Magnetic forces: Magnetic interactions are fundamen-
tally interactions between moving charged particles.
These interactions are described by the vector magnetic
field, denoted by B.A particle with charge ¢ moving
with velocity ¥ in a magnetic field B experiences a force
F that is perpendicular to both ¥ and B. The SI unit of
magnetic field is the tesla (1 T = 1 N/A-m). (See
Example 27.1.)

Magnetic field lines and flux: A magnetic field can be
represented graphically by magnetic field lines. At each
point a magnetic field line is tangent to the direction of
B at that point. Where field lines are close together the
field magnitude is large, and vice versa. Magnetic flux
@ p through an area is defined in an analogous way to
electric flux. The SI unit of magnetic flux is the weber
(1 Wb = 1 T-m?). The net magnetic flux through any
closed surface is zero (Gauss’s law for magnetism). As a
result, magnetic field lines always close on themselves.
(See Example 27.2.)

Motion in a magnetic field: The magnetic force is always
perpendicular to U; a particle moving under the action of
a magnetic field alone moves with constant speed. In a
uniform field, a particle with initial velocity perpendicu-
lar to the field moves in a circle with radius R that
depends on the magnetic field strength B and the parti-
cle mass m, speed v, and charge g. (See Examples 27.3
and 27.4.)

Crossed electric and magnetic fields can be used as a
velocity selector. The electric and magnetic forces exactly
cancel when v = E/B. (See Examples 27.5 and 27.6.)
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(I)B = /BldA

= /Bcosqﬁ dA (27.6)
%ﬁwﬁ = 0 (closed surface) (27.8)
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Magnetic force on a conductor: A straight segment of a
conductor carrying current [ in a uniform magnetic ﬁeld
B experiences a force F that is perpendicular to both B
and the vector l which points in the direction of the
current and has magnitude equal to the length of the
segment. A similar relationship gives the force dF on an
infinitesimal current-carrying segment dl. (See Exam-
ples 27.7 and 27.8.)

Magnetic torque: A current loop with area A and current
I in a uniform magnetic field B experiences no net mag-
netic force, but does experience a magnetic torque of
magnitude 7. The vector torque 7 can be expressed in
terms of the magnetic moment g = IA of the loop, as
can the potential energy U of a magnetic moment in a
magnetic field B. The magnetic moment of a loop
depends only on the current and the area; it is independ-
ent of the shape of the loop. (See Examples 27.9 and
27.10.)

dF = 1dl X B
7 = IBAsin¢
7= XB
U= —ji+B =

(27.19)

(27.20)

(27.23)
(27.26)

(27.27)




Electric motors: In a dc motor a magnetic field exerts a torque on a current in the rotor. Motion of the RO O
rotor through the magnetic field causes an induced emf called a back emf. For a series motor, in which
the rotor coil is in parallel with coils that produce the magnetic field, the terminal voltage is the sum of
the back emf and the drop /r across the internal resistance. (See Example 27.11.)

The Hall effect: The Hall effect is a potential difference =L
perpendicular to the direction of current in a conductor, "4 ~ E
when the conductor is placed in a magnetic field. The

Hall potential is determined by the requirement that the

associated electric field must just balance the magnetic

force on a moving charge. Hall-effect measurements can

be used to determine the sign of charge carriers and

their concentration n. (See Example 27.12.)

(27.30]




271.9 -+ A group of particles is traveling in a magnetic field of
unknown magnitude and direction. You observe that a proton mov-
ing at 1.50 km/s in the +x-direction experiences a force of
2.25 X 107" N in the +y-direction, and an electron moving at
4.75 km/s in the —z-direction experiences a force of 8.50 X
107'® N in the +y-direction. (a) What are the magnitude and
direction of the magnetic field? (b) What are the magnitude and
direction of the magnetic force on an electron moving in the
—y-direction at 3.20 km/s?



27.9.

