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CHAPTER 21 SUMMARY

Electric charge, conductors, and insulators: The fundamental quantity in electrostatics is electric
charge. There are two kinds of charge, positive and negative. Charges of the same sign repel each
other; charges of opposite sign attract. Charge is conserved; the total charge in an isolated system is
constant.

All ordinary matter is made of protons, neutrons, and electrons. The positive protons and electri-
cally neutral neutrons in the nucleus of an atom are bound together by the nuclear force; the nega-
tive electrons surround the nucleus at distances much greater than the nuclear size. Electric
interactions are chiefly responsible for the structure of atoms, molecules, and solids.

Conductors are materials in which charge moves easily; in insulators, charge does not move eas-
ily. Most metals are good conductors; most nonmetals are insulators.

Coulomb’s law: For charges and separated by a dis-
tance , the magnitude of the electric force on either
charge is proportional to the product and inversely
proportional to The force on each charge is along the
line joining the two charges—repulsive if and have
the same sign, attractive if they have opposite signs. In SI
units the unit of electric charge is the coulomb, abbrevi-
ated C. (See Examples 21.1 and 21.2.)

When two or more charges each exert a force on a
charge, the total force on that charge is the vector sum of
the forces exerted by the individual charges. (See Exam-
ples 21.3 and 21.4.)
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Electric field: Electric field a vector quantity, is the
force per unit charge exerted on a test charge at any point.
The electric field produced by a point charge is directed
radially away from or toward the charge. (See Examples
21.5–21.7.)
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Superposition of electric fields: The electric field of any combination of charges is the vector 
sum of the fields caused by the individual charges. To calculate the electric field caused by a contin-
uous distribution of charge, divide the distribution into small elements, calculate the field caused by
each element, and then carry out the vector sum, usually by integrating. Charge distributions are
described by linear charge density surface charge density and volume charge density (See
Examples 21.8–21.12.)
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SElectric field lines: Field lines provide a graphical representation of electric fields. At any point on a
field line, the tangent to the line is in the direction of at that point. The number of lines per unit
area (perpendicular to their direction) is proportional to the magnitude of at the point.E
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Electric dipoles: An electric dipole is a pair of electric
charges of equal magnitude but opposite sign, separated
by a distance . The electric dipole moment has magni-
tude The direction of is from negative toward
positive charge. An electric dipole in an electric field 
experiences a torque equal to the vector product of pST
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and The magnitude of the torque depends on the angle 
between and The potential energy for an electric
dipole in an electric field also depends on the relative ori-
entation of and (See Examples 21.13 and 21.14.)E
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Point in Electric Field 
Charge Distribution Electric Field Magnitude

Single point charge Distance from 

Charge on surface of conducting sphere with radius Outside sphere, 

Inside sphere, 

Infinite wire, charge per unit length Distance from wire

Infinite conducting cylinder with radius charge per Outside cylinder, 
unit length

Inside cylinder, 

Solid insulating sphere with radius charge distributed Outside sphere, 
uniformly throughout volume

Inside sphere, 

Infinite sheet of charge with uniform charge per unit area Any point

Two oppositely charged conducting plates with surface Any point between plates
charge densities and -s+s
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Electric flux: Electric flux is a measure of the “flow” of
electric field through a surface. It is equal to the product
of an area element and the perpendicular component of

integrated over a surface. (See Examples 22.1–22.3.)E
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Gauss’s law: Gauss’s law states that the total electric
flux through a closed surface, which can be written as
the surface integral of the component of normal to the
surface, equals a constant times the total charge 
enclosed by the surface. Gauss’s law is logically equiva-
lent to Coulomb’s law, but its use greatly simplifies
problems with a high degree of symmetry. (See Exam-
ples 22.4–22.10.)

When excess charge is placed on a conductor and is
at rest, it resides entirely on the surface, and 
everywhere in the material of the conductor. (See Exam-
ples 22.11–22.13.)
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Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge
distributions. In the table, and refer to the magnitudes of the quantities.sq, Q, l,

Charged conductor Just outside the conductor E = sP0
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the surface integral of the component of normal to the
surface, equals a constant times the total charge 
enclosed by the surface. Gauss’s law is logically equiva-
lent to Coulomb’s law, but its use greatly simplifies
problems with a high degree of symmetry. (See Exam-
ples 22.4–22.10.)

When excess charge is placed on a conductor and is
at rest, it resides entirely on the surface, and 
everywhere in the material of the conductor. (See Exam-
ples 22.11–22.13.)

E
S

! 0

Qencl

E
S

(22.8), (22.9)=
Qencl

P0

= CE! dA = CE
S # dA

S

£E = CEcosf dA

Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge
distributions. In the table, and refer to the magnitudes of the quantities.sq, Q, l,

Charged conductor Just outside the conductor E = sP0



777

CHAPTER 23 SUMMARY

1 11 2U 5
q0

4pP0

q1

r1

q2

r2

q3

r3

r2

r3

r1

q1

q2

q3

q0

Electric potential: Potential, denoted by V, is potential
energy per unit charge. The potential difference between
two points equals the amount of work that would be
required to move a unit positive test charge between
those points. The potential V due to a quantity of charge
can be calculated by summing (if the charge is a collec-
tion of point charges) or by integrating (if the charge is a
distribution). (See Examples 23.3, 23.4, 23.5, 23.7,
23.11, and 23.12.)

The potential difference between two points a and b,
also called the potential of a with respect to b, is given
by the line integral of The potential at a given point
can be found by first finding and then carrying out this
integral. (See Examples 23.6, 23.8, 23.9, and 23.10.)
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Finding electric field from electric potential: If the poten-
tial V is known as a function of the coordinates x, y, and
z, the components of electric field at any point are
given by partial derivatives of V. (See Examples 23.13
and 23.14.)
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Electric potential energy: The electric force caused by
any collection of charges at rest is a conservative force.
The work W done by the electric force on a charged par-
ticle moving in an electric field can be represented by
the change in a potential-energy function U.

The electric potential energy for two point charges 
and depends on their separation The electric potential
energy for a charge in the presence of a collection of
charges depends on the distance from to each
of these other charges. (See Examples 23.1 and 23.2.)
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Equipotential surfaces: An equipotential surface is a surface on which the potential has the same
value at every point. At a point where a field line crosses an equipotential surface, the two are per-
pendicular. When all charges are at rest, the surface of a conductor is always an equipotential sur-
face and all points in the interior of a conductor are at the same potential. When a cavity within a
conductor contains no charge, the entire cavity is an equipotential region and there is no surface
charge anywhere on the surface of the cavity.
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Problems 721

by using trial values for and adjusting the values of until a self-
consistent answer is obtained.)
21.70 .. CP Two identical spheres are each attached to silk
threads of length and hung from a common point
(Fig. P21.68). Each sphere has mass The radius of
each sphere is very small compared to the distance between the
spheres, so they may be treated as point charges. One sphere is
given positive charge and the other a different positive charge

this causes the spheres to separate so that when the spheres are
in equilibrium, each thread makes an angle with the
vertical. (a) Draw a free-body diagram for each sphere when in
equilibrium, and label all the forces that act on each sphere. 
(b) Determine the magnitude of the electrostatic force that acts on
each sphere, and determine the tension in each thread. (c) Based
on the information you have been given, what can you say about
the magnitudes of and Explain your answers. (d) A small
wire is now connected between the spheres, allowing charge to 
be transferred from one sphere to the other until the two spheres
have equal charges; the wire is then removed. Each thread now
makes an angle of with the vertical. Determine the 
original charges. (Hint: The total charge on the pair of spheres is
conserved.)
21.71 .. Sodium chloride ( ordinary table salt) is made up
of positive sodium ions and negative chloride ions 
(a) If a point charge with the same charge and mass as all the

ions in 0.100 mol of is from a point charge
with the same charge and mass as all the ions, what is the
magnitude of the attractive force between these two point
charges? (b) If the positive point charge in part (a) is held in
place and the negative point charge is released from rest, what is
its initial acceleration? (See Appendix D for atomic masses.) 
(c) Does it seem reasonable that the ions in could be sepa-
rated in this way? Why or why not? (In fact, when sodium chlo-
ride dissolves in water, it breaks up into and ions.
However, in this situation there are additional electric forces
exerted by the water molecules on the ions.)
21.72 .. A point charge is on the x-axis at 
A second point charge Q is on the x-axis at What must
be the sign and magnitude of Q for the resultant electric field at the
origin to be (a) 45.0 N C in the -direction, (b) 45.0 N C in the

-direction?
21.73 .. CP A small 12.3-g plastic ball is tied
to a very light 28.6-cm string that is attached to
the vertical wall of a room (Fig. P21.73). A uni-
form horizontal electric field exists in this
room. When the ball has been given an excess
charge of you observe that it
remains suspended, with the string making an
angle of 17.4° with the wall. Find the magni-
tude and direction of the electric field in the
room.
21.74 .. CP At a very small object
with mass 0.400 mg and charge is traveling at 125 m s
in the direction. The charge is moving in a uniform electric field
that is in the +y-direction and that has magnitude .
The gravitational force on the particle can be neglected. How far is
the particle from the origin at ?
21.75 .. Two particles having charges and

are separated by a distance of At what point
along the line connecting the two charges is the total electric field
due to the two charges equal to zero?

1.20 m.q2 = 8.00 nC
q1 = 0.500 nC

t = 7.00 ms

E = 895 N>C-x-
>+9.00 mC

t = 0

-1.11 mC,

-x
>+x> -0.600 m.

x = 1.20 m.-5.00-nC

C1-Na+

NaCl

C1-
2.00 cmNaClNa+

1C1-2.1Na+2NaCl,

30.0°

q2?q1

u = 20.0°
q2;

q1,

m = 8.00 g.
L = 0.500 m

uu 21.76 ... Two point charges and
are held in place apart.

Another point charge 
of mass is initially located

from each of these charges
(Fig. P21.76) and released from rest.
You observe that the initial accelera-
tion of is upward, parallel
to the line connecting the two point
charges. Find and 
21.77 . Three identical point charges

are placed at each of three corners of
a square of side Find the magnitude
and direction of the net force on a point charge placed (a) at
the center of the square and (b) at the vacant corner of the square.
In each case, draw a free-body diagram showing the forces exerted
on the charge by each of the other three charges.
21.78 ... Three point charges are placed on the -axis: a charge 
at a charge at the origin, and a charge at 
Such an arrangement is called an electric quadrupole. (a) Find the
magnitude and direction of the electric field at points on the posi-
tive -axis. (b) Use the binomial expansion to find an approximate
expression for the electric field valid for Contrast this
behavior to that of the electric field of a point charge and that of
the electric field of a dipole.
21.79 .. CP Strength of the Electric Force. Imagine two

bags of protons, one at the earth’s north pole and the other at
the south pole. (a) How many protons are in each bag? (b) Calcu-
late the gravitational attraction and the electrical repulsion that
each bag exerts on the other. (c) Are the forces in part (b) large
enough for you to feel if you were holding one of the bags?
21.80 . Electric Force Within the Nucleus. Typical dimen-
sions of atomic nuclei are of the order of (a) If
two protons in a nucleus are apart, find the magnitude of
the electric force each one exerts on the other. Express the answer
in newtons and in pounds. Would this force be large enough for a
person to feel? (b) Since the protons repel each other so strongly,
why don’t they shoot out of the nucleus?
21.81 .. If Atoms Were Not Neutral . . . Because the charges
on the electron and proton have the same absolute value, atoms are
electrically neutral. Suppose this were not precisely true, and the
absolute value of the charge of the electron were less than the
charge of the proton by 0.00100%. (a) Estimate what the net
charge of this textbook would be under these circumstances. Make
any assumptions you feel are justified, but state clearly what they
are. (Hint: Most of the atoms in this textbook have equal numbers
of electrons, protons, and neutrons.) (b) What would be the magni-
tude of the electric force between two textbooks placed 
apart? Would this force be attractive or repulsive? Estimate what
the acceleration of each book would be if the books were 
apart and there were no non-
electric forces on them. (c)
Discuss how the fact that ordi-
nary matter is stable shows
that the absolute values of the
charges on the electron and
proton must be identical to a
very high level of accuracy.
21.82 ... CP Two tiny sph-
eres of mass 6.80 mg carry
charges of equal magnitude,
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(b) Determine the magnitude of the electrostatic force that acts on
each sphere, and determine the tension in each thread. (c) Based
on the information you have been given, what can you say about
the magnitudes of and Explain your answers. (d) A small
wire is now connected between the spheres, allowing charge to 
be transferred from one sphere to the other until the two spheres
have equal charges; the wire is then removed. Each thread now
makes an angle of with the vertical. Determine the 
original charges. (Hint: The total charge on the pair of spheres is
conserved.)
21.71 .. Sodium chloride ( ordinary table salt) is made up
of positive sodium ions and negative chloride ions 
(a) If a point charge with the same charge and mass as all the

ions in 0.100 mol of is from a point charge
with the same charge and mass as all the ions, what is the
magnitude of the attractive force between these two point
charges? (b) If the positive point charge in part (a) is held in
place and the negative point charge is released from rest, what is
its initial acceleration? (See Appendix D for atomic masses.) 
(c) Does it seem reasonable that the ions in could be sepa-
rated in this way? Why or why not? (In fact, when sodium chlo-
ride dissolves in water, it breaks up into and ions.
However, in this situation there are additional electric forces
exerted by the water molecules on the ions.)
21.72 .. A point charge is on the x-axis at 
A second point charge Q is on the x-axis at What must
be the sign and magnitude of Q for the resultant electric field at the
origin to be (a) 45.0 N C in the -direction, (b) 45.0 N C in the

-direction?
21.73 .. CP A small 12.3-g plastic ball is tied
to a very light 28.6-cm string that is attached to
the vertical wall of a room (Fig. P21.73). A uni-
form horizontal electric field exists in this
room. When the ball has been given an excess
charge of you observe that it
remains suspended, with the string making an
angle of 17.4° with the wall. Find the magni-
tude and direction of the electric field in the
room.
21.74 .. CP At a very small object
with mass 0.400 mg and charge is traveling at 125 m s
in the direction. The charge is moving in a uniform electric field
that is in the +y-direction and that has magnitude .
The gravitational force on the particle can be neglected. How far is
the particle from the origin at ?
21.75 .. Two particles having charges and

are separated by a distance of At what point
along the line connecting the two charges is the total electric field
due to the two charges equal to zero?

1.20 m.q2 = 8.00 nC
q1 = 0.500 nC

t = 7.00 ms

E = 895 N>C-x-
>+9.00 mC

t = 0

-1.11 mC,

-x
>+x> -0.600 m.

x = 1.20 m.-5.00-nC

C1-Na+

NaCl

C1-
2.00 cmNaClNa+

1C1-2.1Na+2NaCl,

30.0°

q2?q1

u = 20.0°
q2;

q1,

m = 8.00 g.
L = 0.500 m

uu 21.76 ... Two point charges and
are held in place apart.

Another point charge 
of mass is initially located

from each of these charges
(Fig. P21.76) and released from rest.
You observe that the initial accelera-
tion of is upward, parallel
to the line connecting the two point
charges. Find and 
21.77 . Three identical point charges

are placed at each of three corners of
a square of side Find the magnitude
and direction of the net force on a point charge placed (a) at
the center of the square and (b) at the vacant corner of the square.
In each case, draw a free-body diagram showing the forces exerted
on the charge by each of the other three charges.
21.78 ... Three point charges are placed on the -axis: a charge 
at a charge at the origin, and a charge at 
Such an arrangement is called an electric quadrupole. (a) Find the
magnitude and direction of the electric field at points on the posi-
tive -axis. (b) Use the binomial expansion to find an approximate
expression for the electric field valid for Contrast this
behavior to that of the electric field of a point charge and that of
the electric field of a dipole.
21.79 .. CP Strength of the Electric Force. Imagine two

bags of protons, one at the earth’s north pole and the other at
the south pole. (a) How many protons are in each bag? (b) Calcu-
late the gravitational attraction and the electrical repulsion that
each bag exerts on the other. (c) Are the forces in part (b) large
enough for you to feel if you were holding one of the bags?
21.80 . Electric Force Within the Nucleus. Typical dimen-
sions of atomic nuclei are of the order of (a) If
two protons in a nucleus are apart, find the magnitude of
the electric force each one exerts on the other. Express the answer
in newtons and in pounds. Would this force be large enough for a
person to feel? (b) Since the protons repel each other so strongly,
why don’t they shoot out of the nucleus?
21.81 .. If Atoms Were Not Neutral . . . Because the charges
on the electron and proton have the same absolute value, atoms are
electrically neutral. Suppose this were not precisely true, and the
absolute value of the charge of the electron were less than the
charge of the proton by 0.00100%. (a) Estimate what the net
charge of this textbook would be under these circumstances. Make
any assumptions you feel are justified, but state clearly what they
are. (Hint: Most of the atoms in this textbook have equal numbers
of electrons, protons, and neutrons.) (b) What would be the magni-
tude of the electric force between two textbooks placed 
apart? Would this force be attractive or repulsive? Estimate what
the acceleration of each book would be if the books were 
apart and there were no non-
electric forces on them. (c)
Discuss how the fact that ordi-
nary matter is stable shows
that the absolute values of the
charges on the electron and
proton must be identical to a
very high level of accuracy.
21.82 ... CP Two tiny sph-
eres of mass 6.80 mg carry
charges of equal magnitude,

5.0 m

5.0 m

2.0 fm
10-15 m (1 fm2.

