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Physical quantities and units 

Three fundamental physical quantities are mass, length and time. The corresponding fundamental SI units are 

the kilogram, the meter and the second. Derived units for other physical quantities are products or quotients 

of the basic units. Equations must be dimensionally consistent; two terms can be added only when they have 

the same units. 

Scalars, vectors, and vector addition 

Scalar quantities are numbers and combine according to the usual rules of arithmetic. Vector quantities have 

direction as well as magnitude and combine according to the rules of vector addition. The negative of a vector 

has the same magnitude but points in the opposite direction. 

Vector components and vector addition 

Vectors can be added by using components of vectors. The �-component of ��� = �� + ��� is the sum of the �-

components of �� and ���, and likewise for the 	- and 
- components. 

�� = �� + �� 
�� = �� + �� 

�
 = �
 + �
 
Unit vectors 

Unit vectors describe directions in space. A unit vector has a magnitude of 1, with no units. The unit vectors �,̀ �̀ 
and �� , aligned with the �-, 	- and 
-axes of a rectangular coordinate system, are especially useful. 

�� = ���̀ + ���̀ + ����  

Scalar product 

The scalar product � = �� ∙ ��� of two vectors �� and ��� is a scalar quantity. It can be expressed in terms of the 

magnitudes of �� and ��� . The scalar product is commutative; �� ∙ ��� = ��� ∙ ��  . The scalar product of two 

perpendicular vectors is zero. 

�� ∙ ��� = �� cos � = ��������� cos � 

�� ∙ ��� = ���� + ���� + �
��  

Straight-line motion, average and instantaneous �-velocity 

When a particle moves along a straight line, we describe its position with respect to an origin � by means of a 

co-ordinate such as �. The particle’s average �-velocity �av � during a time interval Δ� = �" − �$ divided by Δ%. 

The instantaneous �-velocity ��  at any time % is equal to the average �-velocity over the time interval from % to % + Δ% in the limit that Δ% goes to zero. Equivalently, ��   is the derivative of the position function with respect 

to time. 
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�av � = Δ�Δ% = �" − �$%" − %$  

�� = lim)*→,
Δ�Δ% = -�-%  

Average and instantaneous .-acceleration 

The average �-acceleration  /av � during a time interval Δ% is equal to the change in velocity Δ�� = �"� − �$�  

during that time interval divided by Δ%. The instantaneous �-acceleration /�  is the limit of /av �  as Δ% goes to 

zero, or the derivative of ��  with respect to %  

/av � = Δ��Δ% = �"� − �$�%" − %$  

�� = lim)*→,
Δ��Δ% = -��-%  

Straight-line motion with constant acceleration 

When the �-acceleration is constant, four equations relate the position � and the �-veleocity ��  at any time % 

to the initial position �,, the initial �-velocity �,�  (both measured at time % = 0), and the �-acceleration /�. 

�� = �,� + /�% 

� = �, + �,�% + 12 /�%" 

��" = �,�" + 2/�(� − �,) 

� − �, = 12 (�,� + ��)% 

Freely falling bodies 

Free fall is a case of motion with constant acceleration. The magnitude of the acceleration due to gravity is a 

positive quantity, 5. The acceleration of a body in free fall is always downward. 

Straight-line motion with varying acceleration 

When the acceleration is not constant but is a known function of time, we can find the velocity and position as 

functions of time by integrating the acceleration function. 

�� = �,� + 6 /�  -%*
,  

�� = �, + 6 ��  -%*
,  
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Position, velocity, and acceleration vectors 

The position vector 8� of a point P in space is the vector the origin to P. Its components are the coordinate �,	 

and 
. 

8� = ��̀ + 	�̀ + 
��  

The average velocity vector ��av during the time interval Δ% is the displacement Δ8� (the change in position 

vector 8� ) divided by Δ%. The instantaneous velocity vector �� is the time derivative of 8� , and its components 

are the time derivatives of �,	 and 
.  

��av  =  8�" − 8�$%" − %$ = Δ8�Δ%  

�� = lim)*→,
Δ8�Δ% = -8�-%  

�� = -�-%   �� = -	-�   �
 = -
-�   
The instantaneous speed is the magnitude of �� . The velocity �� of a particle is always tangent to the particle’s 

path. 

