37.11 - Why Are We Bombarded by Muons? Muons are
unstable subatomic particles that decay to electrons with a mean
lifetime of 2.2 us. They are produced when cosmic rays bombard
the upper atmosphere about 10 km above the earth’s surface, and
they travel very close to the speed of light. The problem we want
to address is why we see any of them at the earth’s surface.
(a) What is the greatest distance a muon could travel during its
2.2-us lifetime? (b) According to your answer in part (a), it would
seem that muons could never make it to the ground. But the 2.2-us
lifetime 1s measured in the frame of the muon, and muons are mov-
ing very fast. At a speed of 0.999¢, what is the mean lifetime of a
muon as measured by an observer at rest on the earth? How far
would the muon travel in this time? Does this result explain why
we find muons in cosmic rays? (c) From the point of view of the
muon, it still lives for only 2.2 us, so how does it make it to the
ground? What is the thickness of the 10 km of atmosphere through
which the muon must travel, as measured by the muon? Is it now
clear how the muon is able to reach the ground?



37.11.

IDENTIFY and SET UP: The 2.2 s lifetime is Af, and the observer on earth measures A¢. The

atmosphere is moving relative to the muon so in its frame the height of the atmosphere is / and [
is 10 km.

EXECUTE: (a) The greatest speed the muon can have is ¢, so the greatest distance it can travel in
22%x107s is d = vt =(3.00x10% m/s)(2.2x107° s) = 660 m = 0.66 km.

Aty 22x107°%s
Vi—uc?  J1-(0.999)
d = vt =(0.999)(3.00x10® m/s)(4.9x10™> s) =15 km

In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime.

(©) I =IyN1-u?/c? = (10 km)y/1-(0.999)* =0.45 km

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime.

(b) Ar= =49%107 s



37.17 - A pursuit spacecraft from the planet Tatooine is attempt-
ing to catch up with a Trade Federation cruiser. As measured by an
observer on Tatooine, the cruiser is traveling away from the planet
with a speed of 0.600c. The pursuit ship is traveling at a speed of
0.800c¢ relative to Tatooine, in the same direction as the cruiser.
(a) For the pursuit ship to catch the cruiser, should the velocity of
the cruiser relative to the pursuit ship be directed toward or away
from the pursuit ship? (b) What is the speed of the cruiser relative
to the pursuit ship?



37.17.

IDENTIFY: The relativistic velocity addition formulas apply since the speeds are close to that of light.

o . . R
SET Up: The relativistic velocity addition formula is v, =—* o
-

c

EXECUTE: (a) For the pursuit ship to catch the cruiser, the distance between them must be decreasing, so
the velocity of the cruiser relative to the pursuit ship must be directed toward the pursuit ship.

(b) Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity
v of the cruiser knowing the velocity of the primed frame u and the velocity of the cruiser v in the
unprimed frame (Tatooine).

Nl 0.600c —0.800c — _0.385¢

* 1= %¥x  1-(0.600)(0.800)
c
The result implies that the cruiser is moving toward the pursuit ship at 0.385c¢.
EVALUATE: The nonrelativistic formula would have given —0.200c¢, which is considerably different from

the correct result.



37.20 -- Two particles in a high-energy accelerator experiment
are approaching each other head-on, each with a speed of 0.9520c¢
as measured in the laboratory. What is the magnitude of the veloc-
ity of one particle relative to the other?



37.20.

e i e = S P U P

IDENTIFY and SET Up: Let Sbe the laboratory frame and let S” be the frame of one of the partlcles as
shown in Figure 37.20. Let the positive x-direction for both frames be from particle 1 to particle 2. In the
lab frame particle 1 is moving in the +x-direction and particle 2 is moving in the —x-direction. Then

u=0.9520c and v, =-0.9520c. v’ is the velocity of particle 2 relative to particle 1.
EXECUTE: Vv, = Ve W 5= ~0.9520¢ =0.9520c 5 =—0.9988c. The speed of particle 2 relative to
l—uv /c® 1-(0.9520c)(-0.9520c)/c

particle 1 is 0.9988c. Vv, <0 shows particle 2 is moving toward particle 1.

e

Figure 37.20



37.42 - A 0.100-ug speck of dust is accelerated from rest to a
speed of 0.900c¢ by a constant 1.00 X 10° N force. (a) If the non-
relativistic mechanics is used, how far does the object travel to
reach its final speed? (b) Using the correct relativistic treatment of
Section 37.8, how far does the object travel to reach its final
speed? (c) Which distance is greater? Why?