IDENTIFY: Apply F =gvxB to the force on the proton and to the force on the electron. Solve for the

components of B and use them to find its magnitude and direction.
SETUP: F is perpendicular to both ¥ and B. Since the force on the proton is in the +y-direction,

B,=0 and B= Bxf + lez. For the proton, v, =(1.50 km/s)f = vpf and Fp =(2.25 x10716 N),;' = Fp}. For
the electron, v, =—(4.75 km/s)lg = —veI€ and Fe =(8.50x% 1071 N)} = Fe}. The magnetic force is

F =gvxB.

EXECUTE: (a) For the proton, Fp =qv, X B gives Fp} = evpt: X (th: + lee) = —evaZ}. Solving for B,

: 1§ 2.25%107' S
gives B, =——2 = Sx10 N =-0.9375 T. For the electron, F, =—ev,x B, which gives

ev,  (1.60x107" C)(1500 m/s)
F,j=(—e)(—v.k)X(B.i + B,k) = ev,B_j. Solving for B, gives
F, 8.50x107'° N
Y eve  (1.60x1071 C)(4750 mJs)

B,=—%=

=1.118 T. Therefore B =1.118 Ti —0.9375 Tk. The magnitude of

the fieldis B = \/Bf +BZ2 = \/(1.1 18 T)2 +(-0.9375 T)2 =1.46 T. Calling @ the angle that the magnetic

field makes with the +x-axis, we have tan@ = % = % =-0.8386, so € =-40.0°. Therefore the

magnetic field is in the xz-plane directed at 40.0° from the +x-axis toward the —z-axis, having a
magnitude of 1.46 T.

(b) B=B.i+Bk and v = (3.2 km/s)(—j).

F = qv x B = (—€)(3.2 km/s)(—j) X (B,i + B_k) = e(3.2x10° m/s)[B,(—k)+ B.i].

F =e(3.2x10° m/s)(=1.118 Tk —0.9375 Ti)=—4.80x10"'® Ni —5.724x107'® Nk.
F

=,/ sz + FZ2 =747x10716 N. Calling @ the angle that the force makes with the —x-axis, we have

F, —-5724x107'° N
tanf=—== ——
F,  —4.800x107"° N
50.0° from the —x-axis toward either the —z-axis.

EVALUATE: The force on the electrons in parts (a) and (b) are comparable in magnitude because the

electron speeds are comparable in both cases.

which gives 8 =50.0°. The force is in the xz-plane and is directed at



27.13 -+ An electron at point A
in Fig. E27.15 has a speed v of
1.41 x 10° m/s. Find (a) the
magnitude and direction of
the magnetic field that will cause
the electron to follow the semi-
circular path from A to B, and
(b) the time required for the
electron to move from A to B.

Figure E27.15
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27.15.

(a) IDENTIFY: Apply Eq. (27.2) to relate the magnetic force F to the directions of ¥ and B. The electron
has negative charge so F is opposite to the direction of ¥ x B. For motion in an arc of a circle the

acceleration is toward the center of the arc so F must be in this direction. a = v*/R.
SET UP:

vo X B As the electron moves in the semicircle,
its velocity is tangent to the circular path.
The direction of ¥ X B at a point along

the path is shown in Figure 27.15.

——

0.100 m

Figure 27.15

EXECUTE: For circular motion the acceleration of the electron a4 is directed in toward the center of the

circle. Thus the force F 'z exerted by the magnetic field, since it is the only force on the electron, must be

radially inward. Since ¢ is negative, F, s 1s opposite to the direction given by the right-hand rule for

Vo X B. Thus B is directed into the page. Apply Newton’s second law to calculate the magnitude of B:

Y F =ma gives Y. F,y=ma Fy=m(*/R)

Fp= |q|vBsin¢ = |q|vB, SO |q|vB =m(V*/R)

mv  (9.109x107! kg)(1.41x10° my/s)

B |g| R B (1.602x107" €)(0.050 m)

(b) IDENTIFY and SET UP: The speed of the electron as it moves along the path is constant. (F, 'z changes

=1.60x107* T

the direction of v but not its magnitude.) The time is given by the distance divided by v.

EXECUTE: The distance along the semicircular path is zZR, so ¢ = zR _ 7(0.050m)

Vo 1.41x10° m/s

EVALUATE: The magnetic field required increases when v increases or R decreases and also depends on
the mass to charge ratio of the particle.

