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0. Work done along an arbitrary path



Work-Energy theorem

Question:

How do we evaluate the line integral f;;z F-dl along a specific path?



Suppose we can parameterize the trajectory 7(t) = (x(t), y(t), z(t))

And the force is given by F(7#) = (Fx(?), E, (1), FZ(F))

dx dy dz
= F 1+ F g+ F -k —dr-i+—=dtr-j+—4dr-k
tl(x<r>z+y<r>1+z<r> ) (Grarirar i+ Sak)

Hence the formula for the work U reads

2 dx dy dz
U= F —dt+ F —dt + F — dt
/tl (x(r)dt Ty ) dit ) )

Fig. 6.27

A

Ar,-

Fi(x; ¥ 2)

<Y



Example Consider the fairground Ferris wheel. We want to find the work done during
the ascent of the Ferris wheel (mass m). The path is the semicircle from P, to
P,.

ﬁ — (07 _mg) P,
m(¢) = (Rsin ¢, — R cos ¢)

dr' = (R cos ¢, Rsin ¢)d¢
P, g
W = F -dr
P

:/ —mgR sin ¢dp = 2mgR
0

Fig. 6.28



Exercise:

16. A force in a conservative field is given by

17.

18.

F=(x,y,z)N
A body moves from the origin of the coordinate system to the point
P =(5,0,0)

Calculate the work done.

Given the force

F = a 4
VaZy? /a2 4 y2
Evaluate the line integral along a semicircle around the origin of the coordi-
nate system with radius R. Can you give the answer without computing?

Given a force F = (0, —z, y). calculate the line integral along the curve

21
r(t):(\/icost, cos2t, —)
W

fromt:Otot:%.



1. Taylor series and power series



From the sum of a geometric series, we know

1
1l —x

l+x+a*+z°+-- =

when -1<x<1.

We now consider this result from a different point of view.
Assume x is small (i.e. |x]|<<1 ), we approximate a function f(x) by a series,

1
1l —=x

flz) = ~l+o+a’ a7+



Now, we investigate functions f(x) which can be expressed as infinite power series
©.@)

f(x):a0+a1x+a2x2+...22anajn

n=0
(In particular, when x is small, we may truncate the series up to the 2 second or third

terms and get a good approximation)

f(z) ~ ag + a1x + azx”

Application in physics:

1. Evaluation

2. Approximation

3. Term-by-term integration



Taylor’s series

Suppose a function f(x) can be expressed as

f(a;):ao+a1x—|—a2x2+...:Zanx”

n=0

with some coefficients ay, aq, a,.......
We want to determine the values of these coefficients




Trick

1. We notice that

ag = f(O)

2. Next, we take the derivative on both sides
/ 2
f($)2@1+2a2$+3a333

And substitute x=0 in the equation

a1 — f/ (O)



3. We take another derivative on both sides

f"(x) = 2as + 6azz + - - -

And substitute x=0 in the equation

0> = 5 /(0

4. Similarly, we take n derivatives on both sides
f(z) =nlay, + (n+ Dlayp1z+ - -

And substitute x=0 in the equation

1
_ — f£(n)



Taylor’s (Maclaurin’s) series

The expansion of a function f(x) expressed in a power series is given by

(n)(0

L, | R 2 f
(z) = £(0) + /' (0)a + o fP(0)2” + f“( Z

In general, we can generalize the argument and obtain the general Taylor’s series

We say we expand the function by a Taylor’s series with respect to the point x,



Example:

Expansion of the Sine Function f(x) = sinx

f(x)=sinx f(0)=0
f'(x) =cosx 10)=1
f"(x) = —sinx f"(0)=0
f"(x) = —cosx 7"(0) = -1

Substituting in (8.2) gives

x3 x> X7

smx:x—y—ka—ﬁ—}—---

- |
— 1 n 2n+1
,Z'O( ) (2n—|—1)!x



Example:

Expansion of the Binomial Series f(x) = (a + x)”*

fx) = (a+x)" fo)=a"
f'(x) = n(a+x)"! £'(0) = na""!
£1(x) = nln = 1)(a+x)"2 £1(0) =n(n —1)a" 2

Ay =nn—1)m—k+1)(a+x)"* f50)=n(n—1)(n—k+1)a"*

Note that n need not be an integer. Thus the expansion is valid for, e.g. n = 1/2.
Substituting in (8.2) gives
nn—1) , 5 , nmn—1)-(n—k+1)

& k!