The average acceleration vector /�av during the time interval Δ% equals Δ�� (the change in velocity vector ��) 

divided by Δ%. The instantaneous acceleration vector /� is the time derivative of �� , and its components are the 

time derivatives of ��, �� and �
. 

/�av  =  /�" − /�$%" − %$ = Δ��Δ%  

/� = lim)*→,
Δ��Δ% = -��-%  

/� = -��-%   /� = -��-�   /
 = -�
-�    
The component of acceleration parallel to the direction of the instantaneous velocity affects the speed, while 

the component of /� perpendicular to  �� affects the direction of motion.    
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Projectile motion 

In projectile motion with no air resistance, /� = 0 and /� = −5. The coordinates and velocity components are 

simple functions of time, and the shape of the path is always a parabola. We usually choose the origin to be at 

the initial position of the projectile.   

� = (�, cos 9,)% 

	 = (�, sin 9,)% − 12 5%" 

�� = �, cos 9, 

�� = �, sin 9, − 5% 

Uniform and nonuniform circular motion 

When a particle moves in a circular path of radius � with constant speed � (uniform circular motion), its 

acceleration /� is directed toward the centre of the circle and perpendicular to  �� . The magnitude /rad of the 

acceleration can be expressed in terms of � and � or in terms of � and the period = (the time for the one 

revolution), where � = 2>�/=. 

If the speed is not constant in circular motion (nonuniform circular motion), there is still a radial component of /� given by 

/rad = �"
�  

/rad = 4>"�="  

But there is also a component of /� parallel 9tangential) to the path. This tangential component is equal to the 

rate of change of speed, -�/-%. 

Relative velocity 

When a body P moves relative to a body (or reference frame) B, and B moves relative to a body (or reference 

frame) A, we denote the velocity to A by ��A/B, the velocity of P relative to A by ��A/C, and  B relative to A by the 

velocity ��B/C. If these velocities are all along the same line, their component along that line are related by 

�A/C � = �A/B � + �B/C �  

More generally, these velocities are related by  

��A/C = ��A/B + ��B/C 
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  Force as a vector 

Force is quantitative measure of the interaction between two bodies. It is a vector quantity. When several 

forces act on a body, the effect on its motion is the same as when a single force, equal to the vector sum 

(resultant) of the forces, acts on the body. 

��� = D E� = E�$ + E�" + E�F + Ȃ 

The net force on a body and Newton’s first law 

Newton’s first law states that when the vector sum of all forces acting on a body (the net force) is zero, the 

body is in equilibrium and has zero acceleration. If the body is initially at rest, it remains at rest; if it is initially 

in motion, it continues to move with constant velocity. This is valid in inertial frames of reference only. 

D E� = 0 

Mass, acceleration, and Newton’s second law 

The inertial properties of a body are characterized by its mass. The acceleration of a body under the action of a 

given set of forces is directly proportional to the vector sum of the forces (the net force) and inversely 

proportional to the mass of the body. This relationship is Newton’ second law. Like Newton’s first law, this law 

is valid in inertial frames of reference only. The unit of force is defined in terms of the units of mass and 

acceleration. In Si units, the unit of force is the newton (N), equal to 1 kg . m/s2 

D E� = H/� 

D E� = H/�       D E� = H/�       D E
 = H/
  

Weight 

The weight I��� of a body is the gravitational force exerted on it by the earth. Weight is a vector quantity. The 

magnitude of the weight of a body at any specific location is equal to the product of its mass H and the 

magnitude of the acceleration due to gravity 5 at that location. While the weight of a body depends on its 

location, the mass is independent of location. 

I = H5 

Newton’s third law and action-reaction pairs 

Newton’s third law states that when two bodies interact, they exert forces on each other that are equal in 

magnitude and opposite in direction. These forces are called action and reaction forces. Each of these two 

forces acts on only one of the two bodies; they never act on the same body. 