1.0-g

x W a.
x

y = -a.q-2qy = a,
qy

-3q

-3q
L.

q

q2.q1

324 m>s2Q

3.00 cm
5.00 g

Q = -1.75 mC
4.50 cmq2

q1

17.4°

Figure P21.73

a

q2

q1

S

3.00 cm

3.0
0 c

m

4.50 cmQ

Figure P21.76

LL
u

E
S

Figure P21.82
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EXECUTE:   The two charges and the directions of their electric fields in three regions are shown in Figure 21.75. 
Only in region II are the two electric fields in opposite directions. Consider a point a distance x from  

1q  so a distance 1 20 m x. −  from 2.q  1 2E E=  gives 2 2
0 500 nC 8 00 nC .

(1 20 m )
k k

x x
. .=

. −
 

2 216 (1 20 m ) .x x= . −  

4 (1 20 m )x x= ± . −  and 0 24 mx = .  is the positive solution. The electric field is zero at a point between the 
two charges, 0.24 m from the 0.500 nC charge and 0.96 m from the 8.00 nC charge. 
EVALUATE:   There is only one point along the line connecting the two charges where the net electric field 
is zero. This point is closer to the charge that has the smaller magnitude. 

 

 
Figure 21.75 

 

 21.76. IDENTIFY:   For the acceleration (and hence the force) on Q to be upward, as indicated, the forces due to 
1q  and 2q  must have equal strengths, so 1q  and 2q  must have equal magnitudes. Furthermore, for the 

force to be upward, 1q  must be positive and 2q  must be negative. 
SET UP:   Since we know the acceleration of Q, Newton’s second law gives us the magnitude of the force 
on it. We can then add the force components using 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + = .  The electrical 

force on Q is given by Coulomb’s law, 
1

1
2

0

1
4Qq

QqF
rπ

=
!

 (for 1)q  and likewise for 2.q  

EXECUTE:   First find the net force: 2(0.00500 kg)(324 m/s ) 1.62 N.F ma = = =  Now add the force  
components, calling θ  the angle between the line connecting 1q  and 2q  and the line connecting 1q  and Q. 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + =  and 

1

1 62 N 1.08 N.
2cos 2 25 cm2

3 00 cm

Qq
FF

θ
.= = =

⎛ ⎞.
⎜ ⎟.⎝ ⎠

 Now find the charges 

by solving for 1q  in Coulomb’s law and use the fact that 1q  and 2q  have equal magnitudes but opposite 

signs. 
1

1
2

0

1
4Qq

Q q
F

rπ
=

!
 and 1

2 2

1 9 2 2 6

0

(0 0300 m) (1 08 N)
1 (9 00 10 N m /C )(1 75 10 C)

4

Qqr F
q

Q
π

. .= =
. × ⋅ . × 2

!

86 17 10  C−= . × .  

8
2 1 6 17 10  Cq q −= − = − . × .  

EVALUATE:   Simple reasoning allows us first to conclude that 1q  and 2q  must have equal magnitudes but 
opposite signs, which makes the equations much easier to set up than if we had tried to solve the problem 
in the general case. As Q accelerates and hence moves upward, the magnitude of the acceleration vector 
will change in a complicated way. 

 21.77. IDENTIFY:   Use Coulomb’s law to calculate the forces between pairs of charges and sum these forces as 
vectors to find the net charge. 
(a) SET UP:   The forces are sketched in Figure 21.77a. 
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72.0 nC, but opposite sign. They are tied to the same ceiling hook
by light strings of length 0.530 m. When a horizontal uniform electric
field E that is directed to the left is turned on, the spheres hang at rest
with the angle between the strings equal to (Fig. P21.82). (a)
Which ball (the one on the right or the one on the left) has positive
charge? (b) What is the magnitude E of the field?
21.83 .. CP Consider a model of a hydrogen atom in which an
electron is in a circular orbit of radius around
a stationary proton. What is the speed of the electron in its orbit?
21.84 .. CP A small sphere with mass and charge

is moving in a circular orbit around a stationary sphere
that has charge . If the speed of the small sphere is

, what is the radius of its orbit? Treat the spheres
as point charges and ignore gravity.
21.85 .. Two small copper spheres each have radius 1.00 mm. 
(a) How many atoms does each sphere contain? (b) Assume that each
copper atom contains 29 protons and 29 electrons. We know that
electrons and protons have charges of exactly the same magnitude,
but let’s explore the effect of small differences (see also Problem
21.81). If the charge of a proton is and the magnitude of the
charge of an electron is 0.100% smaller, what is the net charge of
each sphere and what force would one sphere exert on the other if
they were separated by 
21.86 ... CP Operation of an Inkjet Printer. In an inkjet
printer, letters are built up by squirting drops of ink at the paper
from a rapidly moving nozzle. The ink drops, which have a mass
of each, leave the nozzle and travel toward the paper
at passing through a charging unit that gives each drop a
positive charge by removing some electrons from it. The drops
then pass between parallel deflecting plates long where
there is a uniform vertical electric field with magnitude

If a drop is to be deflected by the time it
reaches the end of the deflection plates, what magnitude of charge
must be given to the drop?
21.87 .. CP A proton is projected into a uniform electric field
that points vertically upward and has magnitude . The initial
velocity of the proton has a magnitude and is directed at an
angle below the horizontal. (a) Find the maximum distance 
that the proton descends vertically below its initial elevation. You
can ignore gravitational forces. (b) After what horizontal distance

does the proton return to its original elevation? (c) Sketch the
trajectory of the proton. (d) Find the numerical values of and

if and 
21.88 . A negative point charge is on the -axis
at A second point charge is on the -axis at

What must the sign and magnitude of be for the
net electric field at the origin to be (a) in the

and (b) in the 
21.89 .. CALC Positive charge

is distributed uniformly along
the -axis from to 
A positive point charge q is
located on the positive -axis at

a distance to the
right of the end of (Fig.
P21.89). (a) Calculate the - and
-components of the electric field

produced by the charge distribution at points on the positive -axis
where (b) Calculate the force (magnitude and direction) that
the charge distribution exerts on q. (c) Show that if the
magnitude of the force in part (b) is approximately 
Explain why this result is obtained.

Qq>4pP0r 2.
r W a,Q

x 7 a.
xQ

y
x

Q
rx = a + r,
x

x = a.x = 0x
Q

-x-direction?50.0 N>C+x-direction
50.0 N>Cq2x = -1.20 m.

xq2x = 0.60 m.
xq1 = -4.00 nC

a = 30.0°.v0 = 4.00 * 105 m>s,E = 500 N>C,d
hmax

d

hmaxa
v0

E

0.30 mm8.0 * 104 N>C.

2.0 cm
q

20 m>s,
1.4 * 10-8 g

1.00 m?

+e

5.90 * 103 m>s +7.50 mC
-4.30 mC

9.00 mg

r = 5.29 * 10-11 m

50.0ou

21.90 .. CALC Positive charge
is distributed uniformly along

the positive -axis between
and A negative

point charge lies on the posi-
tive -axis, a distance from the
origin (Fig. P21.90). (a) Calcu-
late the - and -components of
the electric field produced by the
charge distribution at points on
the positive -axis. (b) Calculate the - and -components of the
force that the charge distribution exerts on . (c) Show that if

and Explain
why this result is obtained.
21.91 .. A charged line like that shown in Fig. 21.24 extends
from to The total charge distributed
uniformly along the line is (a) Find the electric field
(magnitude and direction) on the -axis at (b) Is the
magnitude of the electric field you calculated in part (a) larger or
smaller than the electric field from a point charge that has
the same total charge as this finite line of charge? In terms of the
approximation used to derive for a point charge
from Eq. (21.9), explain why this is so. (c) At what distance does
the result for the finite line of charge differ by 1.0% from that for
the point charge?
21.92 . CP A Parallel Universe. Imagine a parallel universe in
which the electric force has the same properties as in our universe
but there is no gravity. In this parallel universe, the sun carries
charge Q, the earth carries charge and the electric attraction
between them keeps the earth in orbit. The earth in the parallel uni-
verse has the same mass, the same orbital radius, and the same
orbital period as in our universe. Calculate the value of Q. (Consult
Appendix F as needed.)
21.93 ... A uniformly charged disk like the disk in Fig. 21.25 has
radius and carries a total charge of (a)
Find the electric field (magnitude and direction) on the -axis at

(b) Show that for Eq. (21.11) becomes
where is the total charge on the disk. (c) Is the

magnitude of the electric field you calculated in part (a) larger or
smaller than the electric field 20.0 cm from a point charge that has
the same total charge as this disk? In terms of the approximation
used in part (b) to derive for a point charge from
Eq. (21.11), explain why this is so. (d) What is the percent differ-
ence between the electric fields produced by the finite disk and by
a point charge with the same charge at and at

21.94 .. BIO Electrophoresis.
Electrophoresis is a process
used by biologists to separate
different biological molecules
(such as proteins) from each
other according to their ratio of
charge to size. The materials to
be separated are in a viscous
solution that produces a drag
force proportional to the
size and speed of the molecule.
We can express this relation-
ship as where R is
the radius of the molecule (modeled as being spherical), is its
speed, and K is a constant that depends on the viscosity of the

v
FD = KRy,

FD

x = 10.0 cm?
x = 20.0 cm

E = Q>4pP0x2

QE = Q>4pP0x2,
x W R,x = 20.0 cm.

x
7.0 * 10-12 C.2.50 cm

-Q,

x
E = Q>4pP0x2

10.0 cm

x = 10.0 cm.x
-7.00 nC.

y = -2.50 cm.y = 2.50 cm

Fy ! +Qqa>8pP0x3.Fx ! -Qq>4pP0x2x W a,
qQ

yxx
Q

yx

xx
-q
y = a.y = 0

y
Q

x

y

O
a

Q

r

q

Figure P21.89

x
2q

y

O

a

Q

Figure P21.90

Figure P21.94
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 21.89. IDENTIFY:   Divide the charge distribution into infinitesimal segments of length .dx  Calculate xE  and yE  

due to a segment and integrate to find the total field. 
SET UP:   The charge dQ  of a segment of length dx is ( / ) .dQ Q a dx=  The distance between a segment at 

x and the charge q is .a r x+ −  1(1 ) 1y y−− ≈ +  when 1.y �  

EXECUTE:   (a) 2
0

1
4 ( )x

dQdE
a r xπ

=
+ −!

 so 200 0

1 1 1 1 .
4 4( )

a
x

Qdx QE
a r a ra a r xπ π
⎛ ⎞= = −⎜ ⎟++ − ⎝ ⎠∫! !

 

,a r x+ =  so 
0

1 1 1 .
4x

QE
a x a xπ
⎛ ⎞= −⎜ ⎟−⎝ ⎠!

 0.yE =  

(b) 
0

1 1 1 ˆ.
4

qQq
a r a rπ
⎛ ⎞= = −  ⎜ ⎟+⎝ ⎠

G G
F E i

!
 

EVALUATE:   (c) For ,x a� 1
2 2

0

1((1 / ) 1) (1 / 1) .
4

kqQ kqQ kqQ qQF a x a x
ax ax x rπ

−= − − = + + ⋅ ⋅ ⋅ − ≈ ≈
!

 (Note  

that for ,x a� .)r x a x= − ≈  The charge distribution looks like a point charge from far away, so the force 
takes the form of the force between a pair of point charges. 

 21.90. IDENTIFY:   Use Eq. (21.7) to calculate the electric field due to a small slice of the line of charge and 
integrate as in Example 21.10. Use Eq. (21.3) to calculate .

G
F  

SET UP:   The electric field due to an infinitesimal segment of the line of charge is sketched in Figure 21.90. 
 

 
2 2

sin y

x y
θ =

+
 

2 2
cos x

x y
θ =

+
 

Figure 21.90 
  

 

Slice the charge distribution up into small pieces of length dy. The charge dQ in each slice is 
( / )dQ Q dy a= .  The electric field this produces at a distance x along the x-axis is dE. Calculate the 

components of d
G
E  and then integrate over the charge distribution to find the components of the total field. 

EXECUTE:   2 2 2 2
0 0

1
4 4

dQ Q dydE
ax y x yπ π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠! !

 

2 2 3/2
0

cos
4 ( )x
Qx dydE dE
a x y

θ
π

⎛ ⎞
= = ⎜ ⎟⎜ ⎟+⎝ ⎠!

 

2 2 3/2
0

sin
4 ( )y
Q ydydE dE
a x y

θ
π

⎛ ⎞
= − = − ⎜ ⎟⎜ ⎟+⎝ ⎠!

 

2 2 3/2004 ( )
a

x x
Qx dyE dE
a x yπ

= = − =
+∫ ! Ñ 2 2 2 2 20 0

0

1 1
4 4

a
Qx y Q
a xx x y x aπ π

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ +⎣ ⎦

! !
 

2 2 3/2004 ( )
a

y
Q ydyE dEy
a x yπ

= = − =
+∫ ! Ñ 2 2 2 20 0

0

1 1 1
4 4

a
Q Q
a a xx y x aπ π

⎡ ⎤ ⎛ ⎞
⎢ ⎥− − = − −⎜ ⎟⎜ ⎟⎢ ⎥+ +⎝ ⎠⎣ ⎦

! !
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(b) 0q=
G G
F E  

2 2 2 20 0

1 1 1;
4 4x x y y
qQ qQF qE F qE
x a xx a x aπ π

⎛ ⎞−= − = = − = −⎜ ⎟⎜ ⎟+ +⎝ ⎠! !
 

(c) For ,x a�  
1/22 2 2

2 2 32 2

1 1 1 11 1
2 2

a a a
x x xx x xx a

−
⎛ ⎞ ⎛ ⎞

= + = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
 

2

2 3 3
00 0

1 1,
44 2 8x y

qQ qQ a qQaF F
a x xx x xππ π
⎛ ⎞

≈ − ≈ − + =⎜ ⎟⎜ ⎟
⎝ ⎠!! !

 

EVALUATE:   For , y xx a F F� �  and 2
04x
qQF F
xπ

≈ =
P

 and 
G
F  is in the -direction.x−  For x a�  the 

charge distribution Q acts like a point charge. 
 21.91. IDENTIFY:   Apply Eq. (21.9) from Example 21.10. 

SET UP:   2.50 cm.a =  Replace Q by .Q  Since Q is negative, 
G
E is toward the line of charge and 

2 20

1 ˆ.
4

Q

x x aπ
−

+
E = i
G

!
 

EXECUTE:   
9

2 2 2 20 0

1 1 7.00 10  Cˆ ˆ ˆ( 6110 N/C) .
4 4 (0.100 m) (0.100 m) (0.025 m)

Q

x x aπ π

−×− = − = −
+ +

E = i i i
G

! !
 

(b) The electric field is less than that at the same distance from a point charge (6300 N/C). For large x, 
2

1/2 2 2 1/2
2

1 1( ) (1 / ) 1 ,
2
ax a a x

x x x
− − ⎛ ⎞

+ = + ≈ −⎜ ⎟⎜ ⎟
⎝ ⎠

 which gives 
2

2 2
0

1E 1 .
4 2x

Q a
x xπ→∞

⎛ ⎞
= − + ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠!
 The first 

correction term to the point charge result is negative. 
(c) For a 1% difference, we need the first term in the expansion beyond the point charge result to be less 

than 0.010: 
2

2 0.010 1/(2(0.010)) (0.025 m) 1/0.020 0.177 m.
2
a x a x
x

≈ ⇒ ≈ = ⇒ ≈  

EVALUATE:   At 10.0 cmx = (part b), the exact result for the line of charge is 3.1% smaller than for a point 
charge. It is sensible, therefore, that the difference is 1.0% at a somewhat larger distance, 17.7 cm. 

 21.92. IDENTIFY:   The electrical force has magnitude 
2

2
kQF
r

=  and is attractive. Apply m∑ =F a
G G to the earth. 

SET UP:   For a circular orbit, 
2va
r

= . The period T is 2 .r
v
π  The mass of the earth is 24

E 5 97 10  kg,m = . ×  

the orbit radius of the earth is 111 50 10  m. ×  and its orbital period is 73 146 10 s.. ×  

EXECUTE:   F ma=  gives 
2

E2 .kQ vm
rr

=  
2 2

2
2

4 ,rv
T
π=  so 

2 3 24 2 11 3
17E

2 9 2 2 7 2
4 (5 97 10  kg)(4)( )(1 50 10  m) 2 99 10  C.

(8 99 10  N m /C )(3 146 10  s)
m rQ
kT

π π. × . ×= = = . ×
. × ⋅ . ×

 

EVALUATE:   A very large net charge would be required. 
 21.93. IDENTIFY:   Apply Eq. (21.11). 

SET UP:   2/ / .Q A Q Rσ π= = 2 1/2 2(1 ) 1 /2,y y−+ ≈ −  when 2 1.y �  

EXECUTE:   (a) 2 2

0
[1 ( / 1) ].

2
E R xσ −1/2= − +

!
 