=1.11x107" s.



27.27 = Aproton (¢ = 1.60 X 10719 C, m = 1.67 X 1072 kg)

moves in a uniform magnetic field B = (0.500 T)z. At r = O the
proton has velocity components v, = 1.50 X 10° m/s, v, = 0,
and v, = 2.00 X 10° m/s (see Example 27.4). (a) What are the
magnitude and direction of the magnetic force acting on the pro-
ton? In addition to the magnetic field there is a uniform electric
field in the +x-direction, E = (+2.00 X 10* V/m)i. (b) Will the
proton have a component of acceleration in the direction of
the electric field? (c) Describe the path of the proton. Does the
electric field affect the radius of the helix? Explain. (d) At = T/2,
where T is the period of the circular motion of the proton, what is
the x-component of the displacement of the proton from its posi-
tionatt = 0?



27.27.

(a) IDENTIFY and SET UP: Eq. (27.4) gives the total force on the proton. At ¢ =0,

F=gvxB= q(vxf + vzle)xBxf = quBx}.

F =(1.60x107" €)(2.00%10° m/s)(0.500 T)j = (1.60x107"* N);.

(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton

is positive, and there is a component of acceleration in this direction.
(¢) EXECUTE: In the plane perpendicular to B (the yz-plane) the motion is circular. But there is a

velocity component in the direction of B, so the motion is a helix. The electric field in the +i direction

exerts a force in the +i direction. This force produces an acceleration in the +i direction and this causes
the pitch of the helix to vary. The force does not affect the circular motion in the yz-plane, so the electric
field does not affect the radius of the helix.

(d) IDENTIFY and SET UP: Eq. (27.12) and T =27/@ to calculate the period of the motion. Calculate a,
produced by the electric force and use a constant acceleration equation to calculate the displacement in the
x-direction in time 772.

EXECUTE: Calculate the period 7: @w= |q|B/m

27 2zm_ 2x(1.67x107% kg)

o |g|B  (1.60x107"° €)(0.500 T)
Vo, =1.50x10° mv/s

=1.312x107" s. Then t=T/2=6.56x10"" s.

_F,_ (1.60x10™" €)(2.00x10* V/m)

= = =+1.916x10"? m/s>
m 1.67x107%7 kg

X

X=Xy =v0xt+%axt2
x—xy =(1.50x10° m/s)(6.56x10™° §) +1(1.916x10"* m/s?)(6.56x10™" 5)* =1.40 cm

EVALUATE: The electric and magnetic fields are in the same direction but produce forces that are in
perpendicular directions to each other.



27.31 = A 150-V battery is connected across two parallel metal
plates of area 28.5 cm?® and separation 8.20 mm. A beam of alpha
particles (charge +2e, mass 6.64 X 102’ kg) is accelerated from
rest through a potential differ-  Figure E27.31

ence of 1.75 kV and enters the
region between the plates per-
pendicular. to Fhe electric field, U L sy
as shown in Fig. E27.31. What ' S
magnitude and direction of
magnetic field are needed so
that the alpha particles emerge undeflected from between the
plates?

an



27.31.
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IDENTIFY: For the alpha particles to emerge from the plates undeflected, the magnetic force on them must
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on
the alpha particles.

SET Up: First use energy conservation to find the speed of the alpha particles as they enter the region between

the plates: gV =1/2 mv?. The electric field between the plates due to the battery is £ =V, d. For the alpha
particles not to be deflected, the magnetic force must cancel the electric force, so gvB = gE, giving B = E/v.
EXECUTE: Solve for the speed of the alpha particles just as they enter the region between the plates. Their

charge is 2e.
-19
v, = /2(2e)V: 4(1.60x10 _(2?3(1750\/) _411x10° m/s
m 6.64x107"" kg

The electric field between the plates, produced by the battery, is
E =V,/d =(150 V)/(0.00820 m) =18,300 V/m

The magnetic force must cancel the electric force:
B=Elv, =(18,300 V/m)/(4.11x10° m/s) = 0.0445 T

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the
electric field points upward, the magnetic field is out of the page.