E�C JK B = −E�B JK C 
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Using Newton’s first law 

When a body is in equilibrium in an inertial frame of reference – that is, either at rest or moving with constant 

velocity – the vector sum of forces acting on it must be zero (Newton’s first law). Free body diagrams are 

essential in identifying the forces that act on the body being considered. 

D E� = 0  (Vector form) 

D E� = 0    D E� = 0  (Component form) 

Newton’s third law (action and reaction) is also frequently needed in equilibrium problems. The two forces in 

an action-reaction pair never act on the same body. The normal force exerted on a body by a surface is not 

always equal to the body’s weight.  

Using Newton’s second law 

If the vector sum of forces on a body is not zero, the body accelerates. The acceleration is related to the net 

force by Newton’s second law. Just as for equilibrium problems, free-body diagrams are essential for solving 

problems involving Newton’s second law, and the normal force exerted on a body is not always equal to its 

weight. 

D E� = H/� (Vector form) 

D E� = H/�     D E� = H/�   (Component form) 

 

Friction and fluid resistance 

The contact force between two bodies can always be represented in terms of a normal force R�� perpendicular 

to the surface of contact and a friction force S parallel to the surface. 

When a body is sliding over the surface, the fiction force is called kinetic friction. Its magnitude S� is 

approximately equal to the normal force magnitude R multiplied by the coefficient of kinetic friction T�. When 

a body is not moving relative to a surface, the fiction force is called static friction. The maximum possible static 

friction force is approximately equal to the magnitude R of the normal force multiplied by the coefficient of 

static friction TU. The actual static friction force may be anything from zero to this maximum value, depending 

on the situation. Usually TU is greater than T� for a given pair of surfaces in contact. 

S� = T�R  (Magnitude of kinetic friction force) 

SU ≤ (SU)max = TUR  (Magnitude of static friction force) 

Rolling friction is similar to kinetic friction, but the force of fluid resistance depends on the speed of an object 

through a fluid.    
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Forces in circular motion 

In uniform circular motion, the acceleration vector is directed toward the center of the circle. The motion is 

governed by Newton’s second law, Ȃ E� = H/�. 

Acceleration in uniform circular motion: 

/]^_ = �"
� = 4>"�="  

Work done by a force 

When a constant force E� acts on a particle that undergoes a straight-line displacement �̀, the work done by the 

force on the particle is defined to be the scalar product of E� and �̀. The unit of work in SI units is 1 joule = 1 

Newton-meter. Work is a scalar quantity; it can be positive or negative, but it has no direction in space.  

a = E� ∙ �̀ = E` cos � 

� = angle �et�een E� and �̀  
 

Kinetic energy 

The kinetic energy d of a particle equals the amount of work required to accelerate the particle from rest to 

speed �. It is also equal to the amount of work the particle can do in the process of being brought the rest. 

Kinetic energy is a scalar that has no direction is space; it is always positive or zero. Its units are the same as 

the units of work. 

d = 12 H�" 

The work-energy theorem 

When forces act on a particle while it undergoes a displacement, the particle’s kinetic energy changes by an 

amount equal to the total work done on the particle by all forces. This relationship, called the work-energy 

theorem, is valid whether the forces are constant or varying and whether the particle moves along a straight 

or curved path. It is applicable only to bodies that can be treated as particles.   

a*J* = d" − d$ = Δd 
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Work done by a varying or on a curved path 

When a force varies during a straight-line displacement, the work done by the force is given by an integral 

W = 6 E� -��f
�g

 

W = 6 E�Af
Ag

∙ -h� 
When a particle follows a curved path, the work done on it by a force E� is given by an integral that involves the 

angle ϕ between the force and the displacement. The expression is valid even if the force magnitude and the 

angle ϕ varying during the displacement. 