1/22 2

2
0

7.00 pC/ (0.025 m) (0.025 m)1 1 1.56 N/C,
2 (0.200 m)

E π
−⎡ ⎤⎛ ⎞⎢ ⎥= − + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

!
 in the -direction.x+  



Problems 751

sheet, as shown in Fig. P22.43. The charge density on the surface
of the sheet is uniform and equal to Find the
angle of the thread.
22.44 . A Sphere in a Sphere. A solid conducting sphere car-
rying charge has radius It is inside a concentric hollow con-
ducting sphere with inner radius and outer radius The hollow
sphere has no net charge. (a) Derive expressions for the electric-
field magnitude in terms of the distance from the center for the
regions and (b) Graph the
magnitude of the electric field as a function of from to

(c) What is the charge on the inner surface of the hollow
sphere? (d) On the outer surface? (e) Represent the charge of the
small sphere by four plus signs. Sketch the field lines of the system
within a spherical volume of radius 2
22.45 . A solid conducting sphere with radius that carries posi-
tive charge is concentric with a very thin insulating shell of radius

that also carries charge The charge is distributed uniformly
over the insulating shell. (a) Find the electric field (magnitude and
direction) in each of the regions and

(b) Graph the electric-field magnitude as a function of 
22.46 . A conducting spherical shell with inner
radius and outer radius has a positive point
charge located at its center. The total charge on
the shell is and it is insulated from its sur-
roundings (Fig. P22.46). (a) Derive expressions
for the electric-field magnitude in terms of the
distance from the center for the regions

and (b) What is the surface
charge density on the inner surface of the conducting shell? 
(c) What is the surface charge density on the outer surface of the con-
ducting shell? (d) Sketch the electric field lines and the location of all
charges. (e) Graph the electric-field magnitude as a function of 
22.47 . Concentric Spherical Shells. A
small conducting spherical shell with inner
radius and outer radius is concentric with
a larger conducting spherical shell with inner
radius and outer radius (Fig. P22.47).
The inner shell has total charge and
the outer shell has charge (a) Calcu-
late the electric field (magnitude and direc-
tion) in terms of and the distance from
the common center of the two shells for 
(i) (ii) (iii) (iv) 
(v) Show your results in a graph of the radial component of

as a function of (b) What is the total charge on the (i) inner sur-
face of the small shell; (ii) outer surface of the small shell; (iii) inner
surface of the large shell; (iv) outer surface of the large shell?
22.48 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.49 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.50 . A solid conducting sphere with radius carries a positive
total charge The sphere is surrounded by an insulating shell
with inner radius and outer radius The insulating shell has a
uniform charge density (a) Find the value of so that the net
charge of the entire system is zero. (b) If has the value found in
part (a), find the electric field (magnitude and direction) in each of
the regions and Show your
results in a graph of the radial component of as a function of 
(c) As a general rule, the electric field is discontinuous only at
locations where there is a thin sheet of charge. Explain how your
results in part (b) agree with this rule.
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22.51 . Negative charge is distributed uniformly over the
surface of a thin spherical insulating shell with radius Calculate
the force (magnitude and direction) that the shell exerts on a positive
point charge located (a) a distance from the center of 
the shell (outside the shell) and (b) a distance from the center
of the shell (inside the shell).
22.52 .. (a) How many excess electrons must be distributed uni-
formly within the volume of an isolated plastic sphere 30.0 cm
in diameter to produce an electric field of just outside
the surface of the sphere? (b) What is the electric field at a point
10.0 cm outside the surface of the sphere?
22.53 ... CALC An insulating hollow sphere has inner radius a
and outer radius b. Within the insulating material the volume
charge density is given by , where is a positive con-
stant. (a) In terms of and a, what is the magnitude of the electric
field at a distance r from the center of the shell, where ?
(b) A point charge q is placed at the center of the hollow space, at

. In terms of and a, what value must q have (sign and mag-
nitude) in order for the electric field to be constant in the region

, and what then is the value of the constant field in this
region?
22.54 .. CP Thomson’s Model of the Atom. In the early years
of the 20th century, a leading model of the structure of the atom
was that of the English physicist J. J. Thomson (the discoverer of
the electron). In Thomson’s model, an atom consisted of a sphere
of positively charged material in which were embedded negatively
charged electrons, like chocolate chips in a ball of cookie dough.
Consider such an atom consisting of one electron with mass and
charge which may be regarded as a point charge, and a uni-
formly charged sphere of charge and radius (a) Explain why
the equilibrium position of the electron is at the center of the
nucleus. (b) In Thomson’s model, it was assumed that the positive
material provided little or no resistance to the motion of the elec-
tron. If the electron is displaced from equilibrium by a distance less
than show that the resulting motion of the electron will be simple
harmonic, and calculate the frequency of oscillation. (Hint: Review
the definition of simple harmonic motion in Section 14.2. If it can
be shown that the net force on the electron is of this form, then it
follows that the motion is simple harmonic. Conversely, if the net
force on the electron does not follow this form, the motion is not
simple harmonic.) (c) By Thomson’s time, it was known that
excited atoms emit light waves of only certain frequencies. In his
model, the frequency of emitted light is the same as the oscillation
frequency of the electron or electrons in the atom. What would the
radius of a Thomson-model atom have to be for it to produce red light
of frequency Compare your answer to the radii of
real atoms, which are of the order of (see Appendix F for
data about the electron). (d) If the electron were displaced from
equilibrium by a distance greater than would the electron oscil-
late? Would its motion be simple harmonic? Explain your reason-
ing. (Historical note: In 1910, the atomic nucleus was discovered,
proving the Thomson model to be incorrect. An atom’s positive
charge is not spread over its volume as
Thomson supposed, but is concentrated in
the tiny nucleus of radius to

)
22.55 . Thomson’s Model of the Atom,
Continued. Using Thomson’s (outdated)
model of the atom described in Problem
22.54, consider an atom consisting of two
electrons, each of charge embedded in
a sphere of charge and radius InR.+2e
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 22.46. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE:   (a) For  ,r a<  2
0

1 ,
4

QE
rπ

=
!

 radially outward, since the charge enclosed is Q, the charge of 

the point charge. For ,a r b< <  0E =  since these points are within the conducting material. For ,r b>  

2
0

1 2 ,
4

QE
rπ

=
!

 radially inward, since the total enclosed charge is 2 .Q−  

(b) Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero net charge, the total charge on 

the inner surface is Q−  and the surface charge density on the inner surface is 2 .
4
Q
a

σ
π

= −  

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q−  on 

the outer surface. The surface charge density on the outer surface is 2
2 .

4
Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.46a. 
(e) The graph of E versus r is sketched in Figure 22.46b. 

 

     

Figure 22.46 
 

EVALUATE:   For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is 
due to the charge 2Q−  that is on the outer surface of the shell. 

 22.47. IDENTIFY:   Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at 
the surface of the Gaussian sphere. 
(a) SET UP:   (i) :r a<  The Gaussian surface is sketched in Figure 22.47a. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed 

encl

0
E

QΦ =
!

 says  

2(4 ) 0 and 0.E r Eπ = =  
 

Figure 22.47a   
 

(ii) :a r b< <  Points in this region are in the conductor of the small shell, so 0.E =  
(iii) SET UP:   :b r c< <  The Gaussian surface is sketched in Figure 22.47b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
! ! !

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

! !
 

2
0

6 .
4
qE
rπ

=
!

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
! ! !

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

! !
 

2
0

6 .
4
qE
rπ

=
!

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
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(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in part 
(i) that there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius 

.c r d< <  The surface lies within the conductor of the large shell, where 0,E =  so 0.EΦ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses the 2q+  on the small shell so there must be charge 2q−  on 
the inner surface of the large shell to make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in part 
(iii) that the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE:   The electric field lines for b r c< <  originate from the surface charge on the outer surface of 
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface 
charges have equal magnitude and opposite sign. The electric field lines for r d>  originate from the 
surface charge on the outer surface of the outer sphere. 

 22.48. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the 

points are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
!

outward, since the charge 

enclosed is 2q+ .  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 
, 0,r d E> =  since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.48. 

(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 2 ,q−  the charge on this surface is zero. 
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 

Figure 22.48 
 

 22.49. IDENTIFY:   Apply Gauss’s law 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) , 0,a r b E< < =  since the points 

are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
!

 outward, since the charge enclosed  

is 2 .q+  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 

2
0

1 2, ,
4

qr d E
rπ

> =
!

 inward, since the charge enclosed is 2 .q−  The graph of the radial component of the 

electric field versus r is sketched in Figure 22.49, where we use the convention that outward field is 
positive and inward field is negative. 
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS ! b
S

.
r.

a

rgS

M,

Mencl

CgS # dA
S

= -4pGMencl

gS

CgS # dA
S

= -4pGm

gS
r

gS ! -1Gm>r 22rn.
mgS

1>r 2,
r

rr.
Er … R.

r Ú R.

r0

for r Ú Rr1r2 = 0

r1r2 = r011 - 4r>3R2  for r … R

r1r2r0r01x>d22,r1x2 =

1x = 02.r.

dz
yx = -d.x = dyz

2d

d
d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
S

R.Qa
C>m3.a

for r Ú Rr1r2 = 0
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 22.64. IDENTIFY:   The net electric field at any point is the vector sum of the fields at each sphere. 
SET UP:   Example 22.9 gives the electric field inside and outside a uniformly charged sphere. For the 
positively charged sphere the field is radially outward and for the negatively charged sphere the electric 
field is radially inward. 
EXECUTE:   (a) At this point the field of the left-hand sphere is zero and the field of the right-hand sphere 
is toward the center of that sphere, in the +x-direction. This point is outside the right-hand sphere, a 

distance 2r R=  from its center. 2
0

1 ˆ.
4 4

Q
Rπ

= +E i
G

!
 

(b) This point is inside the left-hand sphere, at /2,r R=  and is outside the right-hand sphere, at 3 /2.r R=  
Both fields are in the +x-direction. 

3 2 2 2 2
0 0 0

1 ( /2) 1 4 1 17ˆ ˆ ˆ.
4 4 4(3 /2) 2 9 18

Q R Q Q Q Q
R R R R Rπ π π

⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i
G

! ! !
 

(c) This point is outside both spheres, at a distance r R=  from their centers. Both fields are in the 

-direction.x+  2 2 2
0 0

1 ˆ ˆ.
4 2

Q Q Q
R R Rπ π
⎡ ⎤= + =⎢ ⎥⎣ ⎦

E i i
G

! !
 

(d) This point is outside both spheres, a distance 3r R=  from the center of the left-hand sphere and a 
distance r R=  from the center of the right-hand sphere. The field of the left-hand sphere is in the 

-directionx+  and the field of the right-hand sphere is in the -direction.x−  

2 2 2 2 2
0 0 0

1 1 1 8ˆ ˆ ˆ.
4 4 4(3 ) 9 9

Q Q Q Q Q
R R R R Rπ π π

⎡ ⎤ −⎡ ⎤= − = − =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i
G

! ! !
 

EVALUATE:   At all points on the x-axis the net field is parallel to the x-axis. 
 22.65. 3

0 0( ) (1 ) for  where 3 / .r r/R r R Q Rρ ρ ρ π= − ≤ =  ( ) 0 for r r Rρ = ≥  
(a) IDENTIFY:   The charge density varies with r inside the spherical volume. Divide the volume up into thin 
concentric shells, of radius r and thickness dr. Find the charge dq in each shell and integrate to find the total charge. 
SET UP:   The thin shell is sketched in Figure 22.65a. 

 

 EXECUTE:   The volume of such a 
shell is 24 .dV r drπ=  
The charge contained within the shell is 

2
0( ) 4 (1 / ) .dq r dV r r R drρ π ρ= = −  

Figure 22.65a   
 

The total charge Q in the charge distribution is obtained by integrating dq over all such shells into which 
the sphere can be subdivided: 

2 2 3
0 00 0

4 (1 / ) 4 ( / )
R R

Q dq r r R dr r r R drπ ρ πρ= = − = −∫ ∫ ∫  

3 4 3 4
3 3 3

0 0 0
0

4 4 4 ( /12) 4 (3 / )( /12) ,
3 4 3 4

R
r r R RQ R Q R R Q

R R
πρ πρ πρ π π

⎡ ⎤ ⎛ ⎞
= − = − = = =⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 as was to be shown. 

(b) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where .r R>  
SET UP:   The Gaussian surface is shown in Figure 22.65b. 

 

 
EXECUTE:   encl

0
E

QΦ =
!

 

2

0
(4 ) QE rπ =

!
 

Figure 22.65b   
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2
0

;
4

QE
rπ

=
!

 same as for point charge of charge Q. 

(c) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where :r R<  

SET UP:   The Gaussian surface is shown in Figure 22.65c. 
 

 
EXECUTE:   encl

0
E

QΦ =
!

 

2(4 )E E rπΦ =  

Figure 22.65c   
 

To calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r 
rather than R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4
r rr rQ r dr r dr

R R
π ρ πρ

⎛ ⎞′ ′⎛ ⎞= ′ − ′ = ′ − ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫ ∫  

3 4 3 4
3

encl 0 0 0

0

1
4 4 4

3 4 3 4 3 4

r
r r r r rQ r

R R R
πρ πρ πρ

⎡ ⎤ ⎛ ⎞′ ′ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠
 

3 3

0 encl3 3 3

3 1
so 12 4 3 .

3 4

Q r r r rQ Q Q
R RR R R

ρ
π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Thus Gauss’s law gives 
3

2

3
0

(4 ) 4 3 .
Q r rE r

RR
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠!
 

3
0

3
4 ,

4

Qr rE r R
RRπ

⎛ ⎞= −  ≤⎜ ⎟
⎝ ⎠!

 

(d) The graph of E versus r is sketched in Figure 22.65d. 
 

 

Figure 22.65d 
 

(e) Where the electric field is a maximum, 0.
dE
dr

=  Thus 
23

4 0 so 4 6 / 0 and 2 /3.
d rr r R r R
dr R
⎛ ⎞

− = − = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

At this value of r, 
3 2

0 0

2 3 2
4 .

3 34 3

Q R R QE
RR Rπ π

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠! !
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2
0

;
4

QE
rπ

=
!

 same as for point charge of charge Q. 

(c) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where :r R<  

SET UP:   The Gaussian surface is shown in Figure 22.65c. 
 

 
EXECUTE:   encl

0
E

QΦ =
!

 

2(4 )E E rπΦ =  

Figure 22.65c   
 

To calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r 
rather than R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4
r rr rQ r dr r dr

R R
π ρ πρ

⎛ ⎞′ ′⎛ ⎞= ′ − ′ = ′ − ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫ ∫  

3 4 3 4
3

encl 0 0 0

0

1
4 4 4

3 4 3 4 3 4

r
r r r r rQ r

R R R
πρ πρ πρ

⎡ ⎤ ⎛ ⎞′ ′ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠
 

3 3

0 encl3 3 3

3 1
so 12 4 3 .

3 4

Q r r r rQ Q Q
R RR R R

ρ
π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Thus Gauss’s law gives 
3

2

3
0

(4 ) 4 3 .
Q r rE r

RR
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠!
 

3
0

3
4 ,

4

Qr rE r R
RRπ

⎛ ⎞= −  ≤⎜ ⎟
⎝ ⎠!

 

(d) The graph of E versus r is sketched in Figure 22.65d. 
 

 

Figure 22.65d 
 

(e) Where the electric field is a maximum, 0.
dE
dr

=  Thus 
23

4 0 so 4 6 / 0 and 2 /3.
d rr r R r R
dr R
⎛ ⎞

− = − = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

At this value of r, 
3 2

0 0

2 3 2
4 .

3 34 3

Q R R QE
RR Rπ π

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠! !
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EVALUATE:   Our expressions for ( )E r  for r R<  and for r R>  agree at .r R=  The results of part (e) for 
the value of r where ( )E r  is a maximum agrees with the graph in part (d). 

 22.66. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region / 2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 34 ( /2)

3 6i
R RQ π απα= =  and 

3 3 4 4 3
2 3

0 /2
( /8) ( /16) 114 (2 ) ( / ) 8 .

3 4 24
R

R
R R R R RQ r r R dr

R
αππ α απ

⎛ ⎞− −= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠

∫  Therefore, 
315

24
RQ απ=  

and 3
8 .

5
Q
R

α
π

=  

(b) For 2,r R/≤  Gauss’s law gives 
3

2

0

44
3

rE r α ππ =
!

 and 3
0 0

8 .
3 15

r QrE
R

α
π

= =
! !

 For /2 ,R r R≤ ≤  

3 3 4 4
2

0 0

1 ( /8) ( /16)4 8
3 4

iQ r R r RE r
R

π απ
⎛ ⎞⎛ ⎞− −
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠! !

 and 

3
3 4 3 4

2 2
0

(64( / ) 48( / ) 1) (64( / ) 48( / ) 1).
24 (4 ) 15

R kQE r R r R r R r R
r r

απ
π

= − − = − −
!

 

For ,r R≥  2

0
(4 ) QE rπ =

!
 and 2

0
.

4
QE

rπ
=

!
 

(c) (4 /15) 4 0 267.
15

iQ Q
Q Q

= = = .  

(d) For /2,r R≤  3
0

8 ,
15r

eQF eE r
Rπ

= − = −
!

 so the restoring force depends upon displacement to the first 

power, and we have simple harmonic motion. 

(e) Comparing to 3
0

8, .
15

eQF kr k
Rπ

= − =
!

 Then 3
e 0 e

8
15

k eQ
m R m

ω
π

= =
!

 and 
3

0 e2 152 .
8

R mT
eQ

π ππ
ω

= = !  

EVALUATE:   (f) If the amplitude of oscillation is greater than /2,R  the force is no longer linear in ,r  and 
is thus no longer simple harmonic. 

 22.67. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region /2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 4/2 3

0
3 6 1 34
2 4 16 32

R
i

r RQ dr R
R R

α παπ πα= = =∫  and 

2 2 3 3
0 /2

7 31 474 (1 ( / ) ) 4 .
24 160 120

R

R
Q r R r dr R Rπα πα πα⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠∫  Therefore, 

3 33 47 233
32 120 480

Q R Rπα πα⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 3
480 .

