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Travelling time along a path

What is the travelling time of an object sliding down
along a frictionless path?
By the conservation of energy, we have
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Check: along a vertical path (i.e. a=0), we have T' = , | —
g

which is what we have expected for a vertical constant acceleration!

y =y(x)
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The traveling time is a |1 /2
T — / \/erda;
0

different y(x) will give different travelling time T

Question: Which path take the shortest time for travelling?
Calculus of variation
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Moment of inertia
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Example: Moment of inertia of a rod rotating at CM
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Exercise: Moment of inertia of a cone rotating along symmetric axis
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2. Differential equation



Many natural laws in physics and engineering are formulated by equations involving
derivatives or differentials of physical quantities — Differential equation (DE).

Example:
F =ma=—mg
d*z B
az =

We are looking for the position of a body at an instant t x(t) which
satisfies the DE. 7 |
We can show the general solution is given by

1
x(t) = _ith + Chit 4 Cs

where C, and C, are arbitrary (any) constants
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1
Zlf(t) = —ith + Clt -+ 02

However, if we know the body is at the initial position x, with initial velocity v, at time
t=0, we can determine the constants uniquely.

1
ZE(t) — —§gt2 + ’Uot + g

We say that the solution is uniquely specified if two initial conditions (u, and v,) are given.



Goals:

1. write down the differential equation for a specific problem
2. solve the differential equation



Order of a Differential Equation

Order of a DE is defined by the highest derivative contained in the equation. Thus an n-th
order DE contains an n-th derivative.

Example:
y’ +ax =0, which is of the first order
y” +7y =0, whichis of the second order.



Linear Differential Equation

If the function y and its derivatives (y’, y”, y’”,....) in a DE are all to the first power and if

2. ,777

no products likes yy’, y'y’”,.... etc occur, then the DE is linear

Examples are

/

y" +7y+sinx =0 and 5y"=Xxy  which are linear DEs.
y"4+y?2=0 and (y")> =x?y which are non-linear DEs.



Linear DE with constant coefficients

azy” + ary’ + apy = f(z)

where a, # 0 and a,, a; and a, are arbitrary real constants, is called a second-order linear
differential equation with constant coefficients since all a; are constants

If f(x) = 0, the DE is called a homogeneous DE, eg,

my” +wy' +ky =0
If f(x) # 0, the DE is called a inhomogeneous DE, eg,

my" +wy' +ky =sinwx




Example:
Consider the 1%t order linear inhomogeneous DE

dy

dr (2)

%y(x):/f(x)dx—FC

where Cis an arbitrary constant.
This implies that the solution of the DE is NOT uniquely determined.
This solution is referred to as the general solution of the DE before the constants are

specified.



Lemma

The general solution of a first-order DE contains exactly one undetermined constant. The
general solution of a second-order DE contains exactly two constants, which can be chosen
independently of each other.

Example: The linear inhomogeneous 2" DE:

F =ma=—mg
d*x B
az Y
has the general solution:
1
x(t) = _ith + Cit + Cy

contains two independent constants.
Of course, the constants can be uniquely determined if initial conditions are given.



First order Differential equation



Separation of variables

If the DE can be rewritten in the following form

p(y)y +q(x) =0
p(y)dy = —q(x)dx

The solution of such an equation is obtained by simple integration

/p(y)dy = —/q(x)dw +C



Example

Example The variables in the following equation can be separated:

y/x3 — 2y2
Dividing by x> y?, we obtain
1, 2 . 1 2
?y :F, 1.€. ?dy:FdX

This is an equation of the type required with p(y) =1/y? and ¢(x) = —2/x3.
Now, straightforward integration gives

1 1
- _—aC
y 2
2
and hence y = al



Integrating factor

We first consider homogeneous linear first-order DE

p(x)y +q(x)y =0

There is a straightforward and systematic way to solve it — integration factor

- —0
p(x) - Talx)y

dy _ alx) o
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Hence y=Ce fp(x) dx

[ el (a/P)dT — [(z) is called the integrating factor]




Example

Its solution is

y+—-=0
X
dy  dx
y X
In|y| = —In|x[+C;
C
Yy ==



Exercise: Solve the homogeneous first-order linear DE

zy' +(1+z)y=0



Next, we consider inhomogeneous linear first-order DE

p(x)y +q(x)y = f(x)

a(z) g4
We know that yp(z) = ~J 5@ 9% s the solution of the homogeneous DE

Trick: We guess the solution of inhomogeneous DE is of the form,

&KI)==0@0€_fgg%h}

for some function v(x).