Power 

Power is the time rate of doing work. The average power jav is the amount of work Δa done in time Δ% 

divided by that time. The instantaneous power is the limit of the average power as Δ% goes to zero. When a 

force E� acts on a particle moving with velocity ��, the instantaneous power (the rate at which the force does 

work) is the scalar product of E� and ��. Like work and kinetic energy, power is a scalar quantity. The SI unit of 

power is 1 watt = 1 joule/second.         

jav = ΔaΔ%  

j = lim)*→,
ΔaΔ% = -a-%  

j = E� ∙ �� 

Gravitational potential energy and elastic potential energy 

The work done on a particle by a constant gravitational force can be represented as a change in the 

gravitational potential energy, kgrav = H5	. This energy is a shared property of the particle and the earth.  

agrav = H5	$ − H5	$ agrav = kgrav,$ − kgrav," 

agrav = −Δkgrav 

A potential energy is also associated with the elastic force E� = −�� exerted by an ideal spring, where � is the 

amount of stretch or compression. The work done by this force can be represented as a change in the elastic 

potential energy of the spring,  kel = $" ��". 

ael = 12 ��$" − 12 ��"" 
ael = kel,$ − kel," 

ael = −Δkel 
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When the total mechanical energy is conserved: 

The total potential energy k is the sum of the gravitational and elastic potential energies 

k = kgrav + kml 
If no forces other than the gravitational and elastic forces do work on a particle, the sum of kinetic and 

potential energies is conserved. This sum n = d + k is called the total mechanical energy. 

d$ + k$ = d" + k" 

When the total mechanical energy is not conserved: 

When forces other than the gravitational and elastic forces do work on particle, the work aopqrs done by these 

other forces equals the change in total mechanical energy (kinetic energy plus total potential energy). 

d$ + k$ + aother = d" + k" 

Conservative forces, non-conservative forces, and the law of conservation energy 

All forces war either conservative or non-conservative. A conservative force is one for which the work-kinetic 

energy relationship is completely reversible. The work of a conservative force can always be represented by a 

potential-energy function, but the work of a non-conservative force cannot. The work done by non-

conservative forces manifests itself as changes in the internal energy of bodies. The sum of kinetic, potential, 

and internal energies is always conserved. 

Δd + Δk + Δkint = 0 

Determining force from potential energy 

For motion along a straight line, a conservative force E�(�) is the negative derivative of its associated 

potential-energy function k. In three dimensions, the components of a conservative force are negative partial 

derivatives of k. 

Momentum of particle 

The momentum u� of a particle is a vector quantity equal to the product of the particle’s mass H and velocity ��. 

Newton’s second law says that the net force on a particle is equal to the rate of change of the particle’s 

momentum. 

u� = H�� 

D E� = -u�-%  

Impulse and momentum 

If a constant net force Ȃ E� acts on a particle for time interval Δ% from %$ to %", the impulse v� of the net force is 

the product of the net force and the time interval. If Ȃ E� varies with time, v� is the integral of the net force over 

the time interval. In any case, the change in a particle’s momentum during a time interval equals the impulse 

of the net force that acted on the particle during that interval. The momentum of a particle equals the impulse 

that accelerated it from rest to its present speed. 
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v� = D E�(%" − %$) = D E�  Δ% 

v� = 6 D E�  -%*f
*g

 

v� = u�" − u�$ 

Conservation of momentum 

An internal force is a force exerted by one part of a system on another. An external force is a force exerted on 

any part of a system by something outside the system. If the net external force on a system is zero, the total 

momentum of the system j�� (the vector sum of the momenta of the individual particles that make up the 

system) is constant, or conserved. Each component of total momentum is separately conserved. 

u� = u�C + u�C + Ȃ 

u� = HC��C + HB��B + Ȃ 

If D E� = 0, then j�� = constant 

Collisions 

In collisions of all kinds, the initial and final total momenta are equal. In an elastic collision between two bodies, 

the initial and final total kinetic energies are also equal, and the initial and final relative velocities have the 

same magnitude. In an inelastic two-body collision, the total kinetic energy is less after the collision than 

before. If the two bodies have the same final velocity, the collision is completely inelastic. 

Center of mass 

The position vector of the center of mass of a system of particles, 8�cm, is a weighted average of the positions 8�1, 8�2, …   of the individual particles. The total momentum j�� of a system equals the system’s total mass x 

multiplied by the velocity of its center of mass, ��cm. The center of mass moves as though all the mass x  were 

concentrated at that point. If the net external force on the system is zero, the center-of-mass velocity ��cm is 

constant. If the net external force is not zero, the center of mass accelerates as though it were a particle of 

mass x being acted on by the same net external force.  