233
Q
R

α
π

=  
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volume charge density depends on the distance from the
center of the distribution but not on the spherical polar angles 
and The electric potential due to this charge distribution is

where is a constant having units of and is a constant
having units of meters. (a) Derive expressions for for the regions

and [Hint: Use Eq. (23.23).] Explain why has only
a radial component. (b) Derive an expression for in each of
the two regions and [Hint: Use Gauss’s law for two
spherical shells, one of radius and the other of radius The
charge contained in the infinitesimal spherical shell of radius is

] (c) Show that the net charge contained in the
volume of a sphere of radius greater than or equal to is zero.
[Hint: Integrate the expressions derived in part (b) for over a
spherical volume of radius greater than or equal to ] Is this result
consistent with the electric field for that you calculated in
part (a)?
23.89 ... CP In experiments in which atomic nuclei collide,
head-on collisions like that described in Problem 23.82 do happen,
but “near misses” are more common. Suppose the alpha particle in
Problem 23.82 was not “aimed” at the center of the lead nucleus,
but had an initial nonzero angular momentum (with respect to the
stationary lead nucleus) of magnitude where is the
magnitude of the initial momentum of the alpha particle and

What is the distance of closest approach?
Repeat for and 
23.90 ... CALC A hollow, thin-walled insulating cylinder of
radius and length (like the cardboard tube in a roll of toilet
paper) has charge uniformly distributed over its surface. (a) Cal-
culate the electric potential at all points along the axis of the tube.
Take the origin to be at the center of the tube, and take the potential
to be zero at infinity. (b) Show that if the result of part (a)
reduces to the potential on the axis of a ring of charge of radius .
(See Example 23.11 in Section 23.3.) (c) Use the result of part (a)
to find the electric field at all points along the axis of the tube.
23.91 ... The Millikan Oil-Drop Experiment. The charge of
an electron was first measured by the American physicist Robert
Millikan during 1909–1913. In his experiment, oil is sprayed in
very fine drops (around in diameter) into the space
between two parallel horizontal plates separated by a distance A
potential difference is maintained between the parallel plates,
causing a downward electric field between them. Some of the oil
drops acquire a negative charge because of frictional effects or
because of ionization of the surrounding air by x rays or radioac-
tivity. The drops are observed through a microscope. (a) Show that
an oil drop of radius at rest between the plates will remain at rest
if the magnitude of its charge is

q = 4p
3

rr 3gd

VAB

r

VAB

d.
10-4 mm

R
L V R,

Q
LR

b = 1.00 * 10-14 m.b = 1.00 * 10-13 m
b = 1.00 * 10-12 m.

p0L = p0b,

r 7 a
a.
r(r)

a
dq = 4pr 2r1r2 dr.

dr
r + dr.r

r Ú a.r … a
r1r2 E

S
r Ú a.r … a

E
S

aC>m3r0

V(r) = c r0a2

18P0
c1 - 3a r

a
b2

+ 2a r
a
b3 d for r … a

0 for r Ú a

V(r)f.
u

rr1r2 where is the density of the oil. (Ignore the buoyant force of the
air.) By adjusting to keep a given drop at rest, the charge on
that drop can be determined, provided its radius is known. (b) Mil-
likan’s oil drops were much too small to measure their radii
directly. Instead, Millikan determined by cutting off the electric
field and measuring the terminal speed of the drop as it fell. (We
discussed the concept of terminal speed in Section 5.3.) The vis-
cous force on a sphere of radius moving with speed through a
fluid with viscosity is given by Stokes’s law: When
the drop is falling at the viscous force just balances the weight

of the drop. Show that the magnitude of the charge on the
drop is

Within the limits of their experimental error, every one of the thou-
sands of drops that Millikan and his coworkers measured had a
charge equal to some small integer multiple of a basic charge 
That is, they found drops with charges of and so on,
but none with values such as or A drop with charge

has acquired one extra electron; if its charge is it has
acquired two extra electrons, and so on. (c) A charged oil drop in a
Millikan oil-drop apparatus is observed to fall at constant
speed in if The same drop can be held at rest
between two plates separated by if How
many excess electrons has the drop acquired, and what is the
radius of the drop? The viscosity of air is 
and the density of the oil is 
23.92 .. CP Two point charges are moving to the right along the
x-axis. Point charge 1 has charge mass 

and speed Point charge 2 is to the right of 
and has charge mass and
speed At a particular instant, the charges are separated by a dis-
tance of and have speeds and

The only forces on the particles are the forces
they exert on each other. (a) Determine the speed of the
center of mass of the system. (b) The relative energy of the
system is defined as the total energy minus the kinetic energy
contributed by the motion of the center of mass:

where is the total energy of
the system and is the distance between the charges. Show that

where is
called the reduced mass of the system and is the rel-
ative speed of the moving particles. (c) For the numerical values
given above, calculate the numerical value of (d) Based on the
result of part (c), for the conditions given above, will the particles
escape from one another? Explain. (e) If the particles do escape,
what will be their final relative speed when If the particles
do not escape, what will be their distance of maximum separation?
That is, what will be the value of when (f) Repeat parts
(c)–(e) for and when the separa-
tion is 9.00 mm.

v2 = 1800 m>sv1 = 400 m>s v = 0?r

rS q ?

Erel.

v = v2 - v1

m = m1m2>(m1 + m2)Erel = 1
2mv2 + q1q2>4pP0r,

r
E = 1

2 m1v2
1 + 1

2 m2v2
2 + q1q2>4pP0r

Erel = E - 1
21m1 + m22v 2

cm

Erel

vcm

v2 = 1300 m>s.
v1 = 400 m>s9.00 mm

v2.
m2 = 3.00 * 10-5 kg,q2 = -5.00 mC,

q1v1.6.00 * 10-5 kg,
m1 =q1 = 2.00 mC,

824 kg>m3.
1.81 * 10-5 N # s>m2,

VAB = 9.16 V.1.00 mm
VAB = 0.39.3 s

1.00 mm

-2e,-e
2.49e.0.76e

!2e, !5e,
e.

q = 18p
d

VABAh3v3
t

2rg

w = mg
vt,

F = 6phrv.h
vrF

vt

r

VAB

r
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(e) 1280 VV =  and 2 00 m,y = .  so 
2 2

2 2 2
2

1280 V 3(640 V/m )(2 00 m)
14 0 m

640 V/m
x z + .+ = = .  and the radius of 

the circle is 3 74 m. .  

EVALUATE:   In any plane parallel to the xz-plane, E
G

 projected onto the plane is radial and hence 
perpendicular to the equipotential circles. 

 23.87. IDENTIFY:   Apply conservation of energy to the motion of the daughter nuclei. 
SET UP:   Problem 23.72 shows that the electrical potential energy of the two nuclei is the same as if all 
their charge was concentrated at their centers. 
EXECUTE:   (a) The two daughter nuclei have half the volume of the original uranium nucleus, so their 

radii are smaller by a factor of the cube root of 2: 
15

15

3

7 4 10 m
5 9 10 m.

2
r

−
−. ×= = . ×  

(b) 
2 2 19 2

11
14

(46 ) (46) (1 60 10 C)
4 14 10 J.

2 1 18 10 m

k e kU
r

−
−

−
. ×= = = . ×

. ×
 2 ,U K=  where K is the final kinetic energy of 

each nucleus. 11 11/2 (4 14 10 J)/2 2 07 10 J.K U − −= = . × = . ×  

(c) If we have 10.0 kg of uranium, then the number of nuclei is 

25
27

10 0 kg
2 55 10 nuclei.

(236 u)(1 66 10 kg/u)
n −

.= = . ×
. ×

 And each releases energy U, so 

25 11 15(2 55 10 )(4 14 10 J) 1 06 10 J 253 kilotons of TNT.E nU −= = . × . × = . × =  

(d) We could call an atomic bomb an “electric” bomb since the electric potential energy provides the 
kinetic energy of the particles. 
EVALUATE:   This simple model considers only the electrical force between the daughter nuclei and 
neglects the nuclear force. 

 23.88. IDENTIFY and SET UP:   In part (a) apply .
VE
r

∂= −
∂

 In part (b) apply Gauss’s law. 

EXECUTE:   (a) For ,r a≤  
2 2 2

0 0
2 3 2

0 0

6 6 .
18 3

V a r r a r rE
r aa a a

ρ ρ⎡ ⎤ ⎡ ⎤∂= − = − − + = −⎢ ⎥ ⎢ ⎥∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦! !
 For ,r a≥  0.

VE
r

∂= − =
∂

 

E
G

 has only a radial component because V depends only on r. 

(b) For ,r a≤  Gauss’s law gives 
2

2 20
2

0 0

4 4
3

r
r

Q a r rE r r
a a

ρπ π
⎡ ⎤

= = −⎢ ⎥
⎢ ⎥⎣ ⎦! !

 and 

2
2 20

2
0 0

( 2 )
4 ( 2 ) 4 ( 2 ).

3
r dr

r dr
Q a r dr r rdrE r rdr r rdr

a a
ρπ π+

+
⎡ ⎤+ ++ = = − +⎢ ⎥
⎢ ⎥⎣ ⎦! !

 Therefore, 

2 2
0

2 2
0 0 0

( )4 4 2 2 2 1

3
r dr rQ Q r r dr a r dr r r

a aa a
ρ π ρ π+ − ⎡ ⎤= ≈ − + − +⎢ ⎥⎣ ⎦! ! !

 and 0
0

4 4
( ) 3 1 .

3 3

r rr
a a

ρρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

(c) For ,r a≥  ( ) 0,rρ =  so the total charge enclosed will be given by 

3 4
2 2 3

0 00 0
0

4 1
4 ( ) 4 4 0.

3 3 3

a
a a r rQ r r dr r dr r

a a
π ρ πρ πρ

⎡ ⎤ ⎡ ⎤
= = − = − =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫  

EVALUATE:   Apply Gauss’s law to a sphere of radius .r R>  The result of part (c) says that encl 0,Q =  so 

0.E =  This agrees with the result we calculated in part (a) 
 23.89. IDENTIFY:   Angular momentum and energy must be conserved. 

SET UP:   At the distance of closest approach the speed is not zero. .E K U= +  1 2 ,q e=  2 82 .q e=  

EXECUTE:   1 2 2.mv b mv r=  1 2E E=  gives 2 1 2
1 2

2

1
.

2

kq qE mv
r

= +  12
1 11 MeV 1 76 10 J.E −= = . ×  2r  is the 

distance of closest approach. Substituting in for 2 1
2

bv v
r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 we find 

2
1 2

1 1 2
22

.
b kq qE E

rr
= +  
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2 2
1 2 1 2 2 1( ) ( ) 0.E r kq q r E b− − =  For 1210 m,b −=  12

2 1 01 10 m.r −= . ×  For 1310 m,b −=  13
2 1 11 10 m.r −= . ×  

And for 1410 m,b −=  14
2 2 54 10 m.r −= . ×  

EVALUATE:   As b decreases the collision is closer to being head-on and the distance of closest approach 
decreases. Problem 23.82 shows that the distance of closest approach is 142 15 10  m−. ×  when 0.b =  

 23.90. IDENTIFY:   Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length 
of the cylinder to find the total potential. The electric field is along the axis of the tube and is given by 

.VE
x

∂= −
∂

 

SET UP:   Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the 
slice be at coordinate z along the x-axis, relative to the center of the tube. 
EXECUTE:   (a) For an infinitesimal slice of the finite cylinder, we have the potential 

2 2 2 2
.

( ) ( )

k dQ kQ dzdV
Lx z R x z R

= =
− + − +

 Integrating gives 

/2 /2

/2 /22 2 2 2
where .

( )

L L x

L L x
kQ dz kQ duV u x z
L Lx z R u R

−

− − −
= = = −

− + +
∫ ∫  Therefore, 

2 2

2 2

( /2 ) ( /2 )
ln

( /2 ) /2

L x R L xkQV
L L x R L x

⎡ ⎤− + + −⎢ ⎥=
⎢ ⎥+ + − −⎣ ⎦

 on the cylinder axis. 

(b) For ,L R<<  
2 2 2 2

2 2 2 2

( /2 ) /2 /2ln ln .
( /2 ) /2 /2

L x R L xkQ kQ x xL R L xV
L LL x R L x x xL R L x

⎡ ⎤ ⎡ ⎤− + + − − + + −⎢ ⎥ ⎢ ⎥≈ ≈
⎢ ⎥ ⎢ ⎥+ + − − + + − −⎣ ⎦⎣ ⎦

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 /( ) ( /2 )/ 1 /2( ) ( /2 )/ln ln .
1 /( ) ( /2 )/ 1 /2( ) ( /2 )/

xL R x L x R xkQ kQ xL R x L x R xV
L LxL R x L x R x xL R x L x R x

⎡ ⎤ ⎡ ⎤− + + − + − + + − +⎢ ⎥ ⎢ ⎥≈ =
⎢ ⎥ ⎢ ⎥+ + + − − + + + + − − +⎣ ⎦⎣ ⎦

2 2

2 2 2 2 2 2

1 /2ln ln 1 ln 1 .
1 /2 2 2

kQ L R x kQ L LV
L LL R x R x R x

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎜ ⎟≈ = + − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + +⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
 

2 2 2 2

2 ,
2

kQ L kQV
L x R x R

≈ =
+ +

 which is the same as for a ring. 

(c) 
( )2 2 2 2

2 2 2 2

2 ( 2 ) 4 ( 2 ) 4

( 2 ) 4 ( 2 ) 4
x

kQ L x R L x RVE
x L x R L x R

− + − + +∂= − =
∂ − + + +

 

EVALUATE:   For L R<<  the expression for xE  reduces to that for a ring of charge, as given in Example 
23.14. 

 23.91. IDENTIFY:   When the oil drop is at rest, the upward force q E  from the electric field equals the 
downward weight of the drop. When the drop is falling at its terminal speed, the upward viscous force 
equals the downward weight of the drop. 

SET UP:   The volume of the drop is related to its radius r by 34 .
3

V rπ=  

EXECUTE:   (a) 
3

g
4 .

3
rF mg gπ ρ= =  e / .ABF q E q V d= =  e gF F=  gives 

34 .
3 AB

r gdq
V

π ρ=  

(b) 
3

t
4 6

3
r g rvπ ρ πη=  gives t9 .

2
vr
g

η
ρ

=  Using this result to replace r in the expression in part (a) gives 

3 3 3
t t4 9 18 .

3 2 2AB AB

gd v d vq
V g V g

π ρ η ηπ
ρ ρ

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
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CHAPTER 24 SUMMARY

Capacitors and capacitance: A capacitor is any pair of
conductors separated by an insulating material. When
the capacitor is charged, there are charges of equal mag-
nitude and opposite sign on the two conductors, and
the potential of the positively charged conductor
with respect to the negatively charged conductor is pro-
portional to The capacitance is defined as the ratio
of to The SI unit of capacitance is the farad (F):

A parallel-plate capacitor consists of two parallel
conducting plates, each with area separated by a dis-
tance If they are separated by vacuum, the capaci-
tance depends only on and For other geometries,
the capacitance can be found by using the definition

(See Examples 24.1–24.4.)C = Q>Vab.

d.A
d.

A,

1 F = 1 C>V.
Vab.Q

CQ.

Vab

Q

(24.1)

(24.2)C =
Q

Vab
= P0

A
d

C =
Q

Vab

Capacitors in series and parallel: When capacitors with
capacitances are connected in series, the
reciprocal of the equivalent capacitance equals the
sum of the reciprocals of the individual capacitances.
When capacitors are connected in parallel, the equiva-
lent capacitance equals the sum of the individual
capacitances. (See Examples 24.5 and 24.6.)

Ceq

Ceq

C3, ÁC2,C1,
(capacitors in series) (24.5)

(capacitors in parallel) (24.7)
Ceq = C1 + C2 + C3 + Á

1
Ceq

= 1
C1

+ 1
C2

+ 1
C3

+ Á

Energy in a capacitor: The energy required to charge a
capacitor to a potential difference and a charge is
equal to the energy stored in the capacitor. This energy
can be thought of as residing in the electric field
between the conductors; the energy density (energy
per unit volume) is proportional to the square of the
electric-field magnitude. (See Examples 24.7–24.9.)

u

QVC
U

(24.9)

(24.11)u = 1
2 P0 E2

U =
Q2

2C
= 1

2 CV2 = 1
2 QV

Dielectrics: When the space between the conductors is
filled with a dielectric material, the capacitance
increases by a factor called the dielectric constant 
of the material. The quantity is called the per-
mittivity of the dielectric. For a fixed amount of charge
on the capacitor plates, induced charges on the surface
of the dielectric decrease the electric field and potential
difference between the plates by the same factor The
surface charge results from polarization, a microscopic
rearrangement of charge in the dielectric. (See Example
24.10.)

Under sufficiently strong fields, dielectrics become
conductors, a situation called dielectric breakdown. The
maximum field that a material can withstand without
breakdown is called its dielectric strength.

In a dielectric, the expression for the energy density
is the same as in vacuum but with replaced by

(See Example 24.11.)
Gauss’s law in a dielectric has almost the same form

as in vacuum, with two key differences: is replaced
by and is replaced by which includes
only the free charge (not bound charge) enclosed by the
Gaussian surface. (See Example 24.12.)

Qencl-free,QenclKE
S

E
S

P = KP.
P0

K.