EVALUATE: The sign of the charge of the alpha particle does not enter the problem, so negative charges
of the same magnitude would also not be deflected.



21.42 - Magnetic Balance.

The circuit shown in Fig. E27.42
is used to make a magnetic bal-
ance to weigh objects. The mass
m to be measured is hung from
the center of the bar that is in a
uniform magnetic field of 1.50 T,
directed into the plane of the fig-
ure. The battery voltage can be
adjusted to vary the current in the
circuit. The horizontal bar is

Figure E27.42

a p 5:00Q
—e— Battery —e—AAAM—
B
x| X X Bar X X X |x
X X X X X X X
m

60.0 cm long and is made of extremely light-weight material. It is
connected to the battery by thin vertical wires that can support no
appreciable tension; all the weight of the suspended mass m is sup-
ported by the magnetic force on the bar. A resistor with R = 5.00 ()
18 1n series with the bar; the resistance of the rest of the circuit is much
less than this. (a) Which point, a or b, should be the positive terminal
of the battery? (b) If the maximum terminal voltage of the battery is
175 V, what is the greatest mass m that this instrument can measure?



27.42. IDENTIFY: The magnetic force F 'z must be upward and equal to mg. The direction of F s 1s determined

by the direction of / in the circuit.
SET UP: Fj =[IBsing, with ¢=90°. 1= %, where V' is the battery voltage.

EXECUTE: (a) The forces are shown in Figure 27.42. The current / in the bar must be to the right to
produce F 'z upward. To produce current in this direction, point ¢ must be the positive terminal of the

battery.

(b) Fg=mg. IIB=mg. m =H—B =@ _ {175 V)(0.600 m)(1.520 D_ 3.21 kg.
g Rg (5.00 2)(9.80 m/s”)

EVALUATE: If the battery had opposite polarity, with point a as the negative terminal, then the current
would be clockwise and the magnetic force would be downward.

Fy

Figure 27.42



27.51 < In a shunt-wound dc  Figure E27.51
motor with the field coils and

rotor connected in parallel (Fig. T
E27.51), the resistance R; of the

field coils is 106 Q, and the 120V R; E R
resistance R, of the rotor is ¢

5.9 Q). When a potential differ- -
ence of 120 V is applied to the
brushes and the motor is running at full speed delivering mechani-
cal power, the current supplied to it is 4.82 A. (a) What is the cur-
rent in the field coils? (b) What is the current in the rotor? (¢) What
is the induced emf developed by the motor? (d) How much
mechanical power is developed by this motor?




27.51.

IDENTIFY: The circuit consists of two parallel branches with the potential difference of 120 V applied
across each. One branch is the rotor, represented by a resistance R, and an induced emf that opposes the
applied potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents
through the field coil and through the rotor to the 4.82 A supplied to the motor.

SET Up: The circuit is sketched in Figure 27.51.

" (=438 o Eis the induced emf developed by the motor.
l ; It is directed so as to oppose the current
! through the rotor.
R=590Q
V=120V R, =106 Q
‘ : :
Figure 27.51

EXECUTE: (a) The field coils and the rotor are in parallel with the applied potential difference
V,soV=IR;. I} =1=w=1.13 A.
Ry 106 Q
(b) Applying the junction rule to point ¢ in the circuit diagram gives / —I; -1, =0.
I,=1-1; =482 A-1.13 A=3.69 A.
(¢) The potential drop across the rotor, /,R, + &, must equal the applied potential difference
ViV=I[R+E
E=V-ILR =120V —-(3.69 A)(5.9Q)=982V
(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical
energy in the resistance of the motor:
electrical power input to the motor
P, =1V=(482 A)(120 V) =578 W
electrical power loss in the two resistances
Bogs = IFRe + I2R, = (1.13 A)* (106 Q) +(3.69 A)*(5.9Q) =216 W
mechanical power output
P =B, —Boss =578 W-216 W =362 W
The mechanical power output is the power associated with the induced emf €.
P =P =€I,=(982V)(3.69 A)=362 W, which agrees with the above calculation.