8�yz = H$8�1 + H"8�2 + H"8�2 + ȂH$ + H" + HF + Ȃ  

8�yz = Ȃ H{8�i{Ȃ H{{  

u� = H$��1 + H"��2 + HF��3 + Ȃ 

u� = x��cm 

D E�ext = x/�cm 
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Rotational kinematics 

When a rigid body rotates about a stationary axis (usually called the 
-axis), the body’s position is described by 

an angular coordinate }.The angular velocity ~
 is the time derivative of }, and the angular acceleration 9
 is 

the time derivative ~
 or the second derivative of }. 

~
 = lim)*→,
Δ}Δ% = -}-%  

9
 = lim)*→,
Δ~
Δ% = -~
-%  

If the angular acceleration is constant, then }, ~
, and 9
 are related by simple kinematic equations analogous 

to those for straight-line motion with constant linear acceleration.  

Constant 9
 only: 

} = }, + ~,
% + 12 9
%" 

} − }, = 12 (~,
 + ~
)% 

~
 = ~,
 + 9
% 

~
" = ~,
" + 29
(} − },) 

Relating linear and angular kinematics  

The angular speed ~ of a rigid body is the magnitude of the body’s angular velocity. The rate of change of ~ is 9 = -~/-% . For a particle in the body at a distance 8 from the rotation axis, the speed �  and the components 

of the acceleration /� are related to ~ and 9. 

� = 8~ 

/tan = -�-% = 8 -~-% = 89 

/rad = �"
8 = ~"8 

Moment of inertia and rotational kinetic energy 

The moment of inertia � of a body about a given axis is a measure of its rotational inertia. The greater the 

value of �, the more difficult it is to change the state of the body’s rotation. The moment of inertia can be 

expressed as a sum over the particles H{  that make up the body, each of which is at its own perpendicular 

distance 8{from the axis. The rotational kinetic energy of a rigid body rotating about a fixed axis depends on 

the angular speed ~ and the moment of inertia � for that rotation axis. 

� = H$8$" + H"8"" + Ȃ 

� = D H{8{"{
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d = 12 �~" 

Calculating the moment of inertia 

The parallel-axis theorem relates the moments of inertia of a rigid body of mass x about two parallel axes; an 

axis through the center of mass (moment of inertia �cm) and a parallel axis a distance - from the first axis 

(moment of inertia �� ) . If the body has a continuous mass distribution, the moment of inertia can be 

calculated by integration. 

�� = �cm + x-" 

Torque 

When a force E� acts on a body, the torque of that force with respect to a point � has a magnitude given by the 

product of the force magnitude E and the lever arm h. More generally, torque is a vector �� equal to the vector 

product of 8� (the position vector of the point at which the force acts) and E�. 

�� = 8� × E� 

Rotational dynamics 

The rotational analog of newton’s second law says that the net torque acting on a body equals the product of 

the body’s moment of inertia and its angular acceleration.  

D �
 = �9
 

Combined translation and rotation 

If a rigid body is both moving through space and rotating, its motion can be regarded as translational motion of 

the center of mass plus rotational motion about an axis through the center of mass. Thus the kinetic energy is 

a sum of translational and rotational kinetic energies. For dynamics, Newton’s second law decribes the motion 

of the center of mass, and the rotational equivalent of Newton’s second law describes rotation about the 

center of mass. In the case of rolling without slipping, there is a special relationship between the motion of the 

center of mass and the rotational motion. 

d = 12 x�cm" + 12 �cm~" 

D E�ext = x/�cm 

D �
 = �cm9
 

�cm = �~  (Rolling �ithout slipping) 
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Work done by a torque 

A torque that acts on a rigid body as it rotates does work on that body. The work can be expressed as an 

integral of the torque. The work-energy theorem says that the total rotational work done on a rigid body is 

equal to the change in rotational kinetic energy. The power, or rate at which the torque does work, is the 

product of the torque and the angular velocity. 

a = 6 �
 -}�f
�g

 

a = �
(}" − }$) = �
Δ}  (Constant torque only) 

apop = 12 �~"" − 12 �~$" 

j = �
~
 

Angular momentum 

The angular momentum of a particle with respect to point � is the vector product of the particle’s position 

vector 8� relative to � and its momentum u� = H��. When a symmetrical body rotates about a stationary axis of 

symmetry, its angular momentum is the product of its momentum of inertia and its angular velocity vector ~���. 