Guess:  yx) =v(x)e

Compute
V) g (gl
i =T ST T (- )
Inserting this into the original equation gives
P ) = £ ()

This equation allows us to compute v(x). Thus

:/a)’(x)dx:/l(x)f(;c) d

The solution of the equation p(x)y’ +¢q(x)y = f(x) reads

[y(x /1 f;((j; ]
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Example Solve y/ ~+ ; = 412

We know y(x) = g is the solution of the homogeneous DE

Hence we guess the solution of the inhomogeneous DE is of the form

y _o(x) ok ox) ok

LHS =y’ += = - =
v+ X X x2 * x2 X
RHS = 4x?
/
Thus @ (x) — 4?2
X
and w(x) = /4x3dx —x*+C

The general solution of the given equation reads

C
3, >
y(x)=x +



Exercise: Solve the inhomogeneous first-order linear DE

(b) ' =2 +x
X

(d) xy"+(1+x)y=xe™™



Second order Differential equation



Homogeneous second-order DE asy” + a1y’ + apy = 0

Table 10.1

Systematic procedure for the solution of the Example
homogeneous second-order DE

Let the equation be

ary"+a1y'+agy =0 y'+3y'+2y =0

Let y = ¢”* be a solution of the DE. Substituting

for
dy

I — pelX _ al'X I — =L pelX
y y=c, dx €
2

and Yy =r2e"x " o_ ay — 27X

dx?2

gives arr2e’* +a;re’* +apge’™ =0

We can factorise e’ *:

e"X(arr? +ar+ag) =0 e"X(r2+3r+2)=0
Since e”* # 0, the expression in the bracket must
be zero:
a2r2+a1r+a0:0 r2+3r+2=0

This is a quadratic in r. It is called the auxiliary
equation of the DE. Its roots are
—aj + \/012 — 4(12610
2a5
Provided that r; and r, are different, the general
solution of the DE is
y=Cie"* 4 Cye2¥ y=Cie "+ C26—2x

r1’2: 7’12—1, 7”22—2




Example

Example Solve y” +4y’+ 13y = 0.
The auxiliary equation is % +4r + 13 = 0,
whose roots are ry = =2 +3jand rp, = -2 — 3.

y = Cle(—2—|—3i)a: 4 026(—2—&'):13
y = 6—2:13 (016—31'33 i 026373513)
= ¢ ** (Asin(3z) 4+ B cos 3x)



Summary The solution of the homogeneous second-order DE
Summary a2y +ary +aoy =0

The auxiliary equation is arr?+air+agp=0.
Calculate the roots r; and r; of the auxiliary equation:

—d1 + \/6112 — 4612610

2612

Fi2 =

Obtain the general solution according to the following three possible cases.

Case 1 If r1 # r, are real and unequal roots

y = C1e"1* 4 Cpe™* (10.2)
Case 2 If r1 = rp are equal roots

y =e"1%(Cy + Cax) (10.3)
Case 3 If ry and r, are complex roots with

rir=a+jb and rp,=a—jb

10.4
y =e**(Crcosbx + Cysinbx) (10.4)



Exercise Consider the vertical motion of a particle in the presence of air resistance.
The air-resistance (drag force) is given by

dx
Fair = —kv=—-k—
v dt

By taking downward as positive, find the trajectory of the particle where it is at the
origin (i.e. x(0) = 0) with zero velocity (v(0) = 0) initially .



Example: Free undamped oscillator

By Newton’s second law of motion,
mi(t) = —kx(t)

)'c'—i—a),%x:O, W, =—

m
®, = natural frequency
This is a linear second-order DE. The auxiliary equation is

r2-|—a),%:0

The roots are r; = jo, and rp = —jwy,.
The general solution is (cf. Sect. 10.3.1, Case 3)

x = Cicoswyut + Cysinwy,t

We need two boundary conditions to determine the values of C; and C>.

— 1.

For example, the boundary conditions of an oscillation are

x=0 at tr=0 (position at the instant = 0)

X=ap at t=0 (velocity at the instantz = 0)
Substituting the first condition in the DE above gives

0= C1cos0+ Cpsin0
Hence C;{ =0

Substituting the second boundary condition gives
X=wy=—w,Cq1sin0+ w,Cyc0s0 =w,C,

Hence Cy = v /wy
The particular solution is

@y .
X = — sinwp,t



Example: Damped oscillator

The friction or damping force is given in some cases by
F=—cx

where c is a friction or damping coefficient, X is the velocity and the minus sign
indicates that the force acts in a direction opposite to the motion. By Newton’s
second law, the equation of motion for our spring-mass system becomes

mx+cx+kx=0

This is the DE of motion for free oscillations or vibrations, meaning that there are
no external forces acting on the system.