37.42. IDENTIFY: Since the final speed is close to the speed of light, there will be a considerable difference
between the relativistic and nonrelativistic results.

2

o . 1 1 o
SET UP: The nonrelativistic work-energy theorem is F'Ax = Emv — Emvg , and the relativistic formula

for a constant force is FAx=(y— l)mc2 .
EXECUTE: (a) Using the classical work-energy theorem and solving for Ax, we obtain

m(v* =v3) _(0.100x107° kg)[(0.900)(3.00x10® m/s)]*
2F 2(1.00x10° N)
(b) Using the relativistic work-energy theorem for a constant force, we obtain

Ax = =3.65m.

Ax = (y—Dmc? .
F

For the given speed, y = S S— 2.29, thus

V1-0.900?

(2.29-1)(0.100x10~ kg)(3.00x10% m/s)?
(1.00x10°N)

EVALUATE: (c) The distance obtained from the relativistic treatment is greater. As we have seen, more
energy is required to accelerate an object to speeds close to ¢, so that force must act over a greater distance.

Ax: :11.6m.




37.55 ° The Large Hadron Collider (LHC). Physicists and
engineers from around the world have come together to build the
largest accelerator in the world, the Large Hadron Collider (LHC)
at the CERN Laboratory in Geneva, Switzerland. The machine will
accelerate protons to kinetic energies of 7 TeV in an underground
ring 27 km in circumference. (For the latest news and more informa-
tion on the LHC, visit www.cern.ch.) (a) What speed v will protons
reach in the LHC? (Since v is very close to ¢, writt v = (1 — A)c
and give your answer in terms of A.) (b) Find the relativistic mass,
m e, Of the accelerated protons in terms of their rest mass.



37.55.

IDENTIFY: Since the speed is very close to the speed of light, we must use the relativistic formula for
kinetic energy.

SET Up: The relativistic formula for kinetic energy is K = me? L—Z - 1] and the relativistic mass
1-v/c

is My = e

rel — :

1-v2/c?
EXECUTE: (a) K =7x102 eV =1.12x107%J. Using this value in the relativistic kinetic energy formula
and substituting the mass of the proton for m, we get K = mc? (; - 1] which gives
1-v*/e
2 2

__ =7.45%x10° and l—v—2 = ;32 Solving for v gives l—v—2 = (ct v)gc v) = Ae=v) ,

1=v2/c2 c”  (7.45x107) ¢ ¢ ¢

2
since ¢+ v =2c. Substituting v=(1—A)c, we have 1—v—2 = 2e=v) = 2Ae=(=A)c] =2A. Solving for A
c c c
1
22 3.2

gives A:1 vi/e _(7.45x10%)

=9x107°, to one significant digit.

2

b) Using the relativistic mass formula and the result that =7.45%10° , we have
(b) Using

1
V1=v2/c?

= (7><103)m, to one significant digit.

S m( ! j
rel — -
‘ \/l—vz/c2 \/l—vz/c2

EVALUATE: At such high speeds, the proton’s mass is over 7000 times as great as its rest mass.