If the body is not symmetrical or the rotation (
) axis is not an axis of symmetry, the component of angular 

momentum along the rotation axis is �~
. 

��� = 8� × u� = 8� × H��  (Particle) 

��� = �~���  (Rigid �ody rotating a�out axis of symmetry) 

Rotational dynamics and angular momentum 

The new external torque on a system is equal to the rate of change of its angular momentum. If the net 

external torque on a system is zero, the total angular momentum of the system is constant (conserved). 

D �� = -���-%  

Density and pressure 

Density is mass per unit volume. If a mass H of homogeneous material has volume �, its density � is the ratio H/�. Specific gravity is the ratio of the density of the material to the density of water. 

� = H�  

Pressure is normal force per unit area. Pascal’s law states that pressure applied to an enclosed fluid is 

transmitted undiminished to every portion of the fluid. Absolute pressure is the total pressure in a fluid; gauge 
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pressure is the difference between absolute pressure and atmospheric pressure. The SI unit of pressure is the 

pascal (Pa): 1 Pa = 1 N/m2 

j = -E�-�  

Pressures in a fluid at rest 

The pressure difference between points 1 and 2 in a static fluid of uniform density � (an incompressible fluid) 

is proportional to the difference between the elevations y$ and y". If the pressure at the surface of an 

incompressible liquid at rest is ρ,, then the pressure at a depth h is greater by an amount �5ℎ. 

Pressure in a fluid of uniform density: 

j" − j$ = −�5(y" − y$) 

j = j, + �5ℎ 

Buoyancy 

Archimedes’s principle states that when a body is immersed in a fluid, the fluid exerts 

an upward buoyant force on the body equal to the weight of the fluid that the body displaces. 

 

Fluid flow 

An ideal fluid is incompressible and has no viscosity (no internal friction). A flow line is the path of 

a fluid particle; a streamline is a curve tangent at each point to the velocity vector at that point. A flow tube is 

a tube bounded at its sides by flow lines. In laminar flow, layers of fluid slide smoothly past each other. In 

turbulent flow, there is great disorder and a constantly changing flow pattern. 

Conservation of mass in an incompressible fluid is expressed by the continuity equation, which relates the flow 

speeds �$ and �"  for two cross sections �$  and �" in a flow tube. The product �� equals the volume flow rate, -�/-%, the rate at which volume crosses a section of the tube.  

Continuity equation, incompressible fluid: 

�$�$ = �"�" 

Volume flow rate: 

-�-% = �� 

Bernoulli’s equation: 

j + �5	 + 12 ��" = Constant 
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Bernoulli’s equation states that a quantity involving the pressure P, flow speed �, and elevation 	 has the 

same value anywhere in a flow tube, assuming steady flow in an ideal fluid. This equation can be used to relate 

the properties of the flow at any two points.  

 

Newton’s law of gravitation 

Any two particles with masses H$ and H", a distance 8 apart, attract each other with forces inversely 

proportional to 8". These forces form an action–reaction pair and obey Newton’s third law. When two or more 

bodies exert gravitational forces on a particular body, the total gravitational force on that 

individual body is the vector sum of the forces exerted by the other bodies. The gravitational interaction 

between spherical mass distributions, such as planets or stars, is the same as if all the mass of each 

distribution were concentrated at the center.  

E� = �H$H"8"  

Gravitational force, weight, and gravitational potential energy 

The weight I of a body is the total gravitational force exerted on it by all other bodies in the universe. Near 

the surface of the earth (mass H�  and radius ��), the weight is essentially equal to the gravitational force of 

the earth alone. The gravitational potential energy k of two masses H and H�  separated by a distance 8 is 

inversely proportional to 8. The potential energy is never positive; it is zero only when the two bodies are 

infinitely far apart.  