The auxiliary equation is

mri+cr+k=0

whose roots are
— V2 —dmk
rio = ¢ + ¢ m ——a+xb
’ 2m 2m

There are three cases to consider:

c2—4mk >0, c?>—4mk<0, c?>—4mk=0




1. Over-damping

Case 1: ¢ —4mk > 0.
This means that the roots are real and unequal. In this case the general solution is

X = Clerlt + Czerzt

[: o—at {Clebt n Czebt]J

This corresponds to an over-damped system, and its response from a given initial
displacement is shown in Fig. 10.5. No oscillations are present. The system will
return to the equilibrium position slowly.

x(tA




2. Critical damping

Case 2: ¢2 —4mk = 0.
The roots are equal, i.e. r; = rp = —a. The general solution is

[ ~ () +c2z)e—“f]

The system will return to the equilibrium position more quickly than the system in
Case 1 but again there will be no oscillations. It is referred to as critical or aperi-
odic and the damping is called critical damping. Its response from a given initial
displacement and initial velocity is shown in Fig. 10.6.

x(¢) ‘

Fig. 10.6



3. Under-damping

Case 3: ¢ — 4mk < 0.
The roots in this case are complex conjugate, i.e. ry = —a +jb,rp, = —a — jb,
with a > 0. The general solution is

P Clejbt + Cze_jbt

or x =e %[Cy(cosht +jsinbt) + Ca(cosbt — jsinbt )]
=¢ “(Acosht + Bsinbt)

where A = C; + Cp and B =j(Cy — C,) and A and B are arbitrary.

We should point out that although C;{ and C, may be complex, A and B are not
necessarily complex. As we are dealing with a real physical problem, the solution
must be real, hence A and B must be real, which means that C; and C, must be
complex conjugate numbers.

The displacement x may be put in another form thus:

[ x =Ce *cos(bt —a) ]

An examination of this function shows that the system will oscillate, but the oscil-
lations will die out due to the exponential factor. Its response from a given initial
displacement and velocity 1s shown in Fig. 10.7. It is a damped oscillation.




Non-homogeneous 2"¢ ODE

Lemma 10.2 Consider the non-homogeneous DE

azy" +ary’ +aoy = f(x)
Let y. be the general solution of the homogeneous equation
azy" +ary'+agy =0

Ve is also called the complementary function.
Let y,, be a particular solution of the non-homogeneous DE

axy" +a1y' +aoy = f(x)

Then the general solution of the DE is given by

[YZYC+yp]




Proof We will first show that y = y. + yp is a solution of the DE.
According to the assumptions we have made for the homogeneous DE,

ary." +ai1y. +apy. =0 [1]

For the non-homogeneous DE we have

aryp' +aiyp +aoyp = f(x) [2]

Substituting y = y. + yp in the non-homogeneous equation gives

az(ye +yp)//+a1(yc "‘yp),+a0(yc 0 yp) = [ (x)

Rearranging gives

<a2yc”+al)%/+a0%:) - (a2yP,/+a1yP,+a0yp) - f(x)



Q: How to find the particular solution?

A: There are systematic ways to find it. But in many cases, we can
guess the particular solution.



Example

Example Find a particular integral of the DE
y' =3y 42y =3 2x?
Since the RHS is a quadratic, we assume
yp=A+Bx+C x2

Hence y,’ = B+2Cx and y,” =2C
Substituting in the DE gives

2C —3(B+42Cx)+2(A+ Bx+Cx?) =3 —2x?

Comparing coefficients we find

for x2, 20=-2, C=-1
for x, —6C+2B =0, B =-3
constant terms, 2C —3B+2A4A=3, A=-2

A particular integral is



Example

Example Find a particular integral of

y//_4y/_|_3y _ Se—3x

3x

The roots of the auxiliary equation are 3 and 1. Thus e™>" is not a term of the

complementary function; hence we assume

yp — Ae—3x
v = —34e "
v = 94e 3%

Substituting in the DE gives

[9—4(—3) +3]de 3" = 5¢ 3%

5
so that A=—
24
A particular integral is
) —3x
p=5g°

The complete solution is

5
=1+ e + e
y 1€ +Che —0—246



Example

Example Suppose that the RHS of the previous example was 5e*. As e* is a term
of the complementary function, we assume

yp = Axe*
yp = A xe* + Ae* = A(xe* +¢¥)
yp! = A xe* + Ae* + Ae® = A(xe* +2¢¥)

Substituting in the DE, we have

(x+2—4x—4+3x)Ae* = 5¢* or —2A=5
5
H A=—=
ence 5
A particular integral is
= — éxex
Yp = >

The complete solution is

y = C1e>* 4+ Cre™ — Zxe*



Exercise Solve the non-homogeneous DE
// /
v ty ty=2r+3

subject to the initial conditions

y(0) =y'(0) =0



Example: Forced oscillator

Fext (t) + Fair + Felastic = M N

. . F
mi + ct + kx I 0 cos wt

Fo coswt

We consider the solution of the form:
k (spring)

2(t) = an(t) + (1)

/ \ m (mass)

