, by Ampere's law

$$
H \times 2 \pi s=I_{f} \Rightarrow \mathbf{H}=\frac{I_{f}}{2 \pi s} \hat{\boldsymbol{\phi}}
$$

For $R>s>0, \mathbf{H}=\frac{\mathbf{B}}{\mu} \Rightarrow \mathbf{B}=\frac{\mu I_{f}}{2 \pi s} \hat{\boldsymbol{\phi}}$.
For $s>R, \mathbf{H}=\frac{\mathbf{B}}{\mu_{0}} \Rightarrow \mathbf{B}=\frac{\mu_{0} I_{f}}{2 \pi s} \hat{\boldsymbol{\phi}}$.
(b) Since $\mathbf{J}_{b}=\left(\frac{\mu}{\mu_{0}}-1\right) \mathbf{J}_{f}$, inside the cylinder, \mathbf{J}_{b} is everywhere zero except at

$$
\begin{align*}
& \text { the location of the wire, at which } \mathbf{I}_{b}=\left(\frac{\mu}{\mu_{0}}-1\right) \mathbf{I}_{f}=\left(\frac{\mu}{\mu_{0}}-1\right) I_{f} \hat{\mathbf{z}} . \tag{2}\\
& \mathbf{M}=\left(\frac{\mu}{\mu_{0}}-1\right) \mathbf{H}=\left(\frac{\mu}{\mu_{0}}-1\right) \frac{I_{f}}{2 \pi s} \hat{\boldsymbol{\phi}} . \tag{2}\\
& \mathbf{K}_{b}=\mathbf{M}(R) \times \hat{\mathbf{s}}=\left(\frac{\mu}{\mu_{0}}-1\right) \frac{I_{f}}{2 \pi R} \hat{\boldsymbol{\phi}} \times \hat{\mathbf{s}}=-\left(\frac{\mu}{\mu_{0}}-1\right) \frac{I_{f}}{2 \pi R} \hat{\mathbf{z}} . \tag{2}
\end{align*}
$$

5. Let the dipole be

$$
\mathbf{p}=p_{x} \hat{\mathbf{x}}+p_{y} \hat{\mathbf{y}}+p_{z} \hat{\mathbf{z}}
$$

then the image dipole is

$$
\mathbf{p}^{\prime}=-p_{x} \hat{\mathbf{x}}-p_{y} \hat{\mathbf{y}}+p_{z} \hat{\mathbf{z}}
$$

located at $(0,0,-a)$.
The total electric field just above the conducting plate is

$$
\begin{align*}
\mathbf{E}(x, y, 0)= & \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \\
& {\left[\frac{3}{x^{2}+y^{2}+a^{2}}\left(p_{x} x+p_{y} y-p_{z} a\right)(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}-a \hat{\mathbf{z}})-p_{x} \hat{\mathbf{x}}-p_{y} \hat{\mathbf{y}}-p_{z} \hat{\mathbf{z}}\right.} \\
& \left.+\frac{3}{x^{2}+y^{2}+a^{2}}\left(-p_{x} x-p_{y} y+p_{z} a\right)(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+a \hat{\mathbf{z}})+p_{x} \hat{\mathbf{x}}+p_{y} \hat{\mathbf{y}}-p_{z} \hat{\mathbf{z}}\right] \\
= & \frac{1}{2 \pi \varepsilon_{0}} \frac{1}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}}\left[\frac{3 a}{x^{2}+y^{2}+a^{2}}\left(p_{z} a-p_{x} x-p_{y} y\right)-p_{z}\right] \hat{\mathbf{z}} \tag{3}
\end{align*}
$$

The surface charge density can be obtained by

$$
\begin{equation*}
\sigma=\varepsilon_{0} E=\frac{1}{2 \pi} \frac{1}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}}\left[\frac{3 a}{x^{2}+y^{2}+a^{2}}\left(p_{z} a-p_{x} x-p_{y} y\right)-p_{z}\right] . \tag{2}
\end{equation*}
$$

6. (a) $\mathbf{H}_{s}^{\prime \prime}(a)=\mathbf{H}_{l}^{\prime \prime}(a)$.
(b) $\quad B_{s}^{\perp}(a)=B_{l}^{\perp}(a) \Rightarrow \mu_{0}\left(H_{s}^{\perp}(a)+M_{0} \cos \theta\right)=\mu H_{l}^{\perp}(a)$.
(c) $\quad \mathbf{H}_{l}^{\prime \prime}(b)=\mathbf{H}_{v}^{\prime \prime}(b)$.
(d) $\quad B_{l}^{\perp}(b)=B_{v}^{\perp}(b) \Rightarrow \mu H_{l}^{\perp}(b)=\mu_{0} H_{v}^{\perp}(b)$.
7.