Weight at Earth’s surface: 

I = E� = �H�H��"  

Acceleration due to gravity at Earth’s surface: 

5 = − �H���"  

Also 

k = − �H�H8  

Orbits 

When a satellite moves in a circular orbit, the centripetal acceleration is provided by the gravitational 

attraction of the earth. Kepler’s three laws describe the more general case: an elliptical orbit of a planet 

around the sun or a satellite around a planet. 

Speed in circular orbit: 
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� = ��H�8  

 

 

Period in circular orbit: 

= = 2>8� = 2>8� 8�H� = 2>8F/"
��H�  

Black holes 

If a nonrotating spherical mass distribution with total mass x has a radius less than its Schwarzschild radius �U, 

it is called a black hole. The gravitational interaction prevents anything, including light, from escaping from 

within a sphere with radius �U. 

Schwarzschild radius: 

�U = 2�x�"  

Periodic motion 

Periodic motion is motion that repeats itself in a definite cycle. It occurs whenever a body has a stable 

equilibrium position and a restoring force that acts when the body is displaced from equilibrium. 

Period = is the time for one cycle. Frequency S is the number of cycles per unit time. Angular frequency ~ is 2> times the frequency.  

S = 1=            = = 1S 

~ = 2>S = 2>=  

Simple harmonic motion 

If the restoring force E� in periodic motion is directly proportional to the displacement �, the motion is called 

simple harmonic motion (SHM). In many cases this condition is satisfied if the displacement from equilibrium is 

small. The angular frequency, frequency, and period in SHM do not depend on the amplitude but on only the 

mass m and force constant �. The displacement, velocity, and acceleration in SHM are sinusoidal functions of 

time; the amplitude � and phase angle � of the oscillation are determined by the initial displacement and 

velocity of the body.  

E� = −�� 
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/� = E�H = − �H � 

~ = � �H 

S = ~2> = 12> � �H 

= = 1S = 2>�H�  

� = � cos(~% + �) 

Energy in simple harmonic motion 

Energy is conserved in SHM. The total energy can be expressed in terms of the force constant � and amplitude �. 

n = 12 H��" + 12 ��" = 12 ��" = Constant 

Angular simple harmonic motion 

In angular SHM, the frequency and angular frequency are related to the moment of inertia � and the torsion 

constant �. 

~ = ���  

S = 12> ���  

Simple pendulum 

A simple pendulum consists of a point mass m at the end of a massless string of length �. Its motion is 

approximately simple harmonic for sufficiently small amplitude; the angular frequency, frequency, and period 

then depend on only 5 and �, not on the mass or amplitude. 

~ = �5�  

S = ~2> = 12> �5�  

= = 2>~ = 1S = 2>��5 



Physics Enhancement Program 

Summary Part I 

 (Mechanics) 

 

18 

 

Physical pendulum 

A physical pendulum is any body suspended from an axis of rotation. The angular frequency and period for 

small-amplitude oscillations are independent of amplitude but depend on the mass H, distance - from the 

axis of rotation to the center of gravity, and moment of inertia � about the axis.  

~ = �H5-�  

= = 2>� �H5- 

Damped oscillations 

When a force E� = −���  is added to a simple harmonic oscillator, the motion is called a damped oscillation. If � < 2Ȃ�H (called underdamping), the system oscillates with a decaying amplitude and an angular frequency ~′ that is lower than it would be without damping. If � = 2Ȃ�H (called critical damping) or � > 2Ȃ�H (called 

overdamping), when the system is displaced it returns to equilibrium without oscillating. 

� = �� � �"z�* cos(~�% + �) 

~� = � �H − �"
4H" 

Forced oscillations and resonance  

When a sinusoidally varying driving force is added to a damped harmonic oscillator, the resulting motion is 

called a forced oscillation or driven oscillation. The amplitude is a function of the driving frequency ~_  and 

reaches a peak at a driving frequency close to the natural frequency of the system. This behavior is called 

resonance. 

� = Emax(� − H~_")" + �"~_"  

 

 

 

[END OF SUMMARY ] 
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