General solution particular solution | |
ac c . . ¢ (damper)
miyp + ctp + kxp =0 mTp + ¢ty + kxp = Fycoswt




oscillates with the same

Trial SOlUtion: [xp — ZBO COS(CUt _ Oél)} frequency as the external force

x(OA
0
x. = Ce " cos (bt — a)
Substituting in the DE and comparing coefficients, we find 5 W -
X fo
O =
Vik=mi D24 e checkil
and tan, | = m <04 e cos (o o
The general solution 1s
X = Xc¢+ Xp, Xc= complementary function Y V/\V/\\./\\_/\\/[\\jl >
: Fo
ie. = cos(! t—,
' \/(k m! 2)2+ ¢?!? ( ) »
WM A NN
YAVAVAVAY
Transient __';_ Steady state



If there is damping, the complementary function die out after some time and the motion is
given by

Fo
X = cos(wt —ay)
V(k —mw?)?2 4 c2w?

The amplitude is
_ Fo
(k- m! 2)24 212 A “

X0

and peaks at

(BN
T m 2m2

which is the damped natural frequency of the
system.

/SmaU damping

/ Large damping

Ep——_——————-.——————_

=

) [ I VU gy LT
=

3 /
(o]

(a) (b)



Escalator Breakdown (HKPO 2017) R

P, )
An escalator has a horizontal length L = 30 m and a height P, - II

H = 18 m. It transports passengers upward through its ® Drive chain

length in 90 s. Each step on the escalator is 0.5 m deep and °
< Drive gear

S5l e A

0.3 m high. There are 60 steps on the escalator.

(a) Assume that there is one passenger with mass m = 70 kg
L

standing on alternating steps of the escalator (i.e. there are #

30 passengers on the escalator at any time). What is the
minimum power of the drive gear to keep the escalator
moving in the steady speed?

The vertical velocity = v, = 18m/90s
Number of passengers = n = 30

The power required = the power to transport one passenger X
(30) =nmgv, = 4116 W




(B) Suppose the drive chain is suddenly broken and all the
braking devices malfunction. The escalator reverses direction,
and sends passengers careening downward with an acceleration.
Eventually, all passengers will hit on the ground.

Assume both wheels have mass M = 7,000 kg, radius R = 1 m,
and there is one passenger on alternating steps. Initially, the
passengers are standing as shown in the figure when the drive
chain is broken. What is the velocity v, of the passengers when
the first passenger (P,) hits on the ground?

kinetic

energy of a wheel is

(Hint: The rotational

%M R?w? where w is the angular velocity of the wheel.)

Drive chain

< Drive gear

S5l e A




The vertical velocity v, = 18m/90s
The horizontal velocity v, = 30m/90s

The velocity v, = /v,? +vy =039ms™!

Initially, the passengers are moving upward with an initial velocity vy =
0.4 m s~! and the wheels rotate with an angular velocity wy = v9/R = 0.4 rad
sl

2
The initial energy is E, = 2 X %MR2 (%0) + 30 X %mvg =692 ]

When the first passenger hits on the ground, the total energy becomes

E =2x1MR2(ﬁ)2+30x1mv2—30m (0.6) =E

By the conservation of energy, we have v; = 1.693 ms™1.



(c) What is the velocity v, of the second passenger (P,) before
he/she hits the ground? Assume that the first passenger has left

the location.

The total energy after the first person hits on the ground

E, = 2 X ~ MR? (ﬁ)z +29 X ~mp? = 12941
2 4 R 2 1

When the second person hits on the ground, the total

energy becomes
1 5 (V2\* 1
Es =2 X MR (F) +29 X Zmv} — 29mg(0.6)
Hence, we have v, = 2.347 ms™1.

Drive chain

< Drive gear

B &




(d) What is the velocity of the last passenger (P5,) before he/she hits the
ground? Assume that all passengers hitting the ground earlier have left the

location.

(Hint: A useful approximation is I o (1 + = ).)
A+1  A+2 A+N A+1/2

In general, we have the recursive formula

2(n)mgh M/m
Z=pi+———=v¢+2gh|1———F—
L=Vt oy T V0TI M/m + 30
2(n — 1)mgh /m
2 = p? =v2+2 1———
vz 171-|_M+m(n—1) vit gh( M/m+ 29
2(n —29)mgh /m
2 =2 = viy+2 1————
V30 v29+M+m(n—29) V2o gh( M/m+1
Adding the equations,
5 5 M 1 1
U30=UO+2gh 30_5 M +"'M
— + 30 —+1
m m

100.5
v3, = v§ + 2gh(3.878)
V30 = 6.76 ms™?!

) 30
~vy+2gh|30—-100In(1+-——

In contrast to the free fall. me(18) = 0.5mv? -> v = 18.78 m s°L. the velocity is lower.

Drive chain

= hi@hei

< Drive gear