P = KP0

K, (parallel-plate capacitor 
filled with dielectric) (24.19)

(24.20)

(24.23)CKE
S # dA

S
=

Qencl-free

P0

u = 1
2 KP0 E2 = 1

2 PE2

C = KC0 = KP0
A
d

= P A
d

Wire

d

Plate a, area A

Plate b, area AWirePotential
difference 5 Vab
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+ + + +

+ + + +

+ + + + + +

1Q
2Q

1Q
2Q

c
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b
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b

Vab 5 V Q1 Q2

– – – – –

+ + + + +

–

+1Q

V

2Q

E
S

+ –
+ –
+ –
+ –
+ –
+ –
+ –
+ –

– +

– +

– +

– +

s 2s
2si si
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Problems 815

24.56 .. Several capacitors are available. The voltage
across each is not to exceed You need to make a capacitor
with capacitance to be connected across a potential differ-
ence of (a) Show in a diagram how an equivalent capacitor
with the desired properties can be obtained. (b) No dielectric is a
perfect insulator that would not permit the flow of any charge
through its volume. Suppose that the dielectric in one of the capac-
itors in your diagram is a moderately good conductor. What will
happen in this case when your combination of capacitors is con-
nected across the potential difference?
24.57 . In Fig. P24.57, 

and
The applied poten-

tial is (a) What is
the equivalent capacitance of
the network between points 
and (b) Calculate the charge
on each capacitor and the
potential difference across each
capacitor.
24.58 .. You are working on an electronics project requiring a
variety of capacitors, but you have only a large supply of 100-nF
capacitors available. Show how you can connect these capacitors to
produce each of the following equivalent capacitances: (a) 50 nF;
(b) 450 nF; (c) 25 nF; (d) 75 nF.
24.59 .. In Fig. E24.20, and . The
charge on capacitor is and the charge on is .
What are the values of the capacitances of and ?
24.60 . The capacitors in Fig.
P24.60 are initially uncharged
and are connected, as in the dia-
gram, with switch S open. The
applied potential difference is

(a) What is the
potential difference (b)
What is the potential difference
across each capacitor after
switch is closed? (c) How
much charge flowed through the switch when it was closed?
24.61 .. Three capacitors having capacitances of 8.4, 8.4, and

are connected in series across a potential difference.
(a) What is the charge on the capacitor? (b) What is the
total energy stored in all three capacitors? (c) The capacitors are
disconnected from the potential difference without allowing them
to discharge. They are then reconnected in parallel with each other,
with the positively charged plates connected together. What is the
voltage across each capacitor in the parallel combination? (d)
What is the total energy now stored in the capacitors?
24.62 . Capacitance of a Thundercloud. The charge center of
a thundercloud, drifting above the earth’s surface, contains

of negative charge. Assuming the charge center has a radius
of and modeling the charge center and the earth’s surface
as parallel plates, calculate: (a) the capacitance of the system; (b)

1.0 km,
20 C

3.0 km

4.2-mF
36-V4.2 mF

S

Vcd?
Vab = +210 V.

C3C2

450 mCC3150 mCC1

Vab = 150 VC1 = 3.00 mF

b?
a

Vab = 220 V.
C4 = 4.2 mF.

C2 = C3 =8.4 mFC5 =
C1 =

960-V

960 V.
0.25 mF

600 V.
0.25-mF

the potential difference between charge center and ground; (c) the
average strength of the electric field between cloud and ground; (d)
the electrical energy stored in the system.
24.63 .. In Fig. P24.63, each
capacitance is and each
capacitance is (a) Com-
pute the equivalent capacitance
of the network between points 
and (b) Compute the charge on
each of the three capacitors near-
est and when 
(c) With across and 
compute
24.64 . Each combination of
capacitors between points 
and in Fig. P24.64 is first
connected across a bat-
tery, charging the combination
to These combinations
are then connected to make the
circuits shown. When the switch

is thrown, a surge of charge for
the discharging capacitors flows
to trigger the signal device. How
much charge flows through the
signal device in each case?
24.65 . A parallel-plate capac-
itor with only air between the
plates is charged by connecting
it to a battery. The capacitor is
then disconnected from the bat-
tery, without any of the charge
leaving the plates. (a) A voltmeter reads when placed across
the capacitor. When a dielectric is inserted between the plates, com-
pletely filling the space, the voltmeter reads What is the
dielectric constant of this material? (b) What will the voltmeter
read if the dielectric is now pulled partway out so it fills only one-
third of the space between the plates?
24.66 .. An air capacitor is made by
using two flat plates, each with area 
separated by a distance Then a
metal slab having thickness (less
than ) and the same shape and size as
the plates is inserted between them,
parallel to the plates and not touching
either plate (Fig. P24.66). (a) What is
the capacitance of this arrangement? (b) Express the capacitance as
a multiple of the capacitance when the metal slab is not present.
(c) Discuss what happens to the capacitance in the limits 
and
24.67 .. Capacitance of the Earth. Consider a spherical
capacitor with one conductor being a solid conducting sphere of
radius R and the other conductor being at infinity. (a) Use Eq.
(24.1) and what you know about the potential at the surface of a
conducting sphere with charge Q to derive an expression for the
capacitance of the charged sphere. (b) Use your result in part (a) to
calculate the capacitance of the earth. The earth is a good conduc-
tor and has a radius of 6380 km. Compare your results to the
capacitance of typical capacitors used in electronic circuits, which
ranges from 10 pF to 100 pF.
24.68 .. A potential difference is applied across the
capacitor network of Fig. E24.17. If andC1 = C2 = 4.00 mF

Vab = 48.0 V

aS d.
aS 0

C0

d
a

d.
A,

11.5 V.

45.0 V

S

120 V.

120-V
b

a

Vcd .
b,a420 V

420 V.Vab =ba

b.
a

4.6 mF.C2

6.9 mF,C1a b

3.50 mF

11.8 mF6.20 mF

4.80
mF

8.60 mF

Figure P24.55

Figure P24.57

a

b

C1 C3

C2C5 C4

a b
S

c

d

3.00 mF6.00 mF

6.00 mF3.00 mF

Figure P24.60

a

b

S10.0
mF

20.0
mF

30.0
mF

Signal
device

(a)

30.0 mF

20.0 mF

a

b

S

10.0 mF

Signal
device

(b)

!

"

!

"

!

"

Figure P24.64

a
C1 C1

C2C2

C1

C1

C1 C1C1

c

b d

Figure P24.63

d a

Figure P24.66
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Figure 24.56 
 

 24.57. (a) IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. 
SET UP:   The network is sketched in Figure 24.57a. 

 

 1 5 8 4 FC C µ= = .   

2 3 4 4 2 FC C C µ= = = .   

Figure 24.57a   
 

EXECUTE:   Simplify the circuit by replacing the capacitor combinations by their equivalents: 3 4 and C C  

are in series and can be replaced by 34C  (Figure 24.57b): 
 

 

34 3 4

1 1 1

C C C
= +  

3 4

34 3 4

1 C C
C C C

+=  

Figure 24.57b   
 

3 4
34

3 4

(4 2 F)(4 2 F)
2 1 F

4 2 F 4 2 F
C CC
C C

µ µ µ
µ µ

.  .  = = = .  
+ .  + .  

 

2 34 and C C  are in parallel and can be replaced by their equivalent (Figure 24.57c): 
 

 234 2 34C C C= +  

234 4 2 F 2 1 FC µ µ= .  + .   

234 6 3 FC µ= .   

Figure 24.57c   
 

1 5 234,  and C C C  are in series and can be replaced by eqC  (Figure 24.57d): 
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eq 1 5 234

1 1 1 1
C C C C

= + +  

eq

1 2 1
8 4 F 6 3 FC µ µ

= +
.  .  

 

eq 2 5 FC µ= .   

Figure 24.57d   
 

EVALUATE:   For capacitors in series the equivalent capacitor is smaller than any of those in series. For 
capacitors in parallel the equivalent capacitance is larger than any of those in parallel. 
(b) IDENTIFY and SET UP:   In each equivalent network apply the rules for Q and V for capacitors in series 
and parallel; start with the simplest network and work back to the original circuit. 
EXECUTE:   The equivalent circuit is drawn in Figure 24.57e. 

 

 eq eqQ C V=  

eq (2 5 F)(220 V) 550 CQ µ µ= .  =   

Figure 24.57e   
 

1 5 234 550 CQ Q Q µ= = =   (capacitors in series have same charge) 

1
1

1

550 C 65 V
8 4 F

QV
C

µ
µ
 = = =

.  
 

5
5

5

550 C 65 V
8 4 F

QV
C

µ
µ
 = = =

.  
 

234
234

234

550 C 87 V
6 3 F

QV
C

µ
µ
 = = =

.  
 

Now draw the network as in Figure 24.57f. 
 

 2 34 234 87 VV V V= = =  
capacitors in parallel have the same potential 

Figure 24.57f   
 

2 2 2 (4 2 F)(87 V) 370 CQ C V µ µ= = .  =   

34 34 34 (2 1 F)(87 V) 180 CQ C V µ µ= = .  =   
Finally, consider the original circuit (Figure 24.57g). 

 

 3 4 34 180 CQ Q Q µ= = =   
capacitors in series have the same charge 

Figure 24.57g   
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3
3

3

180 C 43 V
4 2 F

QV
C

µ
µ
 = = =

.  
 

4
4

4

180 C 43 V
4 2 F

QV
C

µ
µ

 = = =
.

 

Summary: 1 1550 C, 65 VQ Vµ=  =  

2 2370 C, 87 VQ Vµ=  =  

3 3180 C, 43 VQ Vµ=  =  

4 4180 C, 43 VQ Vµ=  =  

5 5550 C, 65 VQ Vµ=  =  
EVALUATE:   3 4 2 1 2 5 and 220 VV V V V V V+ = + + =  (apart from some small rounding error) 

1 2 3 5 2 4 and Q Q Q Q Q Q= + = +  
 24.58. IDENTIFY:   We can make series and parallel combinations. 

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 ,
C C C

= + +"  so for N equivalent capacitors in series, eq / .C C N=  

For capacitors in parallel, eq 1 2 ,C C C= + +"  so for N equivalent capacitors in parallel, eq .C NC=  
EXECUTE:   There are many ways to achieve the required equivalent capacitance. In each case one simple 
solution is shown in Figure 24.58. 

 

 

Figure 24.58 
 

EVALUATE:   By combining capacitors in series and parallel combinations, we can produce a wide variety 
of equivalent capacitances. 

 24.59. IDENTIFY:   Capacitors in series carry the same charge, while capacitors in parallel have the same potential 
difference across them. 
SET UP:   150 V,abV =  1 150 C,Q µ=   3 450 C,Q µ=   and / .V Q C=  

EXECUTE:   1 3 00 FC µ= .   so 1
1

1

150 C 50 0 V
3 00 F

QV
C

µ
µ

 = = = .
.  

 and 1 2 50 0 V.V V= = .  1 3 abV V V+ =  so 

3 100 V.V =  3
3

3

450 C 4 50 F.
100 V

QC
V

µ µ = = = .   1 2 3Q Q Q+ =  so 2 3 1 450 C 150 C 300 CQ Q Q µ µ µ= − =  −  =   

and 2
2

2

300 C 6 00 F.
50 0 V

QC
V

µ µ = = = .  
.

 

EVALUATE:   Capacitors in parallel only carry the same charge if they have the same capacitance. 
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Finally, consider the original circuit (Figure 24.57g). 
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, what must the capacitance be if the network is
to store of electrical energy?
24.69 . Earth-Ionosphere Capacitance. The earth can be con-
sidered as a single-conductor capacitor (see Problem 24.67). It can
also be considered in combination with a charged layer of the
atmosphere, the ionosphere, as a spherical capacitor with two
plates, the surface of the earth being the negative plate. The iono-
sphere is at a level of about and the potential difference
between earth and ionosphere is about Calculate: (a)
the capacitance of this system; (b) the total charge on the capacitor;
(c) the energy stored in the system.
24.70 . CALC The inner cylinder of a long, cylindrical capacitor
has radius and linear charge density It is surrounded by a
coaxial cylindrical conducting shell with inner radius and linear
charge density (see Fig. 24.6). (a) What is the energy density in
the region between the conductors at a distance from the axis? 
(b) Integrate the energy density calculated in part (a) over the vol-
ume between the conductors in a length of the capacitor to obtain
the total electric-field energy per unit length. (c) Use Eq. (24.9)
and the capacitance per unit length calculated in Example 24.4
(Section 24.1) to calculate Does your result agree with that
obtained in part (b)?
24.71 .. CP A capacitor has a potential difference of 

between its plates. A short aluminum wire with initial tem-
perature is connected between the plates of the capacitor
and all the energy stored in the capacitor goes into heating the
wire. The wire has mass 12.0 g. If no heat is lost to the surround-
ings and the final temperature of the wire is , what is the
capacitance of the capacitor?
24.72 .. A parallel-plate capa-
citor is made from two plates
12.0 cm on each side and 
4.50 mm apart. Half of the
space between these plates
contains only air, but the other
half is filled with Plexiglas® of
dielectric constant 3.40 (Fig.
P24.72). An 18.0-V battery is connected across the plates. (a) What
is the capacitance of this combination? (Hint: Can you think of this
capacitor as equivalent to two capacitors in parallel?) (b) How
much energy is stored in the capacitor? (c) If we remove the Plexi-
glas® but change nothing else, how much energy will be stored in
the capacitor?
24.73 .. A parallel-plate capacitor has square plates that are
8.00 cm on each side and 3.80 mm apart. The space between the
plates is completely filled with two square slabs of dielectric, each
8.00 cm on a side and 1.90 mm thick. One slab is pyrex glass and the
other is polystyrene. If the potential difference between the plates is
86.0 V, how much electrical energy is stored in the capacitor?
24.74 .. A fuel gauge uses a
capacitor to determine the height
of the fuel in a tank. The effective
dielectric constant changes
from a value of 1 when the tank is
empty to a value of the dielec-
tric constant of the fuel, when the
tank is full. The appropriate elec-
tronic circuitry can determine the
effective dielectric constant of the
combined air and fuel between
the capacitor plates. Each of the
two rectangular plates has a width

K,

Keff

34.2oC

23.0oC
103 V

2.25 *

U>L.

L

r
-l

rb

+l.ra

350,000 V.
70 km,

2.90 * 10-3 J
C3C4 = 8.00 mF and a length (Fig. P24.74). The height of the fuel between the

plates is You can ignore any fringing effects. (a) Derive an
expression for as a function of (b) What is the effective
dielectric constant for a tank full, full, and full if the fuel is
gasoline (c) Repeat part (b) for methanol

(d) For which fuel is this fuel gauge more practical?
24.75 .. Three square metal
plates and each

on a side and 
thick, are arranged as in Fig.
P24.75. The plates are sepa-
rated by sheets of paper

thick and with dielec-
tric constant 4.2. The outer
plates are connected together
and connected to point The inner plate is connected to point 
(a) Copy the diagram and show by plus and minus signs the charge
distribution on the plates when point is maintained at a positive
potential relative to point (b) What is the capacitance between
points and ?

CHALLENGE PROBLEMS
24.76 ... CP The parallel-plate air capacitor in Fig. P24.76 con-
sists of two horizontal conducting plates of equal area The bot-
tom plate rests on a fixed support, and the top plate is suspended
by four springs with spring constant positioned at each of the
four corners of the top plate as shown in the figure. When
uncharged, the plates are separated by a distance A battery is
connected to the plates and produces a potential difference 
between them. This causes the plate separation to decrease to 
Neglect any fringing effects. (a) Show that the electrostatic force
between the charged plates has a magnitude (Hint: See
Exercise 24.27.) (b) Obtain an expression that relates the plate sep-
aration to the potential difference The resulting equation will
be cubic in (c) Given the values 

and find the two values of for which
the top plate will be in equilibrium. (Hint: You can solve the cubic
equation by plugging a trial value of into the equation and then
adjusting your guess until the equation is satisfied to three signifi-
cant figures. Locating the roots of the cubic equation graphically
can help you pick starting values of for this trial-and-error proce-
dure. One root of the cubic equation has a nonphysical negative
value.) (d) For each of the two values of found in part (c), is the
equilibrium stable or unstable? For stable equilibrium a small dis-
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return the object to the equilibrium position. For unstable equilib-
rium a small displacement gives rise to a net force that takes the
object farther away from equilibrium.

24.77 ... Two square conducting plates with sides of length are
separated by a distance A dielectric slab with constant with
dimensions is inserted a distance into the space
between the plates, as shown in Fig. P24.77. (a) Find the capacitance

xL * L * D
KD.

L

z

z

z

zV = 120 V,k = 25.0 N>m,
z0 = 1.20 mm,A = 0.300 m2,z.

V.z

P0AV2>2z2.

z.
V

z0.

k,

A.

ba
b.

a

a.b.

0.45 mm

1.50 mm12.0 cm
C,B,A,

1K = 33.02.1K = 1.952? 3
4

1
2

1
4

h.Keff

h.
Lw

– – – – –

+ + + + +

–

+

Plexiglas® Air

Figure P24.72

tery

V

Bat

Air
L

Fuelh

w

Figure P24.74

A

B

C

ba

Metal
aperP

Figure P24.75

k

k

z k

k

V

A

A

Figure P24.76



Capacitance and Dielectrics   24-29 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   The heat that goes into the wire is 
3(12 0 10  kg)(910 J/(kg K))(11 2 K) 122 3 J.Q mc T −= ∆ = . × ⋅ . = .  For the capacitor, 21 .

2
U CV=  

5
2 3 2

2 2(122 3 J) 4 83 10  F 48 3 F.
(2 25 10  V)

UC
V

µ−.= = = . × = .  
. ×

 

EVALUATE:   A capacitance of 48.3 Fµ  is quite reasonable for ordinary laboratory capacitors. 
 24.72. IDENTIFY:   The capacitor is equivalent to two capacitors in parallel, as shown in Figure 24.72. 
 