37.65 <-+ Two events observed in a frame of reference S have
positions and times given by (xy,#;) and (x,, t;), respectively.
(a) Frame S" moves along the x-axis just fast enough that the two
events occur at the same position in S’. Show that in S’, the time
interval At’ between the two events is given by

At = \/(At)z — (Acx>2

where Ax = x, — x; and At = t, — t;. Hence show that if
Ax > ¢ At, there is no frame S’ in which the two events occur at
the same point. The interval A’ is sometimes called the proper
time interval for the events. Is this term appropriate? (b) Show that
if Ax > ¢ At, there is a different frame of reference S’ in which
the two events occur simultaneously. Find the distance between the
two events in S’; express your answer in terms of Ax, At, and c.
This distance is sometimes called a proper length. Is this term
appropriate? (c) Two events are observed in a frame of reference
S" to occur simultaneously at points separated by a distance of
2.50 m. In a second frame S moving relative to S" along the line
joining the two points in §’, the two events appear to be separated
by 5.00 m. What is the time interval between the events as meas-
ured in §? [Hint: Apply the result obtained in part (b).]




37.65.

(a) IDENTIFY and SET UP: Use the Lorentz coordinate transformation (Eq. 37.21) for (x;,#) and (x,,%,):

X, —ut X, —ut
xi=—= 212,x’2: : 222
\/l—u /c \/l—u Ic
,h—uxlct by —ux/c?
tl = . [2 =
\/l—uz/c2 \/l—uz/c2
Same point in S implies x] =x5. What then is A¢' =7, —#?

EXECUTE: x| =x, implies x; —uf; = x, —ut,
X)—x _Ax
h-h A
From the time transformation equations,

;(At —uAx/c?)
\ll—uz/c2

Using the result that u = % gives
t

u(ty—t;))=x,—x and u=

’ ’ ’
A=t 1] =

Al = !
JI=(An2 /(AP e?)

A=A (A (AR /(aneR)

J(AD? = (Ax)?/c?

2 2,2
At = Dl C o = \/(At)2 —(Ax/c)?, as was to be shown.
(A = (Ax)?/c?

This equation doesn’t have a physical solution (because of a negative square root) if (Ax/ c)2 > (At)2 or
Ax = cAt.
(b) IDENTIFY and SET UP: Now require that #; =¢ (the two events are simultaneous in S”) and use the

(At = (Ax)*/((At)e))

Lorentz coordinate transformation equations.
EXECUTE: 7 =¢] implies #; —wx/c® = t, —ux,/c?

2
- Ax A
tz—t1=(x2 leju S0 Atz(—zju and u =2
c c Ax

From the Lorentz transformation equations,
1

] (Ax —uAt).
V1-u?/c?

Using the result that u = AtAx gives

1

4 4 4
AX =x2—x1:[

A= (Ar—c*(A)?/Ax)
J1=c2 (A2 /(Ax)?
A=A A=A iAY)

(Ax)* = (ar)?

(A’ -*(an?

(a0’ -8
(c) IDENTIFY and SET UP: The result from part (b) is Ax"= \/m .
Solve for Af: (Ax))? = (Ax)? — 2 (Ar)?

Ax' = (Ax)? =2 (Ar)?

Ar= V(A - (avy’ _ J(5.00m)® —(2.50 m)*
c 2.998x10% m/s

EVALUATE: This provides another illustration of the concept of simultaneity (Section 37.2): events
observed to be simultaneous in one frame are not simultaneous in another frame that is moving relative to
the first.

EXECUTE: =1.44x10"%s




37.13 -+ CALC Lorentz Transformation for Acceleration.
Using a method analogous to the one in the text to find the Lorentz
transformation formula for velocity, we can find the Lorentz transfor-
mation for acceleration. Let frame S" have a constant x-component
of velocity u relative to frame S. An object moves relative to frame
S along the x-axis with instantaneous velocity v, and instanta-
neous acceleration a,. (a) Show that its instantaneous acceleration

in frame S’ is
’ (1 u2>3/2(1 uvx)_3
a.=a - — —
X X C2 C2

[Hint: Express the acceleration in S’ as a’, = dv;/dt’. Then use
Eq. (37.21) to express dt’ in terms of df and dx, and use Eq. (37.22)
to express dv, in terms of # and dv,. The velocity of the object in §
is v, = dx/dt.] (b) Show that the acceleration in frame S can be

expressed as
2\3/2 '\3
u uvy
a Za’<1—> (1+>
X X C2 6‘2

where v, = dx'/dt’ is the velocity of the object in frame S'.