1

(a+x)" =a" +na"" a" kxR

A useful version of this series 1s when a = 1. We then have

(1+x)”:1+nx+wx2+n(n_13)'<”_2)x3+... (8.5)




Example:

Expansion of the Function f(x) = ﬁ

We know the result already because this is the sum of a geometric series.

flx)= f0)=1
/ 1 /
O PR
1 1><2 !
f (x):(l_—x)?, f7(0)=2!
:1x2x3

f///(x) m f///(o) — 3'

)= o) =

(1 _ x)n-l—l

Substituting in (8.2) gives the familiar result

=l+x+x2+x7 4 4x =D " (x[<1) (8.6)
n=0

1—x

(Absolute value of x < 1)



Example:

Example Expand the cosine f(x) = cosx about the point xog = @ /3 or (60°).
Differentiating gives

f'(x)=—=sinx, f"(x)=-—cosx, f"(x)=sinx

(@ \/_ n(® m [ @ \/_
3= 15)=5 1"(5)=%

and so on.
Substituting in (8.9) gives
(D) (- g (-2
o8t =5 3) 2 3) 2 \*T3)

Suppose we wish to calculate the value of cosine 61° without using tables. Then

L () B )

o= - _ Y2 (2 el A el
cos6l” =2 =7\ 180 180 12 \180

If we use two terms only

>[5

w
— ] =0.5000 —0.01511 = 0.48489
(50)



Exercise:

(CE) — tanx with respecttox = 0and x = % respectively

And approximate tan 44°



Application

Example Detour problem. Figure 8.4 shows two possible paths that can be taken
when travelling a distance S from A to B, a direct one and an indirect one via C.
The problem is to find how much longer is the detour via C than the direct path?

C

-~

Y

A}: <
|
Fig. 8.4

Let u be the detour. If / is the height of an assumed equilateral triangle, then, by
Pythagoras’ theorem, we have

S\ ? S
-2 2 2 -2
u (2) + 5

2h\ 2
— 1 — —1
u=3>9 —|—<S>

To investigate the behaviour of u as a function of /4, it is much simpler to express it
by an approximate polynomial. Using the binomial expansion, we have

= ) = <1+(Zg—h)2>1/21+% (%)2—#(%):

Provided that 7 < S, we can use a first-degree approximation by taking the first two

terms of the series: 5
1 /2h
h~1l+-[—
=1+ (%)

Substituting in the equation for u gives

1 /21> 2h2

As an example, let S = 100km. The function is shown in Fig. 8.5. An examination
of the graph shows, e.g. that when 7 = 5km, the detour is only 0.5 km.




Application

Example Obtain a closer approximation for one of the roots of the equation
x* —1.5x74+3.7x - 21.554 =0

A rough estimate gave x = 2.4.
Let x be a rough approximation for the root of an equation found by trial and
error. If the true solution is x + 4, then, by Taylor’s theorem, we have

0= f(x+h)= f(x)+h f(x)

Solving for & gives

h~ — f/(x) ; hence x— f/(x)

f'(x) f'(x)

This is also known as the Newton-Raphson approximation formula (see Chap. 17).
Returning to the example, we find

1s a better approximation.

f'(x) =4x>—45x*>+37 and f'(2.4)=33.076
Also  f(2.4) = —0.2324

It follows that 4 = 0.2324/33.076 = 0.007.
A more accurate approximation is x = 2.4+ 0.007 = 2.407.



Application

Example Evaluate

04 | 4_ 42
[ e,
0 44 4x3

First we express the integrand as a product, i.e.

/\/:?dx:/(l(%)2)1/2(1+x3)1/2 dc

The binomial series converges for |x| < 1. The condition is satisfied in the case of
our two functions. The expansions are

1/2

X\ 2 1 1 1
1_<_) — 1 ——x2 x4 x6_ ...
( 2 ) 8" T 128" T 1024"

3
3
(14+x3) 712 = 1—%+§x6—+---

Multiplying the two series gives, for the integrand /

383

1
, 1 383
1024

1 1
joq1_+ty2_t3 L oa, Lo
g¥ TN Tt Tt T

Integrating term by term we find

6_|_...

0.4

0.4 1 1 1 1 383
Jdx — |x— —3_2L4_ 1 5,1 6 7. ...
/0 * [x 24x 8x 640x +96x +7168x T 0

0.4
/ Idx ~ 0.4 —0.00267 — 0.00320 — 0.00002 + 0.00004 + 0.00009
0
~ 0.3942



Exercise: Field of an electric dipole Example 21.14
An electric dipole 1s a pair of equal and opposite charges +¢g and —¢g at a fixed distance d apart.
Its electric dipole moment P is defined as p = gd and points from —¢ to +¢

| 1 q —q
Ey = Amre, [(y —d/2)? T (y + d/2)2]

&y

y + df2




Exercise:

12. Solve the following integrals using a series expansion:
0.58
() / vV 1+x2dx
0

X Q1 t
(b) / % ds (Integral (b) cannot be evaluated by any other method.)
0

Find the solution of sin x = x using the Taylor’s series



2. Euler number e
and natural logarithm



Mathematically, there are many different ways to
define the Euler number e

e= l=1+ 1 + 1 + 1 + e =2.71828.....
nl 1 200 302001 403120
. ln 270 -

e:hm(l+—j o

U n 268

— i 1+ . 2.64

e=slm(i+x):

262

2.60 |-

258 f
n—>0 I / i




e in Calculus |

d . .. a"-a |, a'-1
—a =lim =q | llm

dx h—0 h h—0 h
h
—1
lim — :l%a:hm(lJrh)l/h%a:e
h—0 h N h—0
d X X

—E =&

dx



e in Calculus Il

4 log x=lim Quxth)~log,x l(limlloga (1+ h)j
dx h—0 h X h—)Oh
1 - . -
klirgzloga(hrh)—l —>a= £1£13(1+h) =e

d 1

—log, x =—

dx X

Notation: log, =In 1s called natural logarithm



Exercise: Take the derivative of the following functions

e_xz

10*

In(v/1 — z2)

log,, =

Find the Taylor’s series expansion of e* for small x

Find the Taylor’s series expansion of In x when x closes to 1



3. Complex number

What is v/—1?



Definition i=j= v —1

Is called the imaginary number such that

i2=+v/-1x+-1=-1

For other number, for example, v—5 = V5 x V—1=+/5i



Real number: 0,1,0.3,7z,e,x/§,....

Imaginary number:i, 2i, ei, 7i,.....

We define the symbol i such that ii=i" =-1

Complex number z=x+1y (x and y are two arbitary real numbers)

Real part: Re(z)=x
Imaginary part:Im(z)=y

Im
A

Complex plane

5> Re




Example:
Two complex number:

z,=1+i
2,=2+3i
Then

z,+z,=3+4i

2z, =2+2i

iz, =2i+3i" =-3+2i

z, [z, =(1+1)(2+3i)=2+3i+2i+3i* =—1+5i

z, 2+3i _(2+3)(1-i) _2-2i+3i-3" _5+i

z,  1+i  (I+i)(1-9) 2 2




Notation:
7=x+1y

Complex conjugate z=x-1y

absolute value (or modulus or magnitude) of a complex number: r=|z|[J/x* + )

argument of z: Y=arg(z) [ arctan(X)
X

zzr(0059 +isirh9)

rr=x +y2 =zz
Im Complex plane

Z=X+iy

> Re




Euler’s formula

For any real number x, €” =cosx +isinx

In particular, e” +1=0

One of the most beautiful identity in mathematics. Relating 5
fundamental numbers (e,i,it,0,1) in a single formula.



Example:

e'“" = cos(a+b)+isin(a+b)
e (4th) = ol ot — (cosa +isin a)(cosb +isin b)
= (cosacosb—sinasinb) +i(cosasinb+sinacosb)

] cos(atb)=cosacosb—sinasinb

] sin(a+b)=cosasinb+sinacosb

d . .. : .
—e¥ =je”" =—sinx+icosx
dx
d . . .
—(cosx+zsmx):—s1nx+zcosx
dx
d2
ICX X



Root of a complex number

De Moivre’s theorem holds true for positive, negative and fractional powers. We
can, therefore, use this fact to determine all the distinct roots of any number.
Since x +jy = r(cosa + j sina), then, by De Moivre’s theorem, it follows that

[ Ux+jy = ’{’/?(cosg—l—jsing)J
n n

However, using this equation, we obtain one root only. In order to obtain all the roots
we must consider the fact that the cosine and sine functions are periodic functions
of period 2w radians or 360°. Thus we can write

(cosa +jsina)"” = [cos(a + 2wk ) +j sin (« + 2wk )]"
= cos(na + 2wnk) +jsin(na + 2wnk)
where k =0,4+1,4+2,43,--.

When raising a complex number to an integral power there is no ambiguity: the
result is independent of periodicity. But extracting the roots of a complex number



Example:

Since

Z

4

= COS(? + 27k) + i(sin = + 27k) for any integer k, we have

Calculate all the roots of Z

2T 2T

w .. o 1
0, lecosg—ﬂsmg—z
1, 22:0054—w+jsin4—w:

6 6
2, Z3zcos7—w+jsin7—w:

6 6
3, 24:cosm—w—|—jsin10—w

6 6

4

27T_|_, 21
— COS — + 78In —
3 3

1
\/g—f— EJ

1 V3.
+ -]

2 2



Hyperbolic function:

/. er@ —e ¥
sinh x = . i »
2 sinhx €% —e
tanhoy = ———
et +e * coshrx e*+e 7
cosh x =
\_ 2 y
cosh x
sinh x y*
3..
2..
O S
_._§ ..-_§ ’x —§ “—-5”_1 1 .é.:l3 ’;
~14
-2 —24

(a)



Exercise:
1. Compute i® and (—i)3

2. Evaluateva — b XVb —a

3. Evaluate the roots of the quadratic equation x’+x+1=0

ﬁompute Z12Z9. \

(a) z; =2(cos15°+jsin15°)

zp = 3(cos45° +jsin45°) :

(dsinhz |

Calculate z1 /z5: =7
(a) 70° +jsin 70° az
a) z1 = Cos jsin

Zp = C0825° 4-jsin 25° dcosh _?

dx
. |

Given z = Eer/ 4 calculate z3. dtanh —7

LA
&}iven z = 32e19?  calculate Zlﬂ




Exercise: (HKPh02017)

4. A block of mass M and length L is sliding on the frictionless table and moves with constant
velocity ¥y to the right. Suddenly, a small mass m is put on the right end of the block. The
mass m slides relative to the block and fall on the left end of the block. Let the coefficient of

kinetic friction between the block M and mass m be u.

HERA M =& L KRN, EXCHEKCH B DGR E R A A A0S . R, ER
AN S A E A m KNI ANISREE LA B B, WA A i . #R

MR m 2 [l B BN EE R AR B R
L

M

m

- 7,

S S S

(a) What is the loss of the total mechanical energy during the process?

SRILIEFE A8 K AR e .

(b) What is the final velocity of the mass m and the total travelled time of the mass m before it

falls on the left end?

SR/INY) IR G B A IRy FR) 248 B AN /N BRAE AR AR b S Bl g [

(c) What is the minimum value of V)?

R Vo it/ ME



The friction acts on the mass m (-ve direction)

f=—umg =ma
Let V and v be the velocities of the block M and the mass m when the mass m leaves the block.

v =pugt

By the conservation of momentum

MV, = mv + MV
and the work-energy theorem,

1 1 1

—fL = ( MV? + S mv ) _EMVOZ
(a) The loss of total mechanical energy AE = fL = uymglL
(b) By elimination, we have
(Mm + m?)v? — 2mMVyv + 2umMgL = 0

== m(MVO + JMZVOZ — 2ugML(M + m))
Since the velocity of the mass m must less than V, we have v < ﬁ V, and hence
T <MVO — JMZVOZ — 2ugML(M + m))

—_ 272 _
- (Mm) (MV, — M2VE = 2ugML(M + m))
(c) Forv to be real, we much have M?V§¢ — 2ugML(M + m) = 0

v =

andt——

2ugL(M + m
vozj“g (M )



2. A Round Snooker Table

A smooth snooker ball S is struck from point O of a specially-
designed circular snooker table. The ball then moves off
horizontally in a direction making an angle ¢ with the radius

CO. The ball makes m impacts with the smooth vertical wall of
the table before returning to point O. If m =1, ¢ =0. The

coefficient of restitution between the ball and the wall is e.

(a) If m =2, find ¢ 1n terms of positive exponents of e.

(b) If m =3, find ¢ in terms of positive exponents of e.

-~

Relative velocity after collision A
Relative velocity before collision

Coefficient of restitution =

e = 1 for elastic collision
\e = 0 for perfectly inelastic )




(@) m=2:
5 o t -
From conservation of linear momentum, 1% impact:

v, sin@ = vsing.

From Newton’s law of impact, 1% impact:
v, cosP = evcosd.

Thus tang =e 'tang.
Similarly for 2™ impact: tan¢, =e 'tan¢ =e ’tang.
From geometry,
A0 +¢, +9¢,)=T1
tan(¢, +¢,) = tan(g %)

tang + tan¢, 1

1 tang tang, - tan¢
e 'tang +e “tang 1

1 e’tan’¢ - tan¢

1 e’

tan2 — —
? el+e’+e?’ l+e+eé’

1 3
¢ = tan ' = tan 1‘/6—2.
\/61+62—|—€3 ltete




(b) m=3

As in (a), from conservation of linear momentum and Newton’s law of impact, 3" impact:
tang, =e *tang.

From geometry,

20+¢, +¢,+9¢,)=2m
tan(¢ +¢ ) = tan [n— (9, +¢3)]= —tan(¢, +¢,)
tang + tang ~ tan@, + tan@,
1 —tan¢ tan@ 1—tang, tang,
tan@ +e ' tan¢ B e “tang +e’tan¢@
1—¢'tan’¢ - 1-etan”¢
S tan’g — %3+ e‘i4+ e‘2_5+ e‘: _
e +e +e He
= ¢ = tan ¥’