 

Figure 24.72 
 

SET UP:   Each of these two capacitors have plates that are 12.0 cm by 6.0 cm. For a parallel-plate 

capacitor with dielectric filling the volume between the plates, 0 .AC K
d

= !  For two capacitors in parallel, 

1 2 .C C C= +  The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE:   (a) 1 2.C C C= +  
12

11
2 0 3

(8 854 10  F/m)(0 120 m)(0 060 m) 1 42 10  F.
4 50 10  m

AC
d

−
−

−
. × . .= = = . ×

. ×
!

11 11
1 2 (3 40)(1 42 10  F) 4 83 10  F.C KC − −= = . . × = . ×  11

1 2 6 25 10  F 62 5 pF.C C C −= + = . × = .  

(b) 2 11 2 81 1
2 2 (6 25 10  F)(18 0 V) 1 01 10  J.U CV − −= = . × . = . ×  

(c) Now 1 2C C=  and 11 112(1 42 10  F) 2 84 10  F.C − −= . × = . ×  
2 11 2 91 1

2 2 (2 84 10  F)(18 0 V) 4 60 10  J.U CV − −= = . × . = . ×  

EVALUATE:   The plexiglass increases the capacitance and that increases the energy stored for the same 
voltage across the capacitor. 

 24.73. IDENTIFY:   The two slabs of dielectric are in series with each other. 

SET UP:   The capacitor is equivalent to 1C  and 2C  in series, so 
1 2

1 1 1 ,
C C C

+ =  which gives 1 2

1 2
.C CC

C C
=

+
 

EXECUTE:   With 1 90 mm,d = .  1 0
1
K AC
d

= !  and 2 0
2 .K AC

d
= !  

0
12 2 2 2

111 2
3

1 2
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4 7 2 61 90 10  m
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K K d

−
−

−
⎛ ⎞ . × ⋅ . . .⎛ ⎞= = = . ×⎜ ⎟ ⎜ ⎟+ . + .. × ⎝ ⎠⎝ ⎠

)(!

2 11 2 71 1 (4 992 10  F)(86 0 V) 1 85 10  J.
2 2

U CV − −= = . × . = . ×  

EVALUATE:   The dielectrics increase the capacitance, allowing the capacitor to store more energy than if it 
were air-filled. 
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CHAPTER 25 SUMMARY

Current and current density: Current is the amount of
charge flowing through a specified area, per unit time.
The SI unit of current is the ampere The
current through an area depends on the concentra-
tion and charge of the charge carriers, as well as on
the magnitude of their drift velocity The current
density is current per unit cross-sectional area. Current
is usually described in terms of a flow of positive
charge, even when the charges are actually negative or
of both signs. (See Example 25.1.)

vSd.
qn

AI
11 A = 1 C>s2. (25.2)

(25.4)J
S

! nqvSd

I =
dQ

dt
= n ƒq ƒvdA

Resistivity: The resistivity of a material is the ratio of
the magnitudes of electric field and current density.
Good conductors have small resistivity; good insulators
have large resistivity. Ohm’s law, obeyed approximately
by many materials, states that is a constant independ-
ent of the value of . Resistivity usually increases with
temperature; for small temperature changes this varia-
tion is represented approximately by Eq. (25.6), where

is the temperature coefficient of resistivity.a

E
r

r (25.5)

(25.6)r1T2 = r031 + a1T - T024
r = E

J

Resistors: The potential difference V across a sample of
material that obeys Ohm’s law is proportional to the
current through the sample. The ratio is the
resistance of the sample. The SI unit of resistance is the
ohm The resistance of a cylindrical
conductor is related to its resistivity length and
cross-sectional area (See Examples 25.2 and 25.3.)A.

L,r,
11 Æ = 1 V>A2. V>I = RI

(25.11)

(25.10)R =
rL

A

V = IR

Circuits and emf: A complete circuit has a continuous
current-carrying path. A complete circuit carrying a
steady current must contain a source of electromotive
force (emf) The SI unit of electromotive force is the
volt (1 V). Every real source of emf has some internal
resistance r, so its terminal potential difference 
depends on current. (See Examples 25.4–25.7.)

Vab

E.

(25.15)
(source with internal resistance)
Vab = E - Ir

Energy and power in circuits: A circuit element with a
potential difference and a current puts
energy into a circuit if the current direction is from
lower to higher potential in the device, and it takes
energy out of the circuit if the current is opposite. The
power equals the product of the potential difference
and the current. A resistor always takes electrical energy
out of a circuit. (See Examples 25.8–25.10.)

P

IVa - Vb = Vab

(25.17)

(25.18)

(power into a resistor)

P = VabI = I 2R =
Vab

2

R

(general circuit element)
P = Vab I
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Metal: r increases with 
increasing T.
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r

r0 Slope 5 r0a

I
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VIA
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SE
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+

Vab 5 Va!b!

b

V

a

A

b!a!

I Ir 5 2 V, E 5 12 V

R 5 4 V

II

a b

Va Vb

Circuit
element

Conduction in metals: The microscopic basis of conduction in metals is the motion of electrons that
move freely through the metallic crystal, bumping into ion cores in the crystal. In a crude classical
model of this motion, the resistivity of the material can be related to the electron mass, charge,
speed of random motion, density, and mean free time between collisions. (See Example 25.11.)

Net displacement

E
S
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Current and current density: Current is the amount of
charge flowing through a specified area, per unit time.
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current through the sample. The ratio is the
resistance of the sample. The SI unit of resistance is the
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Circuits and emf: A complete circuit has a continuous
current-carrying path. A complete circuit carrying a
steady current must contain a source of electromotive
force (emf) The SI unit of electromotive force is the
volt (1 V). Every real source of emf has some internal
resistance r, so its terminal potential difference 
depends on current. (See Examples 25.4–25.7.)
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(25.15)
(source with internal resistance)
Vab = E - Ir

Energy and power in circuits: A circuit element with a
potential difference and a current puts
energy into a circuit if the current direction is from
lower to higher potential in the device, and it takes
energy out of the circuit if the current is opposite. The
power equals the product of the potential difference
and the current. A resistor always takes electrical energy
out of a circuit. (See Examples 25.8–25.10.)
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Conduction in metals: The microscopic basis of conduction in metals is the motion of electrons that
move freely through the metallic crystal, bumping into ion cores in the crystal. In a crude classical
model of this motion, the resistivity of the material can be related to the electron mass, charge,
speed of random motion, density, and mean free time between collisions. (See Example 25.11.)

Net displacement

E
S



873

CHAPTER 26 SUMMARY

a x y bR1 R2 R3

Resistors in series

II

a b

Resistors
in parallel

II

R1

R2

R3

Kirchhoff’s rules: Kirchhoff’s junction rule is based on
conservation of charge. It states that the algebraic sum
of the currents into any junction must be zero. Kirch-
hoff’s loop rule is based on conservation of energy and
the conservative nature of electrostatic fields. It states
that the algebraic sum of potential differences around
any loop must be zero. Careful use of consistent sign
rules is essential in applying Kirchhoff’s rules. (See
Examples 26.3–26.7.)

Household wiring: In household wiring systems, the various electrical devices are connected in 
parallel across the power line, which consists of a pair of conductors, one “hot” and the other 
“neutral.” An additional “ground” wire is included for safety. The maximum permissible current 
in a circuit is determined by the size of the wires and the maximum temperature they can tolerate.
Protection against excessive current and the resulting fire hazard is provided by fuses or circuit
breakers. (See Example 26.14.)

(junction rule) (26.5)

(loop rule) (26.6)aV = 0
a I = 0

++

At any junction:
SI 5 0

Around any loop: SV 5 0

I2

I1 1 I2

I1

Junction

Loop 2

Loop 1

Loop 3 R
E E

O

i, q
q versus t

i versus t
t

+

1q 2q

R C

i
i

E

Resistors in series and parallel: When several resistors
are connected in series, the equivalent

resistance is the sum of the individual resistances.
The same current flows through all the resistors in a
series connection. When several resistors are connected
in parallel, the reciprocal of the equivalent resistance

is the sum of the reciprocals of the individual resist-
ances. All resistors in a parallel connection have the
same potential difference between their terminals. (See
Examples 26.1 and 26.2.)

Req

Req

R1, R2, R3, Á
(26.1)

(resistors in series)

(26.2)

(resistors in parallel)

1
Req

= 1
R1

+ 1
R2

+ 1
R3

+ Á

Req = R1 + R2 + R3 + Á

R-C circuits: When a capacitor is charged by a battery in
series with a resistor, the current and capacitor charge are
not constant. The charge approaches its final value asymp-
totically and the current approaches zero asymptotically.
The charge and current in the circuit are given by 
Eqs. (26.12) and (26.13). After a time the charge
has approached within of its final value. This time is
called the time constant or relaxation time of the circuit.
When the capacitor discharges, the charge and current are
given as functions of time by Eqs. (26.16) and (26.17).
The time constant is the same for charging and discharg-
ing. (See Examples 26.12 and 26.13.)

1>e t = RC,

Electrical measuring instruments: In a d’Arsonval galvanometer, the deflection is proportional to
the current in the coil. For a larger current range, a shunt resistor is added, so some of the current
bypasses the meter coil. Such an instrument is called an ammeter. If the coil and any additional
series resistance included obey Ohm’s law, the meter can also be calibrated to read potential differ-
ence or voltage. The instrument is then called a voltmeter. A good ammeter has very low resistance;
a good voltmeter has very high resistance. (See Examples 26.8–26.11.)

a b
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+ –

Ammeter Voltmeter

Capacitor charging:

(26.12)

(26.13)

Capacitor discharging:

(26.16)

(26.17)
= I0e-t/RC

i =
dq

dt
= -

Q0

RC
e-t/RC

q = Q0e-t/RC

= I0e-t/RC

i =
dq

dt
= E

R
e-t/RC

= Qf A1 - e-t/RC Bq = CE A1 - e-t/RC B



873

CHAPTER 26 SUMMARY

a x y bR1 R2 R3

Resistors in series

II

a b

Resistors
in parallel

II

R1

R2

R3

Kirchhoff’s rules: Kirchhoff’s junction rule is based on
conservation of charge. It states that the algebraic sum
of the currents into any junction must be zero. Kirch-
hoff’s loop rule is based on conservation of energy and
the conservative nature of electrostatic fields. It states
that the algebraic sum of potential differences around
any loop must be zero. Careful use of consistent sign
rules is essential in applying Kirchhoff’s rules. (See
Examples 26.3–26.7.)

Household wiring: In household wiring systems, the various electrical devices are connected in 
parallel across the power line, which consists of a pair of conductors, one “hot” and the other 
“neutral.” An additional “ground” wire is included for safety. The maximum permissible current 
in a circuit is determined by the size of the wires and the maximum temperature they can tolerate.
Protection against excessive current and the resulting fire hazard is provided by fuses or circuit
breakers. (See Example 26.14.)

(junction rule) (26.5)

(loop rule) (26.6)aV = 0
a I = 0

++

At any junction:
SI 5 0

Around any loop: SV 5 0

I2

I1 1 I2

I1

Junction

Loop 2

Loop 1

Loop 3 R
E E

O

i, q
q versus t

i versus t
t

+

1q 2q

R C

i
i

E

Resistors in series and parallel: When several resistors
are connected in series, the equivalent

resistance is the sum of the individual resistances.
The same current flows through all the resistors in a
series connection. When several resistors are connected
in parallel, the reciprocal of the equivalent resistance

is the sum of the reciprocals of the individual resist-
ances. All resistors in a parallel connection have the
same potential difference between their terminals. (See
Examples 26.1 and 26.2.)

Req

Req

R1, R2, R3, Á
(26.1)

(resistors in series)

(26.2)

(resistors in parallel)

1
Req

= 1
R1

+ 1
R2

+ 1
R3

+ Á

Req = R1 + R2 + R3 + Á

R-C circuits: When a capacitor is charged by a battery in
series with a resistor, the current and capacitor charge are
not constant. The charge approaches its final value asymp-
totically and the current approaches zero asymptotically.
The charge and current in the circuit are given by 
Eqs. (26.12) and (26.13). After a time the charge
has approached within of its final value. This time is
called the time constant or relaxation time of the circuit.
When the capacitor discharges, the charge and current are
given as functions of time by Eqs. (26.16) and (26.17).
The time constant is the same for charging and discharg-
ing. (See Examples 26.12 and 26.13.)

1>e t = RC,

Electrical measuring instruments: In a d’Arsonval galvanometer, the deflection is proportional to
the current in the coil. For a larger current range, a shunt resistor is added, so some of the current
bypasses the meter coil. Such an instrument is called an ammeter. If the coil and any additional
series resistance included obey Ohm’s law, the meter can also be calibrated to read potential differ-
ence or voltage. The instrument is then called a voltmeter. A good ammeter has very low resistance;
a good voltmeter has very high resistance. (See Examples 26.8–26.11.)

a b

R s

R c

Va Vb

| |
| |

| | | | | | | | | | | | | | | | | | | | | |

–+

Circuit
element

I I

I Ia bR sh

R c

| |
| |

| | | | | | | | | | | | | | | | | | | | | |

+ –

Ammeter Voltmeter

Capacitor charging:

(26.12)

(26.13)

Capacitor discharging:

(26.16)

(26.17)
= I0e-t/RC

i =
dq

dt
= -

Q0

RC
e-t/RC

q = Q0e-t/RC

= I0e-t/RC

i =
dq

dt
= E

R
e-t/RC

= Qf A1 - e-t/RC Bq = CE A1 - e-t/RC B



846 CHAPTER 25 Current, Resistance, and Electromotive Force

volume (in liters) of gasoline has a total heat of combustion equal
to the energy obtained in part (a)? (See Section 17.6; the density of
gasoline is ) (c) If a generator with an average electri-
cal power output of 0.45 kW is connected to the battery, how much
time will be required for it to charge the battery fully?
25.48 . In the circuit analyzed in Example 25.8 the 4.0- resistor
is replaced by a 8.0- resistor, as in Example 25.9. (a) Calculate the
rate of conversion of chemical energy to electrical energy in the bat-
tery. How does your answer compare to the result calculated in
Example 25.8? (b) Calculate the rate of electrical energy dissipation
in the internal resistance of the battery. How does your answer com-
pare to the result calculated in Example 25.8? (c) Use the results of
parts (a) and (b) to calculate the net power output of the battery.
How does your result compare to the electrical power dissipated in
the 8.0- resistor as calculated for this circuit in Example 25.9?
25.49 .. A 25.0- bulb is connected across the terminals of a
12.0-V battery having of internal resistance. What percent-
age of the power of the battery is dissipated across the internal
resistance and hence is not available to the bulb?
25.50 . An idealized voltmeter is connected across the terminals
of a 15.0-V battery, and a 75.0- appliance is also connected
across its terminals. If the voltmeter reads 11.3 V: (a) how much
power is being dissipated by the appliance, and (b) what is the
internal resistance of the battery?
25.51 . In the circuit in Fig. E25.51,
find (a) the rate of conversion of internal
(chemical) energy to electrical energy
within the battery; (b) the rate of dissipa-
tion of electrical energy in the battery;
(c) the rate of dissipation of electrical
energy in the external resistor.
25.52 .. A typical small flashlight
contains two batteries, each having an emf of 1.5 V, connected in
series with a bulb having resistance (a) If the internal resist-
ance of the batteries is negligible, what power is delivered to the
bulb? (b) If the batteries last for 5.0 h, what is the total energy deliv-
ered to the bulb? (c) The resistance of real batteries increases as
they run down. If the initial internal resistance is negligible, what
is the combined internal resistance of both batteries when the power
to the bulb has decreased to half its initial value? (Assume that the
resistance of the bulb is constant. Actually, it will change some-
what when the current through the filament changes, because this
changes the temperature of the filament and hence the resistivity of
the filament wire.)
25.53 . A “540-W” electric heater is designed to operate from 
120-V lines. (a) What is its resistance? (b) What current does it draw?
(c) If the line voltage drops to 110 V, what power does the heater
take? (Assume that the resistance is constant. Actually, it will change
because of the change in temperature.) (d) The heater coils are
metallic, so that the resistance of the heater decreases with decreas-
ing temperature. If the change of resistance with temperature is
taken into account, will the electrical power consumed by the heater
be larger or smaller than what you calculated in part (c)? Explain.

Section 25.6 Theory of Metallic Conduction
25.54 .. Pure silicon contains approximately free
electrons per cubic meter. (a) Referring to Table 25.1, calculate the
mean free time for silicon at room temperature. (b) Your answer
in part (a) is much greater than the mean free time for copper given
in Example 25.11. Why, then, does pure silicon have such a high
resistivity compared to copper?

t

1.0 * 1016

17 Æ.

Æ

3.50 Æ
Æ

Æ

Æ
Æ

900 kg>m3.