37.73.

LLIVUD UL VU VAP VA LLLIVIILVALL Y .

IDENTIFY and SET UP: Follow the procedure specified in the hint.

EXECUTE: (a) a' = % dt’ = y(dt —udx/c?). dv =

dv Lo vou u
(l—uv/c2) (l—uv/cz)2 ¢?

a1 v—u u , 1 (v—u)u/c? 3 1-u?/c?
—= 5+ 22(—2]. dv =dv 5+ 55 =dv —
v 1-wv/c® (-uv/c”)” \c l—uvic™  (1—uv/c™) (1—uvic?)
2,2
av 17 /02 )2 2,2
S = (1—uvic?) :ﬂ (1—-u”/c™) 1
}/dz‘—u}/a’x/c2 dt (l—uv/cz)2 7(1—uv/cz)
(b) Changing frames from S — S just involves changing

dv

=a(l- uz/c2)3/2 (1- uv/cz)_3.

N =3

uv
a%a',v%—v’:>a=a’(1—u2/cz)3/2[1+—2j .
c

EVALUATE: d, depends not only on a, and u, but also on v,, the component of the velocity of the

object in frame S.
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37.14 --- BALC A Reahstlc Version of the Twin Paradox A
rocket ship leaves the earth on January 1, 2100. Stella, one of a
pair of twins born in the year 2075, pilots the rocket (reference
frame S"); the other twin, Terra, stays on the earth (reference frame
S). The rocket ship has an acceleration of constant magnitude g in
its own reference frame (this makes the pilot feel at home, since it
simulates the earth’s gravity). The path of the rocket ship is a
straight line in the +x-direction in frame S. (a) Using the results of
Challenge Problem 37.73, show that in Terra’s earth frame S, the
rocket’s acceleration is

du ( u2>3/2
-7 1 — —
a8 2

where u is the rocket’s instantaneous velocity in frame S. (b) Write
the result of part (a) in the form dt = f(u) du, where f(u) is a
function of u, and integrate both sides. (Hint: Use the integral
given in Problem 37.63.) Show that in Terra’s frame, the time
when Stella attains a velocity vy, is

U1x
8V 1 - lez/c2

(¢) Use the time dilation formula to relate dr and dt' (infinitesimal
time intervals measured in frames S and §’, respectively). Com-
bine this result with the result of part (a) and integrate as in part
(b) to show the following: When Stella attains a velocity vy, rela-
tive to Terra, the time ¢ that has elapsed in frame S’ is

c U1
1= arctanh<x>
g c

Here arctanh is the inverse hyperbolic tangent. (Hint: Use the inte-
gral given in Challenge Problem 5.124.) (d) Combine the results of
parts (b) and (c) to find #; in terms of ¢, g, and ¢ alone. (e) Stella
accelerates in a straight-line path for five years (by her clock),
slows down at the same rate for five years, turns around, acceler-
ates for five years, slows down for five years, and lands back on
the earth. According to Stella’s clock, the date is January 1, 2120.
What is the date according to Terra’s clock?

=



37.74.  IDENTIFY and SET UP: Follow the procedures specified in the problem.
EXECUTE: (a) The speed V' is measured relative to the rocket, and so for the rocket and its occupant,

v/ =0. The acceleration as seen in the rocket is given to be a’ =g, and so the acceleration as measured on

p 5 3/2
the earth is a:—u:g[l—u—J .
dt

(b) With v, =0 when =0,
dt:l du 4 1w du _ Vi
2,.2\3/2° 0 2, awans 0= 5, 2
g (I-u“/c?) (1-u/c”) g‘/l—vl/c

(¢) df’ = ydt =dt/N1—u?/c?, so the relation in part (b) between df and du, expressed in terms of df’ and
1 du _1 du
J—u2ic? g-u?e?)? g (1-u?lc?)

