Physics Enhancement Programme

Selection Test 2

Solution

Construct spherical Gaussian surface with radius » and centered at the origin. By
symmetry, the field should be radial and with constant magnitude on the surface.

Hence Gauss’s law implies
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For b>r>a, E=0, since it is inside a conductor. 2)

The volume charge density is zero because there can be no volume charge inside

a conductor in electrostatics. (0.5)

Construct spherical Gaussian surface centered at the origin and with radius 7,
where b>r > a. Since the E field is zero inside the conductor, by Gauss’s law,

the total charge enclosed by this surface should be zero. Hence the total amount
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of charge on the inner surface is —§7sz3 . By symmetry, the charges should be
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uniformly distributed over the surface. Hence o =
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Since the conductor is isolated and carries no net charge, the total amount of
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charge on the outer surface must be 3 7pR?. Again, by symmetry, the
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distribution is uniform. Hence o =
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Construct spherical Gaussian surface centered at the origin and with radius 7,

where r>Db. Since Q
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= gﬁpR3 , Gauss’s law implies
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Let the solution of the following configuration be @, (X, y) .
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Let the solution of the following configuration be @, (X, y) .




Let the solution of the following configuration be @, (X, y) .
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Let the solution of the following configuration be @, (X, y) .

o V=0 a

Then the solution of the following configuration is

D(X,Y)=D, (X y)+D, (X, y¥)+ Dy (X, y)+ D, (X,Y)

But it is trivial that @ ( X, y) =V,.

Besides, by symmetry we have
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Construct circular Amperian loop with radius s. The loop is centered at the
wire and lies on a plane perpendicular to it.

By symmetry, the H field should be along the tangential direction and with
constant magnitude along the wire. Hence, by Ampere’s law
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(b) Since J, = {ﬁ—l}]f , inside the cylinder, J5 is everywhere zero except at
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the location of the wire, at which 1, = (ﬁ—lj I, = [ﬁ - j 2. @
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Let the dipole be

P=PpX+PpY+p,2
then the image dipole is
p' == px)’\(_ pyy+ pz2
located at (0,0,-a). )

The total electric field just above the conducting plate is
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The surface charge density can be obtained by
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HY (a)= ! (a).
B/ (a)=B(a) = u(H.(a)+M,cos6)=uH"(a).
H' (b)=H_ (b).
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B (b)=B’(b) = uH(b)=uHZ(b).
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X, =2nf,L = 21(60.0)(230 x 10~*) = 86.7 Q.

=177 Q. [1.5 points]

[1.5 points]

7 =R+ (X, - X,}
= J(200)" +(86.7 — 177)’
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_ X - XC
¢ = tan 7
i 86.7 —177
200
= —24.3° = —0.424 rad.

= ta [2 points; deduct 1 point without “-* sign]

[ time interval ] __ distance relative to stars
c

relative to stars
~9.00x10"
299,792,458
=3.00x10° s = 9.51y.
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__ distance relative to you

[ time interval

relative to you c
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 9.00x10" /22.4

299,792,458

=1.340x10" s = 0.425 y.
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%:%TT P p=mv=+3mk =ﬁl (2 points)

P /=145"10"m (1 points)

Since the wavelength of the thermal neutrons is comparable with the atom

separation, they can be diffracted by the crystal. (2 point)
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(@) I-I:i(l—cosf) b I-71=24"10"%m (2 points)
mc

b 1'=1.24"10"m (1 points)
(b) DE =hf'- hf (1 point)
3 0
= hcgi _l- 388710y (1 points)
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(c) the kinetic energy of the recoiling electron = 3.88710™°J (1 points)

(d) tang =2 :il b J=512" (3 points)
p

The electron make an angle 90-51.2 =38.8" with the x-axis. (1 point)
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(i.e. the image is 30cm to the right of the first lens

or it is 10cm to the right of the second lens)

s, =-10cm (1 point)
1.1_1 1 1. 1
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2 2 2
the image is 5¢cm to the right of the second lens which is real (1 point).
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The magnification m :g—iig—iiz -1.5 (the image is magnified and inverted) (1 point)
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J,=30" (1 point)
P nsind, =sind, B J = 19.2 (1 point)
60+(90-J,)+(90-J,)=180 P J,=60-J, =40.8 (2 point)
sind,=nsind, P J,=83 (1 point)