PROBLEMS
25.55 . An electrical conductor designed to carry large currents
has a circular cross section 2.50 mm in diameter and is 14.0 m
long. The resistance between its ends is (a) What is the
resistivity of the material? (b) If the electric-field magnitude in the
conductor is what is the total current? (c) If the mate-
rial has free electrons per cubic meter, find the average
drift speed under the conditions of part (b).
25.56 .. A plastic tube 25.0 m long and 3.00 cm in diameter is
dipped into a silver solution, depositing a layer of silver 0.100 mm
thick uniformly over the outer surface of the tube. If this coated tube
is then connected across a 12.0-V battery, what will be the current?
25.57 .. On your first day at work as an electrical technician, you
are asked to determine the resistance per meter of a long piece of
wire. The company you work for is poorly equipped. You find a
battery, a voltmeter, and an ammeter, but no meter for directly
measuring resistance (an ohmmeter). You put the leads from the
voltmeter across the terminals of the battery, and the meter reads
12.6 V. You cut off a 20.0-m length of wire and connect it to the
battery, with an ammeter in series with it to measure the current in
the wire. The ammeter reads 7.00 A. You then cut off a 40.0-m
length of wire and connect it to the battery, again with the ammeter
in series to measure the current. The ammeter reads 4.20 A. Even
though the equipment you have available to you is limited, your
boss assures you of its high quality: The ammeter has very small
resistance, and the voltmeter has very large resistance. What is the
resistance of 1 meter of wire?
25.58 . A 2.0-mm length of wire is made by welding the end of a
120-cm-long silver wire to the end of an 80-cm-long copper wire.
Each piece of wire is 0.60 mm in diameter. The wire is at room
temperature, so the resistivities are as given in Table 25.1. A poten-
tial difference of 5.0 V is maintained between the ends of the 
2.0-m composite wire. (a) What is the current in the copper section?
(b) What is the current in the silver section? (c) What is the magni-
tude of in the copper? (d) What is the magnitude of in the sil-
ver? (e) What is the potential difference between the ends of the
silver section of wire?
25.59 . A 3.00-m length of copper wire at 20°C has a 1.20-m-
long section with diameter 1.60 mm and a 1.80-m-long section
with diameter 0.80 mm. There is a current of 2.5 mA in the 1.60-
mm-diameter section. (a) What is the current in the 0.80-mm-
diameter section? (b) What is the magnitude of in the
1.60-mm-diameter section? (c) What is the magnitude of in the
0.80-mm-diameter section? (d) What is the potential difference
between the ends of the 3.00-m length of wire?
25.60 . Critical Current Density in Superconductors. One
problem with some of the newer high-temperature superconduc-
tors is getting a large enough current density for practical use with-
out causing the resistance to reappear. The maximum current
density for which the material will remain a superconductor is
called the critical current density of the material. In 1987, IBM
research labs had produced thin films with critical current densities
of (a) How much current could an 18-gauge wire
(see Example 25.1 in Section 25.1) of this material carry and still
remain superconducting? (b) Researchers are trying to develop
superconductors with critical current densities of 
What diameter cylindrical wire of such a material would be needed to
carry 1000 A without losing its superconductivity?
25.61 .. CP A Nichrome heating element that has resistance

is connected to a battery that has emf 96.0 V and internal28.0 Æ

1.0 * 106 A>cm2.

1.0 * 105 A>cm2.

E
S

E
S

E
S

E
S

8.5 * 1028
1.28 V>m,

0.104 Æ.

12.0 V1.0 V

5.0 V
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b c

+

Figure E25.51
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(a) The rate of conversion of chemical energy to electrical energy in the emf of the battery is 
(12 0 V)(2 00 A) 24 0 W.P Iε= = . . = .  

(b) The rate of dissipation of electrical energy in the internal resistance of the battery is 
2 2(2 00 A) (1 0 ) 4 0 W.P I r= = . .  Ω = .  

(c) The rate of dissipation of electrical energy in the external resistor 
2 2 is (2 00 A) (5 0 ) 20 0 W.R P I R= = . .  Ω = .  

EVALUATE:   The rate of production of electrical energy in the circuit is 24.0 W. The total rate of 
consumption of electrical energy in the circuit is 4.00 W 20.0 W 24.0 W.+ =  Equal rate of production and 
consumption of electrical energy are required by energy conservation. 

 25.52. IDENTIFY:   The power delivered to the bulb is 2 .I R  Energy .Pt=  
SET UP:   The circuit is sketched in Figure 25.52. totalr  is the combined internal resistance of both batteries. 
EXECUTE:   (a) total 0.r =  The sum of the potential changes around the circuit is zero, so 

1 5 V 1 5 V (17 ) 0.I. + . −  Ω =  0 1765 A.I = .  2 2(0 1765 A) (17 ) 0 530 W.P I R= = .  Ω = .  This is also 
(3 0 V)(0 1765 A).. .  
(b) Energy (0 530 W)(5 0 h)(3600 s/h) 9540 J= . . =  

(c) 0 530 W 0 265 W.
2

P .= = .  2P I R=  so 0 265 W 0 125 A.
17

PI
R

.= = = .
 Ω

 

The sum of the potential changes around the circuit is zero, so total1 5 V 1 5 V 0.IR Ir. + . − − =  

total
3 0 V (0 125 A)(17 ) 7 0 .

0 125 A
r . − .  Ω= = .  Ω

.
 

EVALUATE:   When the power to the bulb has decreased to half its initial value, the total internal resistance 
of the two batteries is nearly half the resistance of the bulb. Compared to a single battery, using two 
identical batteries in series doubles the emf but also doubles the total internal resistance. 

 

 

Figure 25.52 
 

 

 25.53. IDENTIFY:   
2

2 .VP I R VI
R

= = =  .V IR=  

SET UP:   The heater consumes 540 W when 120 V.V =  Energy .Pt=  

EXECUTE:   (a) 
2VP
R

=  so 
2 2(120 V) 26 7

540 W
VR
P

= = = .  Ω  

(b) P VI=  so 540 W 4 50 A
120 V

PI
V

= = = .  

(c) Assuming that R remains 26 7 ,.  Ω
2 2(110 V) 453 W.

26 7
VP
R

= = =
.  Ω

 P is smaller by a factor of 2(110/120) .  

EVALUATE:   (d) With the lower line voltage the current will decrease and the operating temperature will 
decrease. R will be less than 26 7.  Ω  and the power consumed will be greater than the value calculated in 
part (c). 
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through the circuit if the ammeter is removed so that the battery
and the resistor form a complete circuit. Express your answer in
terms of r, and R. The more “ideal” the ammeter, the
smaller the difference between this current and the current 
(b) If and find the maxi-
mum value of the ammeter resistance so that is within 1.0%
of the current in the circuit when the ammeter is absent. (c) Explain
why your answer in part (b) represents a maximum value.
25.76 . CALC A 1.50-m cylinder of radius 1.10 cm is made of a
complicated mixture of materials. Its resistivity depends on the
distance x from the left end and obeys the formula 

where a and b are constants. At the left end, the resistiv-
ity is while at the right end it is 

(a) What is the resistance of this rod? (b) What is the
electric field at its midpoint if it carries a 1.75-A current? (c) If we cut
the rod into two 75.0-cm halves, what is the resistance of each half?
25.77 .. According to the U.S. National Electrical Code, copper
wire used for interior wiring of houses, hotels, office buildings,
and industrial plants is permitted to carry no more than a specified
maximum amount of current. The table below shows the maxi-
mum current for several common sizes of wire with varnished
cambric insulation. The “wire gauge” is a standard used to
describe the diameter of wires. Note that the larger the diameter of
the wire, the smaller the wire gauge. 

Wire gauge Diameter (cm)
14 0.163 18
12 0.205 25
10 0.259 30

8 0.326 40
6 0.412 60
5 0.462 65
4 0.519 85

(a) What considerations determine the maximum current-carrying
capacity of household wiring? (b) A total of 4200 W of power is to
be supplied through the wires of a house to the household electri-
cal appliances. If the potential difference across the group of appli-
ances is 120 V, determine the gauge of the thinnest permissible
wire that can be used. (c) Suppose the wire used in this house is of
the gauge found in part (b) and has total length 42.0 m. At what
rate is energy dissipated in the wires? (d) The house is built in a
community where the consumer cost of electric energy is $0.11 per
kilowatt-hour. If the house were built with wire of the next larger
diameter than that found in part (b), what would be the savings in
electricity costs in one year? Assume that the appliances are kept
on for an average of 12 hours a day.
25.78 .. Compact Fluorescent Bulbs. Compact fluorescent
bulbs are much more efficient at producing light than are ordinary
incandescent bulbs. They initially cost much more, but they last far
longer and use much less electricity. According to one study of
these bulbs, a compact bulb that produces as much light as a 100-W
incandescent bulb uses only 23 W of power. The compact bulb
lasts 10,000 hours, on the average, and costs $11.00, whereas the
incandescent bulb costs only $0.75, but lasts just 750 hours. The
study assumed that electricity costs $0.080 per kilowatt-hour and that
the bulbs are on for 4.0 h per day. (a) What is the total cost (includ-
ing the price of the bulbs) to run each bulb for 3.0 years? (b) How
much do you save over 3.0 years if you use a compact fluorescent
bulb instead of an incandescent bulb? (c) What is the resistance of
a “100-W” fluorescent bulb? (Remember, it actually uses only 23 W
of power and operates across 120 V.)

Imax 1A2
Imax

10-8 Æ # m.
8.50 *2.25 * 10-8 Æ # m,

a + bx2,
r1x2 =

IARA

r = 0.45 Æ,E = 7.50 V,R = 3.80 Æ,
IA.

RA,IA,

25.79 . In the circuit of Fig.
P25.79, find (a) the current
through the 8.0- resistor and
(b) the total rate of dissipation
of electrical energy in the 8.0-
resistor and in the internal
resistance of the batteries. (c) In
one of the batteries, chemical
energy is being converted into
electrical energy. In which one is this happening, and at what rate?
(d) In one of the batteries, electrical energy is being converted into
chemical energy. In which one is this happening, and at what rate?
(e) Show that the overall rate of production of electrical energy
equals the overall rate of consumption of electrical energy in the
circuit.
25.80 . A lightning bolt strikes one end of a steel lightning rod,
producing a 15,000-A current burst that lasts for The rod
is 2.0 m long and 1.8 cm in diameter, and its other end is con-
nected to the ground by 35 m of 8.0-mm-diameter copper wire.
(a) Find the potential difference between the top of the steel rod
and the lower end of the copper wire during the current burst. 
(b) Find the total energy deposited in the rod and wire by the cur-
rent burst.
25.81 . A 12.0-V battery has an internal resistance of and
a capacity of (see Exercise 25.47). The battery is
charged by passing a 10-A current through it for 5.0 h. (a) What is
the terminal voltage during charging? (b) What total electrical
energy is supplied to the battery during charging? (c) What electri-
cal energy is dissipated in the internal resistance during charging?
(d) The battery is now completely discharged through a resistor,
again with a constant current of 10 A. What is the external circuit
resistance? (e) What total electrical energy is supplied to the exter-
nal resistor? (f) What total electrical energy is dissipated in the
internal resistance? (g) Why are the answers to parts (b) and (e) not
the same?
25.82 . Repeat Problem 25.81 with charge and discharge currents
of 30 A. The charging and discharging times will now be 1.7 h
rather than 5.0 h. What differences in performance do you see?
25.83 .. CP Consider the cir-
cuit shown in Fig. P25.83. The
emf source has negligible inter-
nal resistance. The resistors
have resistances 
and . The capacitor
has capacitance .
When the capacitor is fully
charged, the magnitude of the charge on its plates is .
Calculate the emf .
25.84 .. CP Consider the circuit shown in Fig. P25.84. The battery
has emf 60.0 V and negligible internal resistance. ,

, and . After the capacitors have attained
their final charges, the charge on is . (a) What is
the final charge on ? (b) What is the resistance ?R1C2

18.0 mCQ1 =C1

C2 = 6.00 mFC1 = 3.00 mF
2.00 ÆR2 =

E
36.0 mCQ =

C = 9.00 mF
R2 = 4.00 Æ

R1 = 6.00 Æ

50.0 A # h
0.24 Æ

65 ms.

Æ

Æ +

+

E2 5 8.0  V

E1 5 12.0  V r1 5 1.0 V

r2 5 1.0 V

R 5 8.0 V

Figure P25.79

+

R2

R1 CE

Figure P25.83

+

R1

R2 C2E C1

Figure P25.84
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EVALUATE:   (g) Part of the energy originally supplied was stored in the battery and part was lost in the 
internal resistance. So the stored energy was less than what was supplied during charging. Then when 
discharging, even more energy is lost in the internal resistance, and only what is left is dissipated by the 
external resistor. 

 25.82. IDENTIFY and SET UP:   The terminal voltage is ,abV Ir IRε= − =  where R is the resistance connected to 

the battery. During the charging the terminal voltage is .abV Irε= +  P VI=  and energy is .E Pt=  2I r  is 
the rate at which energy is dissipated in the internal resistance of the battery. 
EXECUTE:   (a) 12 0 V (30 A)(0 24 ) 19 2 V.abV Irε= + = . + . Ω = .  

(b) 6(30 A) (19 2 V) (1 7) (3600 s) 3 53 10 J.E Pt IVt= = = . . = . ×  

(c) 2 2 6
diss diss (30 A) (0 24 ) (1 7) (3600 s) 1 32 10 J.E P t I Rt= = = . Ω . = . ×  

(d) Discharged at 30 A: I
r R

ε=
+

 gives 12 0 V (30 A)(0 24 ) 0 16 .
30 A

IrR
I

ε − . − . Ω= = = . Ω  

(e) 2 2 5(30 A) (0 16 ) (1 7) (3600 s) 8 81 10 J.E Pt I Rt= = = . Ω . = . ×  
(f) Since the current through the internal resistance is the same as before, there is the same energy 
dissipated as in (c): 6

diss 1 32 10 J.E = . ×  
EVALUATE:   (g) Again, part of the energy originally supplied was stored in the battery and part was lost in 
the internal resistance. So the stored energy was less than what was supplied during charging. Then when 
discharging, even more energy is lost in the internal resistance, and what is left is dissipated over the 
external resistor. This time, at a higher current, much more energy is lost in the internal resistance.  Slow 
charging and discharging is more energy efficient. 

 25.83. IDENTIFY:   No current flows through the capacitor when it is fully charged. 

SET UP:   With the capacitor fully charged, 
1 2

.I
R R

ε=
+

 RV IR=  and / .CV Q C=  

EXECUTE:   36 0 C 4 00 V.
9 00 FC

QV
C

µ
µ

.  = = = .
.  

 1 4 00 VR CV V= = .  and 1

1

4 00 V 0 667 A.
6 00

RVI
R

.= = = .

.  Ω
 

22 (0 667 A)(4 00 ) 2 668 V.RV IR= = . .  Ω = .  1 2 4 00 V 2 668 V 6 67 V.R RV Vε = + = . + . = .  

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.84. IDENTIFY:   No current flows to the capacitors when they are fully charged. 
SET UP:   RV RI=  and / .CV Q C=  

EXECUTE:   (a) 1
1

1

18 0 C 6 00 V.
3 00 FC

QV
C

µ
µ

.  = = = .
.  

 2 1 6 00 V.C CV V= = .  

2 2 2 (6 00 F)(6 00 V) 36 0 C.CQ C V µ µ= = .  . = .  

(b) No current flows to the capacitors when they are fully charged, so 1 2.IR IRε = +  

2 1 6 00 V.R CV V= = .  2

2

6 00 V 3 00 A.
2 00

RVI
R

.= = = .

.  Ω
 

2 60 0 V 6 00 V 18 0 .
3 00 A

IRR
I

ε − . − .= = = .  Ω
.

 

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.85. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) F ma q E∑ = =  gives .
q a
m E

=  

(b) If the electric field is constant, bcV EL=  and .
bc

q aL
m V

=  
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(b) the voltage drop across the resistor; (c) the charge on the capac-
itor; (d) the current through the resistor? (e) A long time after the
circuit is completed (after many time constants) what are the val-
ues of the quantities in parts (a)–(d)?
26.41 . A capacitor is charged to a potential of 12.0 V and is then
connected to a voltmeter having an internal resistance of 
After a time of 4.00 s the voltmeter reads 3.0 V. What are (a) the
capacitance and (b) the time constant of the circuit?
26.42 . A capacitor is connected through a 
resistor to a constant potential difference of 60.0 V. (a) Compute
the charge on the capacitor at the following times after the connec-
tions are made: 0, 5.0 s, 10.0 s, 20.0 s, and 100.0 s. (b) Compute
the charging currents at the same instants. (c) Graph the results of
parts (a) and (b) for t between 0 and 20 s.
26.43 .. CP In the circuit shown in
Fig. E26.43 both capacitors are ini-
tially charged to 45.0 V. (a) How
long after closing the switch S will
the potential across each capacitor
be reduced to 10.0 V, and (b) what
will be the current at that time?
26.44 . A resistor and a capacitor
are connected in series to an emf source. The time constant for the
circuit is 0.870 s. (a) A second capacitor, identical to the first, is
added in series. What is the time constant for this new circuit? (b)
In the original circuit a second capacitor, identical to the first, is
connected in parallel with the first capacitor. What is the time con-
stant for this new circuit?
26.45 . An emf source with a resistor with 

and a capacitor with are connected in series.
As the capacitor charges, when the current in the resistor is 0.900 A,
what is the magnitude of the charge on each plate of the capacitor?
26.46 . A capacitor is charging through a resis-
tor using a 10.0-V battery. What will be the current when the
capacitor has acquired of its maximum charge? Will it be of the
maximum current?
26.47 .. CP In the circuit shown in
Fig. E26.47 each capacitor initially
has a charge of magnitude 3.50 nC
on its plates. After the switch S is
closed, what will be the current in
the circuit at the instant that the
capacitors have lost 80.0% of their
initial stored energy?
26.48 . A capacitor is
charged to a potential of 50.0 V and then discharged through a

resistor. How long does it take the capacitor to lose (a) half
of its charge and (b) half of its stored energy?
26.49 . In the circuit in Fig. E26.49 the capacitors are all initially
uncharged, the battery has no internal resistance, and the ammeter is
idealized. Find the reading of the ammeter (a) just after the switch S
is closed and (b) after the switch has been closed for a very long time.