t=—
0 g

du, is dt’ = ydt =

) . o . , ¢ v
Integrating as above (perhaps using the substitution z =u/c) gives #; =— arctanh (—lj For those who

C
wish to avoid inverse hyperbolic functions, the above integral may be done by the method of partial

) , du 1 [ du du
fractions; gdt’ = =— +
(I+ulc)1—ulc) 2| 14+ulc 1-u

. ’ +
, which integrates to # = SR paain )
c 2g c—m



(d) Solving the expression from part (c) for v in terms of ¢, (v/c) = tanh(gt{/c), so that

NIES (vl/c)2 =1/cosh (gt{/c), using the appropriate indentities for hyperbolic functions. Using this in the

tanh (gt]
¢ tanh(gn/c) _ £ sinh (gt{/c), which may be rearranged slightly as

expression found in part (b), ¢ = =
P part (b). 4 g l/cosh(gti/c) g

gy . (g _ , _ L . p8ile _ matile
=—=sinh| =— |. If hyperbolic functions are not used, v; in terms of # is found to be —=—————
c c c egtl/c _I_e—gtl/c

which is the same as tanh(gz{/c). Inserting this expression into the result of part (b) gives, after much
c e —of'le L ) . . . .
algebra, £ = 2—(6‘%/‘ —e gtl/‘), which is equivalent to the expression found using hyperbolic functions.
g

(e) After the first acceleration period (of 5 years by Stella’s clock), the elapsed time on earth is

=<

f{ = Zsinh (gf{/c) = 2.65x10° s =84.0 yr.
g

The elapsed time will be the same for each of the four parts of the voyage, so when Stella has returned,
Terra has aged 336 yr and the year is 2436. (Keeping more precision than is given in the problem gives
February 7 of that year.)

EVALUATE: Stella has aged only 20 yrs, much less than Terra.



37.75 <+ CP Determining

the Masses of Stars. Many Figure P37.75
of the stars in the sky are actu-

ally binary stars, in which two

stars orbit about their common

center of mass. If the orbital

speeds of the stars are high <:
enough, the motion of the stars

can be detected by the Doppler To the
shifts of the light they emit. earth
Stars for which this is the case

are called spectroscopic binary

stars. Figure P37.75 shows the

simplest case of a spectroscopic binary star: two identical stars,
each with mass m, orbiting their center of mass in a circle of radius R.
The plane of the stars’ orbits is edge-on to the line of sight of an
observer on the earth. (a) The light produced by heated hydrogen
gas in a laboratory on the earth has a frequency of 4.568110 X
10" Hz. In the light received from the stars by a telescope on the
earth, hydrogen light is observed to vary in frequency between
4.567710 X 10'* Hz and 4.568910 X 10'* Hz. Determine whether
the binary star system as a whole is moving toward or away from
the earth, the speed of this motion, and the orbital speeds of the
stars. (Hint: The speeds involved are much less than ¢, so you may
use the approximate result Af/f = u/c given in Section 37.6.)

(b) The light from each star in the binary system varies from its
maximum frequency to its minimum frequency and back again in
11.0 days. Determine the orbital radius R and the mass m of each
star. Give your answer for m in kilograms and as a multiple of the
mass of the sun, 1.99 X 10°° kg. Compare the value of R to the
distance from the earth to the sun, 1.50 X 10'! m. (This technique
is actually used in astronomy to determine the masses of stars. In
practice, the problem is more complicated because the two stars in
a binary system are usually not identical, the orbits are usually not
circular, and the plane of the orbits is usually tilted with respect to
the line of sight from the earth.)



37.75.

IDENTIFY: Apply the Doppler effect equation.
SET UP: At the two positions shown in the figure given in the problem, the velocities of the star relative
to the earth are u+v and u —v, where u is the velocity of the center of mass and v is the orbital velocity.