EVALUATE: The induced emf reduces the amount of current that flows through the rotor. This motor
differs from the one described in Example 27.11. In that example the rotor and field coils are connected in
series and in this problem they are in parallel.

0SS



portion of a silver ribbon with

z; = 11.8 mm and y; = y
0.23 mm, carrying a current of
120 A in the +x-direction. The
ribbon lies in a uniform magnetic }L/

field, in the y-direction, with )E

magnitude 0.95 T. Apply the sim- e ~;
plified model of the Hall effect

presented in Section 27.9. If

there are 5.85 X 10?2 free electrons per cubic meter, find (a) the
magnitude of the drift velocity of the electrons in the x-direction; (b)
the magnitude and direction of the electric field in the z-direction
due to the Hall effect; (c) the Hall emf.

A
&

X



27.53.

IDENTIFY: The drift velocity is related to the current density by Eq. (25.4). The electric field is
determined by the requirement that the electric and magnetic forces on the current-carrying charges are
equal in magnitude and opposite in direction.

(a) SET Up: The section of the silver ribbon is sketched in Figure 27.53a.

® ol J, =n‘q‘vd
().oll:x m L 13

X

nlq

S0 vy =

Figure 27.53a

EXECUTE: J, = 1. 1320 A =4.42x107 A/m?
4 yz o (023107 m)(0.0118 m)
J, 4.42x107 A/m?

=4.7x107> m/s =4.7 mm/s

Vv, = =

T nlgl (5.85%10% /m)(1.602x107° C)
(b) magnitude of E
|aE- =|a|vaB,
E, =v4B, =(4.7x107 m/s)(0.95 T) =4.5x10~ V/m
direction of E
The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.53b.

Y 1 . =
B® IT"B:qﬁxE:ferBJ,

Figure 27.53b

The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.53c.

TFF F“E must oppose 17"3 SO 17"E is in
e the —z-direction.
oo

Figure 27.53¢

17"5 =qE =—¢E so E is opposite to the direction of FE and thus E is in the +z-direction.
(c¢) The Hall emf is the potential difference between the two edges of the strip (atz=0 and z =z) that
results from the electric field calculated in part (b). Ey, = Ez; =(4.5%1 073 V/m)(0.0118 m) =53 uV.

EVALUATE: Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is
more than an order of magnitude larger than in Example 27.12. In this problem the magnetic field and
current density are larger than in the example, and this leads to a larger Hall emf.



27.58 .- Magnetic Moment of the Hydrogen Atom. In the
Bohr model of the hydrogen atom (see Section 38.5), in the lowest
energy state the electron orbits the proton at a speed of 2.2 X
10° m/s in a circular orbit of radius 5.3 X 10~!! m. (a) What is
the orbital period of the electron? (b) If the orbiting electron is con-
sidered to be a current loop, what is the current /? (c) What is the
magnetic moment of the atom due to the motion of the electron?



27.58.
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IDENTIFY: The period is T =2zr/v, the current is O/t and the magnetic moment is & = /A.

SET Up: The electron has charge —e. The area enclosed by the orbit is 7.

EXECUTE: (a) T =2xr/v= 1.5x1071¢ g

(b) Charge —e passes a point on the orbit once during each period, so [ =0/t =e/t =1.1 mA.
(¢) u=IA=1Imr* =93x107** A-m?

EVALUATE: Since the electron has negative charge, the direction of the current is opposite to the direction
of motion of the electron.



27.68 - Mass Spectrograph. A mass spectrograph is used to
measure the masses of ions, or to separate ions of different masses
(see Section 27.5). In one design for such an instrument, ions with
mass m and charge g are accelerated through a potential difference
V. They then enter a uniform magnetic field that is perpendicular to
their velocity, and they are deflected in a semicircular path of
radius R. A detector measures where the ions complete the semicir-
cle and from this it is easy to calculate R. (a) Derive the equation
for calculating the mass of the ion from measurements of B, V, R,
and ¢. (b) What potential difference V is needed so that singly ion-
ized '2C atoms will have R = 50.0 cm in a 0.150-T magnetic
field? (c) Suppose the beam consists of a mixture of '2C and '*C
ions. If v and B have the same values as in part (b), calculate the
separation of these two isotopes at the detector. Do you think that
this beam separation is sufficient for the two ions to be distin-
guished? (Make the assumption described in Problem 27.67 for the
masses of the ions.)