175-Æ

12.0-mF

1
4

1
4

12.0-Æ1.50-mF

C = 4.00 mF80.0 Æ,
R =E = 120 V,

0.895-MÆ12.4-mF

3.40 MÆ.

26.50 . In the circuit shown 
in Fig. E26.50, 

and the emf has negli-
gible resistance. Initially the capac-
itor is uncharged and the switch S is
in position 1. The switch is then
moved to position 2, so that the
capacitor begins to charge. (a) What
will be the charge on the capacitor a
long time after the switch is moved
to position 2? (b) After the switch has been in position 2 for 3.00 ms,
the charge on the capacitor is measured to be What is the
value of the resistance R? (c) How long after the switch is moved
to position 2 will the charge on the capacitor be equal to 99.0% of
the final value found in part (a)?
26.51 . A capacitor with is connected as
shown in Fig. E26.50 with a resistor with and an emf
source with and negligible internal resistance. Initially
the capacitor is uncharged and the switch S is in position 1. The
switch is then moved to position 2, so that the capacitor begins to
charge. After the switch has been in position 2 for 10.0 ms, the switch
is moved back to position 1 so that the capacitor begins to discharge.
(a) Compute the charge on the capacitor just before the switch is
thrown from position 2 back to position 1. (b) Compute the voltage
drops across the resistor and across the capacitor at the instant
described in part (a). (c) Compute the voltage drops across the resis-
tor and across the capacitor just after the switch is thrown from posi-
tion 2 back to position 1. (d) Compute the charge on the capacitor
10.0 ms after the switch is thrown from position 2 back to position 1.

Section 26.5 Power Distribution Systems
26.52 . The heating element of an electric dryer is rated at 4.1 kW
when connected to a 240-V line. (a) What is the current in the heat-
ing element? Is 12-gauge wire large enough to supply this current?
(b) What is the resistance of the dryer’s heating element at its oper-
ating temperature? (c) At 11 cents per kWh, how much does it cost
per hour to operate the dryer?
26.53 . A 1500-W electric heater is plugged into the outlet of a
120-V circuit that has a 20-A circuit breaker. You plug an electric
hair dryer into the same outlet. The hair dryer has power settings of
600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer
on the 600-W setting and increase the power setting until the circuit
breaker trips. What power setting caused the breaker to trip?
26.54 . CP The heating element of an electric stove consists of a
heater wire embedded within an electrically insulating material,
which in turn is inside a metal casing. The heater wire has a resist-
ance of at room temperature and a temperature
coefficient of resistivity The heating ele-
ment operates from a 120-V line. (a) When the heating element is
first turned on, what current does it draw and what electrical power
does it dissipate? (b) When the heating element has reached an
operating temperature of what current does it draw
and what electrical power does it dissipate?

PROBLEMS
26.55 .. In Fig. P26.55, the
battery has negligible internal re-
sistance and . 

and .
What must the resistance be
for the resistor network to dis-
sipate electrical energy at a rate
of 295 W?

R3

R4 = 3.00 ÆR2 = 4.00 Æ
R1 =E = 48.0 V

(536°F),280°C

a = 2.8 * 10-31Co2-1.
123.0°C220 Æ

E = 18.0 V
R = 980 Æ

C = 1.50 * 10-5 F

110 mC.

E = 28.0 V,
C = 5.90 mF,

+
–

+
– 50.0 V

30.0 V

20.0
mF

15.0
mF

S

Figure E26.43

+
–

+–

+ –

25.0 V
20.0
pF

15.0 pF

10.0 pF

S

Figure E26.47

+

A

25.0 V50.0 V

75.0 V

25.0 V

10.0 mF20.0
mF

25.0
V100.0 V

15.0 V

15.0 mF

S

Figure E26.49

Switch S
in position 1

R

S

Switch S
in position 2

+

C E

Figure E26.50

R1 R2

+
E R3

R4

Figure P26.55
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7

60

4 00 s 8.49 10 F
12 0 Vln( / ) (3 40 10 )ln
3 00 V

tC
R V V

−.= = = ×
.⎛ ⎞. ×  Ω ⎜ ⎟⎝ ⎠.

 

(b) 6 7(3.40 10  )(8.49 10  F) 2.89 sRCτ −= = × Ω × =  
EVALUATE:   In most laboratory circuits, time constants are much shorter than this one. 

 26.42. IDENTIFY:   For a charging capacitor /( ) (1 )tq t C e τε −= −  and /( ) .ti t e
R

τε −=  

SET UP:   The time constant is 6 6(0 895 10 ) (12 4 10 F) 11.1s.RC −= . × Ω . × =  

EXECUTE:   (a) At /0 s:  (1 ) 0.t RCt q C eε −= = − =  

At / 6 (5 0 s)/(11 1 s) 45 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 2 70 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (10 0 s)/(11 1 s) 410 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 4 42 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (20 0 s)/(11 1 s) 420 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 6 21 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (100 s)/(11 1 s) 4100 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 7 44 10  C.t RCt q C e eε − − − . −= = − = . × . − = . ×  

(b) The current at time t is given by: / .t RCi e
R
ε −=  

At 0/11 1 5
5

60 0 V0 s :  6 70 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 5 11 1 5
5

60 0 V5 s :  4 27 10  A.
8 95 10

/t i e− . −.= = = . ×
. ×  Ω

 

At 10/11 1 5
5

60 0 V10 s :  2 72 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 20/11 1 5
5

60 0 V20 s :  1 11 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 100/11 1 9
5

60 0 V100 s :  8 20 10 A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

(c) The graphs of ( )q t  and ( )i t  are given in Figure 26.42a and b. 
EVALUATE:   The charge on the capacitor increases in time as the current decreases. 

 

  
Figure 26.42 

 

 26.43. IDENTIFY:   The capacitors, which are in parallel, will discharge exponentially through the resistors. 
SET UP:   Since V is proportional to Q, V must obey the same exponential equation as Q,  

– /
0 .t RCV V e=  The current is – /

0( / ) .t RCI V R e=  
EXECUTE:   (a) Solve for time when the potential across each capacitor is 10.0 V: 

0 ln( / ) –(80.0 )(35.0 F) ln(10/45) 4210 s 4.21 mst RC V V µ µ= − = Ω = =  
26-20   Chapter 26 
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(b) – /
0(  / ) .t RCI V R e=  Using the above values, with 0 45.0 V, gives 0.125 A.V I= =  

EVALUATE:   Since the current and the potential both obey the same exponential equation, they are both 
reduced by the same factor (0.222) in 4.21 ms. 

 26.44. IDENTIFY:   In RCτ =  use the equivalent capacitance of the two capacitors. 

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 .
C C C

= +  For capacitors in parallel, eq 1 2.C C C= +  Originally, 

0 870 s.RCτ = = .  
EXECUTE:   (a) The combined capacitance of the two identical capacitors in series is given by 

eq

1 1 1 2 ,
C C C C

= + =  so eq .
2
CC =  The new time constant is thus 0 870 s( /2) 0 435 s.

2
R C .= = .  

(b) With the two capacitors in parallel the new total capacitance is simply 2C. Thus the time constant is 
(2 ) 2(0 870 s) 1 74 s.R C = . = .  

EVALUATE:   The time constant is proportional to eq.C  For capacitors in series the capacitance is 
decreased and for capacitors in parallel the capacitance is increased. 

 26.45. IDENTIFY and SET UP:   Apply the loop rule. The voltage across the resistor depends on the current 
through it and the voltage across the capacitor depends on the charge on its plates. 
EXECUTE:   0R CV Vε − − =  

120 V, (0 900 A)(80 0 ) 72 V, so 48 VR CV IR Vε = = = . .  Ω = =  
6(4 00 10  F)(48 V) 192 CQ CV µ−= = . × =   

EVALUATE:   The initial charge is zero and the final charge is 480 C.Cε µ=   Since current is flowing at the 
instant considered in the problem the capacitor is still being charged and its charge has not reached its final 
value. 

 26.46. IDENTIFY:   The charge is increasing while the current is decreasing. Both obey exponential equations, but 
they are not the same equation.  
SET UP:   The charge obeys the equation /

max (1 ),t RCQ Q e−= −  but the equation for the current is 
– /

max .t RCI I e=  

EXECUTE:   When the charge has reached 1
4  of its maximum value, we have – /

max max/4 (1– ),t RCQ Q e=  

which says that the exponential term has the value – / 3
4 .t RCe =  The current at this time is 

– /
max maxI (3/4) (3/4)[(10.0 V)/(12.0 )] 0.625 A.t RCI I e= = = Ω =  

EVALUATE:   Notice that the current will be 3
4 ,  not 1

4 ,  of its maximum value when the charge is 1
4  of its 

maximum. Although current and charge both obey exponential equations, the equations have different 
forms for a charging capacitor. 

 26.47. IDENTIFY:   The stored energy is proportional to the square of the charge on the capacitor, so it will obey 
an exponential equation, but not the same equation as the charge. 
SET UP:   The energy stored in the capacitor is 2 /2U Q C=  and the charge on the plates is – /

0 .t RCQ e  The 

current is – /
0 .t RCI I e=  

EXECUTE:   2 – / 2 –2 /
0 0/2 ( ) /2C .t RC t RCU Q C Q e U e= = =  When the capacitor has lost 80% of its stored 

energy, the energy is 20% of the initial energy, which is –2 /
0 0 0/5. /5  t RCU U U e=  gives 

( /2) ln 5 (25.0 )(4.62 pF)(ln 5)/2 92.9 ps.t RC= = Ω =  

At this time, the current is – / – /
0 0 ( / ) ,t RC t RCI I e Q RC e= =  so 

–(92.9 ps)/[(25.0 )(4.62 pF)](3.5 nC)/[(25.0 )(4.62 pF)] e 13.6 A.I Ω= Ω =  
EVALUATE:   When the energy is reduced by 80%, neither the current nor the charge are reduced by that 
percent. 



Problems 879

26.56 . A 2.4-W resistor is needed, but only several
1.2-W resistors are available (see Exercise 26.10). (a)

What two different combinations of the available units give the
required resistance and power rating? (b) For each of the resistor
networks from part (a), what power is dissipated in each resistor
when 2.4 W is dissipated by the combination?
26.57 . CP A 20.0-m-long cable consists of a solid-inner, cylin-
drical, nickel core 10.0 cm in diameter surrounded by a solid-outer
cylindrical shell of copper 10.0 cm in inside diameter and 20.0 cm
in outside diameter. The resistivity of nickel is 
(a) What is the resistance of this cable? (b) If we think of this cable
as a single material, what is its equivalent resistivity?
26.58 . Two identical wires are laid side by side and sol-
dered together so they touch each other for half of their lengths.
What is the equivalent resistance of this combination?
26.59 . The two identical light bulbs in Example 26.2 (Section
26.1) are connected in parallel to a different source, one with

and internal resistance Each light bulb has a
resistance (assumed independent of the current
through the bulb). (a) Find the current through each bulb, the
potential difference across each bulb, and the power delivered to
each bulb. (b) Suppose one of the bulbs burns out, so that its fila-
ment breaks and current no longer flows through it. Find the power
delivered to the remaining bulb. Does the remaining bulb glow
more or less brightly after the other bulb burns out than before?
26.60 .. Each of the three resistors in Fig.
P26.60 has a resistance of and can
dissipate a maximum of 48 W without
becoming excessively heated. What is the
maximum power the circuit can dissipate?
26.61 . If an ohmmeter is connected between points a and b in
each of the circuits shown in Fig. P26.61, what will it read?

26.62 .. CP For the circuit shown in Fig. P26.62 a resis-
tor is embedded in a large block of ice at 0.00°C, and the battery
has negligible internal resistance. At what rate (in ) is this cir-
cuit melting the ice? (The latent heat of fusion for ice is 

)

26.63 . Calculate the three currents and indicated in the
circuit diagram shown in Fig. P26.63.

I3I2,I1,

105 J>kg.
3.34 *

g>s20.0-Æ

2.4 Æ

R = 2.0 Æ
0.8 Æ.E = 8.0 V

3.00-Æ

7.8 * 10-8 Æ # m.

400-Æ,
400-Æ, 26.64 ... What must the emf in Fig. P26.64 be in order for the

current through the resistor to be 1.80 A? Each emf source
has negligible internal resistance.

7.00-Æ
E

75.0 V 25.0 V

40.0 V 50.0 V

50.0 V

100.0 V ba(a)

45.0 V

30.0 V

60.0 V

20.0 V

7.00 V 10.0 V ba(b)

Figure P26.61

26.65 . Find the current through each of the three resistors of the
circuit shown in Fig. P26.65. The emf sources have negligible
internal resistance.
26.66 . (a) Find the current through the battery and each resistor
in the circuit shown in Fig. P26.66. (b) What is the equivalent
resistance of the resistor network?

+10.0 V

10.0 V

20.0 V

20.0 V

15.0 V

Ice

45.0 V

5.00 V

Figure P26.62

Figure P26.60

26.67 .. (a) Find the potential of point a with respect to point b in
Fig. P26.67. (b) If points a and b are connected by a wire with neg-
ligible resistance, find the current in the 12.0-V battery.

10.00 V

+
1.00
V

+
1.00
V

5.00 V 8.00 V

9.00
V

12.00
V

I2 I1

I3

Figure P26.63

+
24.0 V

2.00
V

+

7.00 V
3.00 V

E

Figure P26.64

36.0 V4.00
V

+

+

+

5.00 V20.0 V

14.0 V

2.00
V

Figure P26.65

+ R3 5 1.00 V
14.0

V

R1 5 1.00 V

R4 5 2.00 V

R2 5 2.00 V

R5 5 1.00 V

Figure P26.66

26.68 .. Consider the circuit shown in Fig. P26.68. (a) What
must the emf of the battery be in order for a current of 2.00 A to
flow through the 5.00-V battery as shown? Is the polarity of the
battery correct as shown? (b) How long does it take for 60.0 J of
thermal energy to be produced in the resistor?10.0-Æ

E

3.00
V

1.00 V 10.0 Vba

+

+

1.00 V 12.0 V

+
1.00 V 8.0 V

1.00 V

2.00 V

2.00 V

2.00 V

Figure P26.67

5.0 V

5.0 V
10.0 V

20.0 V

15.0 V E

2.00 A

30.0 V 5.0 V

10.0 V 20.0 V

60.0 V

60.0 V

+

+

+

Figure P26.68

26.69 .. CP A 1.00-km cable having a cross-sectional area of
is to be constructed out of equal lengths of copper 0.500 cm2
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EXECUTE:   loop (1):  1 2 120 0 V (2 00 ) 14 0 V ( )(4 00 ) 0I I I+ . − .  Ω − . + − .  Ω =  

1 26 00 4 00 6 00 AI I. − . = .  

1 23 00 2 00 3 00 AI I. − . = .   eq. (1) 
loop (2):  2 2 136 0 V (5 00 ) ( )(4 00 ) 0I I I+ . − .  Ω − − .  Ω =  

1 24 00 9 00 36 0 AI I− . + . = .   eq. (2) 

Solving eq. (1) for 2
1 1 23 gives 1 00 AI I I= . +  

Using this in eq. (2) gives 2
2 234 00(1 00 A ) 9 00 36 0 AI I− . . + + . = .  

8
2 23( 9 00) 40 0 A and 6 32 A.I I− + . = . = .   

Then 2 2
1 23 31 00 A 1 00 A (6 32 A) 5 21 A.I I= . + = . + . = .  

In summary then  
Current through the 2 00-. Ω  resistor: 1 5 21 A.I = .  
Current through the 5 00-. Ω  resistor: 2 6 32 A.I = .  
Current through the 4 00-. Ω  resistor: 2 1 6 32 A 5 21 A 1 11 A.I I− = . − . = .  
EVALUATE:   Use loop (3) to check. 1 220 0 V (2 00 ) 14 0 V 36 0 V (5 00 ) 0I I+ . − .  Ω − . + . − .  Ω =  
(5 21 A)(2 00 ) (6 32 A)(5 00 ) 42 0 V. .  Ω + . .  Ω = .  
10 4 V 31 6 V 42 0 V,. + . = .  so the loop rule is satisfied for this loop. 

 26.66. IDENTIFY:   Apply the loop and junction rules. 
SET UP:   Use the currents as defined on the circuit diagram in Figure 26.66 and obtain three equations to 
solve for the currents. 
EXECUTE:   1 1 2Left loop: 14 2( ) 0I I I− − − =  and 1 23 2 14.I I− =   

1 2 1Top loop: 2( ) 0I I I I− − + + =  and 1 22 3 0.I I I− + + =  
Bottom loop: 1 2 1 2 2( ) 2( ) 0I I I I I I− − + + − − =  and 1 23 4 0.I I I− + − =  
Solving these equations for the currents we find: 

1 3battery 1 210.0 A; 6.0 A; 2.0 A.R RI I I I I I= = = = = =  

So the other currents are: 
2 4 51 1 2 1 24 0 A; 4 0 A; 6 0 A.R R RI I I I I I I I I I= − = . = − = . = − + = .  

(b) eq
14 0 V 1 40 .
10 0 A

VR
I

.= = = . Ω

.
 

EVALUATE:   It isn’t possible to simplify the resistor network using the rules for resistors in series and 
parallel. But the equivalent resistance is still defined by eq.V IR=  

 

 

Figure 26.66 
 

 26.67. (a) IDENTIFY:   Break the circuit between points a and b means no current in the middle branch that 
contains the 3.00-Ω resistor and the 10.0-V battery. The circuit therefore has a single current path. Find  
the current, so that potential drops across the resistors can be calculated. Calculate abV  by traveling from  
a to b, keeping track of the potential changes along the path taken. 