EXECUTE: (a) f, =4.568110x10'* Hz; f, =4.568910x10'* Hz; f =4.567710x10"* Hz

I = c+(u+v)f

P e—wn’ _ S e )= £ (e )

. /c+(u—v)fo FHe—u=v)= fEc+@—v)
c—(u—-v)

2 2,02
(u+v)=w)210 and (u—v)z%c. u+v=525x10* m/s and u —v=-2.63x10* mys.
(f+/fo)” +1 (fZlfo)+1
This gives u =+1.31x10* m/s (moving toward at 13.1 km/s) and v=3.94x10* m/s.

(b) v=3.94x10* m/s; T =11.0 days. 27R =vt =

_(3.94x 10* m/s)(11.0 days)(24 hrs/day) (3600 sec/hr)
B 2

0.040 times the earth-sun distance.
Also the gravitational force between them (a distance of 2R) must equal the centripetal force from the
center of mass:

(Gm*) _mv* e 4Rv: 4(5.96x10° m)(3.94x10* m/s)?
(2R? R G 6.672x10"'N - m/kg?
EVALUATE: u and v are both much less than ¢, so we could have used the approximate expression
Af =% fyv..,/c, where v, is the speed of the source relative to the observer.

=5.96x10° m. This is about

R

=5.55%x10% kg =0.279 mg,,.



37.77 -+- CP Kaon Production. In high-energy physics, new
particles can be created by collisions of fast-moving projectile par-
ticles with stationary particles. Some of the kinetic energy of the
incident particle is used to create the mass of the new particle. A
proton—proton collision can result in the creation of a negative
kaon (K) and a positive kaon (K™)

p-|-p—>p-|—p-|—K_-|-KjL

(a) Calculate the minimum kinetic energy of the incident proton
that will allow this reaction to occur if the second (target) proton
is initially at rest. The rest energy of each kaon is 493.7 MeV,
and the rest energy of each proton is 938.3 MeV. (Hint: It is use-
ful here to work in the frame in which the total momentum is
zero. But note that the Lorentz transformation must be used to
relate the velocities in the laboratory frame to those in the zero-
total-momentum frame.) (b) How does this calculated minimum
kinetic energy compare with the total rest mass energy of the cre-
ated kaons? (c) Suppose that instead the two protons are both in
motion with velocities of equal magnitude and opposite direc-
tion. Find the minimum combined kinetic energy of the two pro-
tons that will allow the reaction to occur. How does this
calculated minimum kinetic energy compare with the total rest
mass energy of the created kaons? (This example shows that
when colliding beams of particles are used instead of a stationary
target, the energy requirements for producing new particles are
reduced substantially.)



37.77. IDENTIFY: Apply conservation of total energy, in the frame in which the total momentum is zero (the
center of momentum frame).
SET UP: In the center of momentum frame, the two protons approach each other with equal velocities
(since the protons have the same mass). After the collision, the two protons are at rest—but now there are
kaons as well. In this situation the kinetic energy of the protons must equal the total rest energy of the two
kaons.

EXECUTE: (a) 2(¥,y, — l)mpc2 = 2mkc2 = Yem =1+ Mk —1.526. The velocity of a proton in the center of

my

momentum frame is then v, =c¢ M =0.7554c.

Yom

To get the velocity of this proton in the lab frame, we must use the Lorentz velocity transformations. This
is the same as “hopping” into the proton that will be our target and asking what the velocity of the
projectile proton is. Taking the lab frame to be the unprimed frame moving to the left, u =v,,, and v =v,,

(the velocity of the projectile proton in the center of momentum frame).

/ 2 1
Vg = e = =Y — 0.9619¢ = Yy = e = 3.658 = K1y = (Jiap — Dy’ = 2494 MeV.
uy v 2
1+—2 1+c7r2n 1— Viab

2m 2(493.7 MeV)

(c) The center of momentum case considered in part (a) is the same as this situation. Thus, the kinetic
energy required is just twice the rest mass energy of the kaons. K, =2(493.7 MeV) =987.4 MeV.

EVALUATE: The colliding beam situation of part (c) offers a substantial advantage over the fixed target
experiment in part (b). It takes less energy to create two kaons in the proton center of momentum frame.

(b)