27.68.

IDENTIFY: Apply conservation of energy to the acceleration of the ions and Newton’s second law to their
motion in the magnetic field.

SET Up: The singly ionized ions have g =+e. A 12C jon has mass 12 uand a '*C ion has mass 14 u,

where 1u=1.66x107%’ kg.

. . . [2qV .
EXECUTE: (a) During acceleration of the ions, gV = %mv2 and v= 2" In the magnetic field,

m
2p2
R_mv:m\/2qV/m andm:qBR ‘

qB qB 2V
) V= gB’R* _ (1.60x10™" €)(0.150 T)*(0.500 m)* _ 5263108 V
2m 2(12)(1.66x107%7 kg)

. . . . ’ZV
(c) The ions are separated by the differences in the diameters of their paths. D =2R =2 7’?, SO
q

_2\/2Vr;1
14 9B
o \/2(2.26><104 V)(1.66x10727 kg)

(1.6x107Y €)(0.150 T)?
distinguishable.

2V
qB

. JW“;) (d —2),
12 9B

(\/ﬁ - \/E) =8.01x1072 m. This is about 8 cm and is easily

2(1.60x107" C)(2.26x10*V)
12(1.66x10727 kg)

very fast, but well below the speed of light, so relativistic mechanics is not needed.

=6.0x10> m/s. This is

EVALUATE: The speed of the 12C jonis v= \/



21.69 - A straight piece of Figure P27.69
conducting wire with mass M and
length L 1s placed on a friction-
less incline tilted at an angle 6 Wire, mass M
from the horizontal (Fig. P27.69).
There is a ugiform, vertical mag- \I
netic field B at all points (pro- 0/
duced by an arrangement of N
magnets not shown in the fig-

ure). To keep the wire from sliding down the incline, a voltage
source is attached to the ends of the wire. When just the right
amount of current flows through the wire, the wire remains at rest.
Determine the magnitude and direction of the current in the wire
that will cause the wire to remain at rest. Copy the figure and draw
the direction of the current on your copy. In addition, show in a
free-body diagram all the forces that act on the wire.

A B (vertical)

/%




27.69.

IDENTIFY: The force exerted by the magnetic field is given by Eq. (27.19). The net force on the wire must
be zero.

SET UP: For the wire to remain at rest the force exerted on it by the magnetic field must have a
component directed up the incline. To produce a force in this direction, the current in the wire must be

directed from right to left in Figure P27.69 in the textbook. Or, viewing the wire from its left-hand end the
directions are shown in Figure 27.69a.

Figure 27.69a

The free-body diagram for the wire is given in Figure 27.69b.

y

EXECUTE: ZFy =0
F;cosf—Mgsinf=0

§ F; = ILBsing
\Yg snd ¢ =90° since B is perpendicular to the
/ current direction.
Mgcos 6 /
X Mg
Figure 27.69b
. M,
Thus (ILB) cos@—Mgsin@=0 and [ = %ne.

EVALUATE: The magnetic and gravitational forces are in perpendicular directions so their components
parallel to the incline involve different trig functions. As the tilt angle @ increases there is a larger

component of Mg down the incline and the component of F; up the incline is smaller; / must increase with
6 to compensate. As 8 — 0, I —> 0 and as 8 — 90°, [ — <o,



21.19 -+ CP CALC A thin, uniform
rod with negligible mass and length
0.200 m is attached to the floor by a
frictionless hinge at point P (Fig.
P27.79). A horizontal spring with
force constant k = 4.80 N/m con-
nects the other end of the rod to a ver-
tical wall. The rod is in a uniform
magnetic field B = 0.340 T directed
into the plane of the figure. There is
current / = 6.50 A in the rod, in the
direction shown. (a) Calculate the

torque due to the magnetic force on the rod, for an axis at P. Is it
correct to take the total magnetic force to act at the center of grav-
ity of the rod when calculating the torque? Explain. (b) When the
rod is in equilibrium and makes an angle of 53.0° with the floor, is
the spring stretched or compressed? (c) How much energy is stored

Figure P27.79

in the spring when the rod is in equilibrium?