(a) $R_{23}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{(20)(30)}{20+30}=12 \Omega$. [2 points]

$$
\begin{aligned}
+E-i_{1} R_{1}-i_{1} R_{23}-i_{1} R_{4} & =0 \\
(12)-i_{1}(20)-i_{1}(12)-i_{1}(8) & =0 \\
i_{1} & =\frac{12}{40}=0.30 \mathrm{~A} .
\end{aligned}
$$

(b)

(d)

(e)

$$
\begin{aligned}
V_{23} & =i_{1} R_{23}=(0.3)(12)=3.6 \mathrm{~V} . \\
i_{2} & =\frac{V_{2}}{R_{2}}=\frac{3.6}{20}=0.18 \mathrm{~A} .
\end{aligned}
$$

[3 points]
(c)

$$
i_{3}=i_{1}-i_{2}=0.30-0.18=0.12 \mathrm{~A} . \quad[1 \text { point }]
$$

8.

(a)

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f_{d} C}=\frac{1}{2 \pi(60.0)\left(15.0 \times 10^{-6}\right)}=177 \Omega . \\
X_{L} & =2 \pi f_{d} L=2 \pi(60.0)\left(230 \times 10^{-3}\right)=86.7 \Omega . \\
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& =\sqrt{(200)^{2}+(86.7-177)^{2}} \\
& =219 \Omega . \\
I & =\frac{E_{m}}{Z}=\frac{36.0}{219}=0.164 \mathrm{~A} .
\end{aligned}
$$

[1.5 points]
[1.5 points]
[1.5 points]
(b)

$$
\begin{aligned}
\phi & =\tan ^{-1} \frac{X_{L}-X_{C}}{R} \\
& =\tan ^{-1} \frac{86.7-177}{200} \\
& =-24.3^{\circ}=-0.424 \mathrm{rad} .
\end{aligned}
$$

9.

(a)

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
\text { time interval } \\
\text { relative to stars }
\end{array}\right.
\end{array}\right)=\frac{\text { distance relative to stars }}{c}, \begin{aligned}
& 9.00 \times 10^{16} \\
& \tag{4.5points}\\
&
\end{aligned}
$$

(b)

$$
\begin{aligned}
\binom{\text { time interval }}{\text { relative to you }} & =\frac{\text { distance relative to you }}{c} \\
& =\frac{L_{0} / \gamma}{c} \\
& =\frac{9.00 \times 10^{16} / 22.4}{299,792,458} \\
& =1.340 \times 10^{7} \mathrm{~s}=0.425 \mathrm{y} .
\end{aligned}
$$

10.

$$
\begin{align*}
\frac{m v^{2}}{2}=\frac{3 k T}{2} \quad p & =m v=\sqrt{3 m k T}=\frac{h}{-} \quad \text { (2 points) } \tag{2points}\\
& =1.45 \quad 10{ }^{10} m
\end{align*}
$$

Since the wavelength of the thermal neutrons is comparable with the atom separation, they can be diffracted by the crystal.
11.
(a) '- $=\frac{h}{m c}(1 \quad \cos) \quad, \quad=2.4 \quad 10{ }^{12} m$ (2 points)

$$
\begin{aligned}
& \text { '=1.24 } \quad 10{ }^{11} \mathrm{~m} \\
& \text { (b) } E=h f^{\prime} h f \\
& \text { (1 points) } \\
& =h c \frac{1}{,} \quad \frac{1}{-} \div=3.88 \quad 10{ }^{15} \mathrm{~J} \quad \text { (1 points) }
\end{aligned}
$$

(c) the kinetic energy of the recoiling electron $=3.88 \quad 10{ }^{15} J \quad$ (1 points)
(d) $\tan =\frac{p}{p^{\prime}}=-^{\prime} \quad=51.2^{\circ} \quad$ (3 points)

The electron make an angle $90 \quad 51.2=38.8^{\circ}$ with the x -axis. (1 point)
12.
$\frac{1}{s_{1}}+\frac{1}{s_{1}{ }^{\prime}}=\frac{1}{f} \quad \frac{1}{s_{1}{ }^{\prime}}=\frac{1}{10} \quad \frac{1}{15} \quad s_{1}{ }^{\prime}=30 \mathrm{~cm} \quad(1$ point $)$
(i.e. the image is 30 cm to the right of the first lens
or it is 10 cm to the right of the second lens)
$\mathrm{s}_{2}=10 \mathrm{~cm}$
(1 point)
$\frac{1}{s_{2}}+\frac{1}{s_{2}{ }^{\prime}}=\frac{1}{f} \quad \frac{1}{s_{2}{ }^{\prime}}=\frac{1}{10}+\frac{1}{10} \quad s_{2}{ }^{\prime}=5 \mathrm{~cm} \quad$ (1 point)
the image is 5 cm to the right of the second lens which is real (1 point).
The magnification $\mathrm{m}=\frac{s_{1}}{s_{1}} \dot{\div} \frac{s_{2}}{s_{2}} \dot{\mathbf{\dagger}}=1.5$ (the image is magnified and inverted) (1 point)
13.

$$
\begin{aligned}
& { }_{0}=30^{\circ} \quad(1 \text { point }) \\
& n \sin _{1}=\sin _{0} \quad{ }_{1}=19.2 \quad(1 \text { point }) \\
& 60+\left(90_{1}\right)+\left(90_{2}\right)=180 \quad 2_{2}=60 \quad 1=40.8 \quad(2 \text { point }) \\
& \sin _{3}=n \sin \quad{ }_{2}=83^{\circ} \quad(1 \text { point })
\end{aligned}
$$