27.79.

IDENTIFY: Use Eq. (27.20) to calculate the force and then the torque on each small section of the rod and
integrate to find the total magnetic torque. At equilibrium the torques from the spring force and from the
magnetic force cancel. The spring force depends on the amount x the spring is stretched and then

U= %kx2 gives the energy stored in the spring.
(a) SET UpP:

Divide the rod into infinitesimal sections
of length dr, as shown in Figure 27.79.

Figure 27.79

EXECUTE: The magnetic force on this section is dF; = IBdr and is perpendicular to the rod. The torque
dt due to the force on this section is d7 =rdF; = IBrdr. The total torque is

/
Idr = IBIOrdr = %IlzB =0.0442 N - m, clockwise.

(b) SET UP: F; produces a clockwise torque so the spring force must produce a counterclockwise torque.

The spring force must be to the left; the spring is stretched.
EXECUTE: Find x, the amount the spring is stretched:
2. 7=0, axis at hinge, counterclockwise torques positive

(kx)lsin53° =L 17B =0

o B _(650A)0200m)O0340T) _ o cec
2ksin53.0° 2(4.80 N/m)sin53.0°

(©) U=1k’=798x10"J

EVALUATE: The magnetic torque calculated in part (a) is the same torque calculated from a force diagram
in which the total magnetic force F; =IIB acts at the center of the rod. We didn’t include a gravity torque

since the problem said the rod had negligible mass.



27.89 <-» A particle with charge 2.15 uC and mass 3.20 X
107" kg is initially traveling in the +y-direction with a speed
vy = 1.45 X 10° m/s. It then enters a region containing a uni-
form magnetic field that is directed into, and perpendicular to, the
page in Fig. P27.89. The magnitude of the field is 0.420 T. The

Figure P27.89
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region extends a distance of 25.0 cm along the initial direction of
travel; 75.0 cm from the point of entry into the magnetic field
region is a wall. The length of the field-free region is thus 50.0 cm.
When the charged particle enters the magnetic field, it follows a
curved path whose radius of curvature is R. It then leaves the mag-
netic field after a time ¢4, having been deflected a distance Ax;.
The particle then travels in the field-free region and strikes the wall
after undergoing a total deflection Ax. (a) Determine the radius R
of the curved part of the path. (b) Determine ¢, the time the parti-
cle spends in the magnetic field. (¢c) Determine Ax, the horizontal
deflection at the point of exit from the field. (d) Determine Ax, the
total horizontal deflection.



27.89. IDENTIFY and SET UP: In the magnetic field, R = m_; Once the particle exits the field it travels in a
q
straight line. Throughout the motion the speed of the particle is constant.

—11 5
Execure: (@ R 2 (20x10 ke)1 45107 ms) _

qB (2.15x107° €)(0.420 T)

(b) See Figure 27.89. The distance along the curve, d, is given by d = R6. sinf = Sfi m’ SO
14 m

0=2.79°=0.0486 rad. d =RO=(5.14m)(0.0486 rad) =0.25m. And
. d__025m

v 1.45%10° m/s
(¢) Ax; =d tan(6/2) = (0.25 m)tan(2.79°/2) = 6.08x10™ m.

(d) Ax=Ax; +Ax,, where Ax, is the horizontal displacement of the particle from where it exits the field
region to where it hits the wall. Ax, =(0.50 m)tan2.79° =0.0244 m. Therefore,

Ax=6.08x10" m+0.0244 m =0.0305 m.

EVALUATE: d is much less than R, so the horizontal deflection of the particle is much smaller than the
distance it travels in the y-direction.

=1.72x107%.

d
0.25m

Figure 27.89



